TY - THES A1 - Humrich, Jan T1 - G-Protein betagamma-Regulation durch Phosducin-like Proteine T1 - G protein betagamma regulation by phosducin-like proteins N2 - Phosducin-like Protein existiert in zwei Splicevarianten: PhLPLONG (PhLPL) und PhLPSHORT (PhLPS). Sie unterscheiden sich in der Länge ihres N-Terminus und in ihrem Expressionsmusters: Die lange Form (PhLPL) wird ubiquitär exprimiert und bindet G-Protein-betagamma-Untereinheiten (Gbetagama), was zur Hemmung von Gbetagamma-abhängigen Funktionen führt. Der um 83 Aminosäuren verlängerte N-Terminus besitzt ein hoch konserviertes Motiv, welches für die Gbetagamma-Bindung und Regulation von entscheidender Bedeutung ist. Im Gegensatz hierzu besitzt die kurzen Spliceform PhLPS, deren Expression in verschiedenen Gewebetypen deutlich geringer ist, diese hoch konservierte Region nicht. In der vorliegenden Arbeit wurde nun erstmals die Rolle von PhLPL und PhLPS bei der Gbetagamma-Regulation in intakten Zellen untersucht. Hierbei konnte überraschenderweise gefunden werden, dass PhLPS der potentere und effizientere Regulator für Gbetagamma-abhängige Signale war. PhLPL hingegen schien in seiner Gbetagamma-regulierenden Fähigkeit limitiert zu werden. Die Ursache dieser Limitierung von PhLPL in intakten Zellen wurde auf eine konstitutive Phosphorylierung seines verlängerten N-Terminus durch die ubiquitäre Casein Kinase 2 (CK2) zurückgeführt. Die verantwortlichen Phosphorylierungsstellen (S18, T19, S20) wurde identifiziert und die Mutation der CK2-Phosphorylierungsstellen (PhLPLA18-20) führte zu einer Verbesserung der hemmenden Funktion von PhLPL in Zellen. In vitro-Assays zur Bindungsfähigkeit von rekombinantem PhLPL (vor und nach CK2-Phosphorylierung) zeigten allerdings: die Phosphorylierung beeinflusste die Affinität nicht. Eine genaue Analyse der N-terminalen Strukuren von PhLPL zeigte indes, dass die Regulationsfähigkeit von PhLPL in intakten Zellen vor allem in dem konservierten Gbetagamma-Bindungsmotiv zu suchen war. Die Mutation einer einzigen Aminosäure (W66V) war ausreichend, um sowohl die Gbetagamma-Bindungsfähigkeit, als auch die Fähigkeit zur funktionellen Hemmung in intakten Zellen zu verlieren. Was war also der Mechanismus der Hemmung von Gbetagamma durch PhLPS und die phophorylierungsdefiziente Mutante von PhLPL? Ein erster Hinweis hierauf kam von der Beobachtung, dass die Gbeta- und Ggamma-Untereinheiten in Anwesenheit von PhLPS in ihrem Proteingehalt deutlich reduziert vorlagen (wie in Western Blots gezeigt). Dieser Mechanismus schien von proteasomalen Abbauwegen abzuhängen (gezeigt durch Effekte des spezifischen Proteasominhibitors Lactazystin). Allerdings schien eine Stabilisierung der Gbeta- und Ggamma-Untereinheiten (durch N-terminale Fusion mit einem Protein zur vitalen Proteinfärbung) nicht die Funktionsfähigkeit von Gbetagamma in Anwesenheit von PhLPS bewahren zu können. Ganz im Gegenteil, es wurde gezeigt, dass Gbeta und Ggamma hierbei nicht mehr zu einem funktionellen Dimer assoziierten. Dies war ein Hinweis darauf, dass möglicherweise Proteinfaltungsmechanismen bei der Regulation essentiell sein könnten. Eine postulierte Rolle bei der Faltung von WD40-Repeatproteinen wie der Gbeta-Untereinheit wurde dem Chaperonin-Komplex CCT (chaperonin containing TCP) zugedacht. Folgerichtig konnte PhLPS mit seinen funktionell aktiven Domänen an endogenes TCP-1alpha (einer Untereinheit von CCT) binden. Ferner konnte gezeigt werden, dass die Hemmung des CCT-Komplexes durch RNA-Interferenz mit TCP-1alpha ebenso wie PhLPS zur spezifischen Reduktion von Gbetagamma führte. In dieser Arbeit wurde also ein neuartiger Mechanismus der G-Protein-Regulation durch Hemmung der Proteinfaltung von Gbetagamma beschrieben. Ein Schaltmechanismus zwischen direkter Gbetagamma-Bindung (induziert durch CK2-Phosphorylierung von PhLPL) und Hemmung der Proteinfaltung von Gbetagamma (induziert durch alternatives Splicen oder durch Dephosphorylierung von PhLP) wird postuliert. N2 - Phosducin-like protein (PhLP) exists in two splice variants PhLPLONG (PhLPL) and PhLPSHORT (PhLPS): They differ in the length of their N-termini and their expression pattern: The long form (PhLPL) is a ubiquitously expressed protein and binds G-protein betagamma-subunits (Gbetagamma) and thereby inhibits Gbetagamma-mediated function. The extended N-terminus of PhLPL (83 amino acids) contains a highly conserved Gbetagamma-binding motif which plays the crucial role in binding and regulating Gbetagamma-subunits. In contrast, the short splice variant PhLPS, which has a more restricted expression, lacks this motif and did not seem to exert a major Gbetagamma-inhibition, when tested with purified proteins. In the present work, for the first time, we investigated the Gbetagamma-inhibiting properties of PhLPL and PhLPS in intact cells. Surprisingly, PhLPS was the more potent and effective Gbetagamma inhibitor, while PhLPL was limited in this respect. The reason for the limited ability to inhibit Gbetagamma in intact cells was found in a constitutive phosphorylation by the ubiquitious kinase casein kinase 2 (CK2). The responsible phosphorylation sites could be identified (S18, T19, S20) and mutation of those sites into alanines could ameliorate the function of PhLPL. We therefore hypothesised that CK2 dependent phosphorylation of PhLPL should reduce binding affinity towards Gbetagamma subunits. But instead, direct phosphorylation of recombinant PhLPL by CK2 did not reduce its binding affinites. A thorough analysis of the N terminus of PhLPL revealed that a single mutation of the conserved N terminal binding motif (W66V) was sufficient to ablate Gbetagamma binding and Gbetagamma inhibition in intact cells. A first hint to an alternative mechanism came from the observation that - in the presence of PhLPS - the protein content of Gbeta and Ggamma subunits was dramatically reduced (as determined by Western blotting). This phenomenon seemed to be dependent on a proteasomal pathway (which was shown by effects of the specific proteasome inhibitor lactacystine). But a stabilization of the Gbeta and Ggamma subunits through N terminal fusion of a dye-labeling protein could not restore the function of Gbetagamma in the presence of PhLPS. Instead, it could be demonstrated that under these conditions Gbeta and Ggamma did not form functional dimers any more. This finding led to the conclusion that a protein folding mechanism was possibly involved. A postulated role in the folding of WD40 repeat proteins (like the Gbeta subunit) was assumed for the cytosolic chaperonin complex CCT in the literature. PhLPS was able to bind to TCP-1alpha, a subunit of CCT, as were the functionally active domains of PhLPS. We further demonstrated that the inhibition of CCT by RNA interference with TCP-1alpha also led to down-regulation of Gbeta and Ggamma subunits. So, in this thesis, a novel mechanism of G-protein regulation through inhibition of Gbetagamma protein folding was described. Further, a switch mechanism between direct Gbetagamm binding (induced by phosphorylation of PhLPL) and inhibition of Gbetagamm folding (induced by alternative splicing or dephosphorylation of PhLP) is postulated. KW - G-Proteine KW - Membranrezeptor KW - Regulation KW - Proteinfaltung KW - Phosphorylierung KW - Zellkultur KW - RNS-Interferenz KW - Proteinkinase A KW - Protein-Protein-Wechselwirkung KW - Proteinkinase CK2 KW - Immunoblot KW - Phosducin KW - Phosducin-like Proteine KW - CCT KW - TCP-1 alpha KW - Proteasom KW - WD 40 Repeat Proteins KW - Inhibition KW - Protein Folding KW - Protein Interaction Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40059 ER - TY - THES A1 - Brockmann, Jörg T1 - Regulation G-Protein-gekoppelter Rezeptorkinasen T1 - Regularion of G-protein coupled receptorkinases N2 - GRK2 wird an Serin29 durch PKC phosphoryliert. Die Phosphorylierung verhindert die Inhibition der GRK2 durch Calmodulin. Die Inhibition der GRK2 durch Calmodulin wird durch den N-Terminus der GRK2 vermittelt und ist auf eine gestörte Aktivierbarkeit der GRK2 durch G-Protein beta/gamma-Untereinheiten zurückzuführen. N2 - GRK2 is phosphorylated by PKC at serin29. The phosphorylation prevents GRK2 inhibition by calmodulin. Inhibition of GRK2 by calmodulin is mediated by the N-terminus of the kinase and is due to a disturbed activation of GRK2 by G-protein beta/gamma subunits. KW - Rezeptor-Kinasen KW - G-Proteine KW - Calmodulin KW - Proteinkinase C KW - Phosphorylierung KW - GRK2 KW - Calmodulin KW - PKC KW - Regulation KW - Phosphorylierung KW - GRK2 KW - calmodulin KW - PKC KW - regulation KW - phosphorylation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15320 ER - TY - THES A1 - Christenn, Marcus T1 - Charakterisierung von Somatostatinrezeptor-Subtyp 4 interagierenden Proteinen in der Ratte (Rattus norvegicus) T1 - Characterisation of somatostatin receptor subtype 4 interacting proteins in the rat (Rattus norvegicus) N2 - Somatostatin ist ein regulatorisches Peptid, das eine Vielzahl von biologischen Prozessen innerhalb des Körpers beeinflußt. Die Wirkung von Somatostatin wird auf zellulärer Ebene über eine Familie von fünf G-Protein-gekoppelten Rezeptoren vermittelt, die entweder in G Protein-abhängiger Weise oder vermutlich auch über andere interagierende intrazelluläre Proteine auf nachgeschaltete Signaltransduktionswege wirken. Der Somatostatinrezeptor Subtyp 4 (SSTR4) wird hauptsächlich im Gehirn exprimiert und wirkt dort inhibierend auf die exzitatorische Signalweiterleitung. Es sind aber auch stimulierende Effekte des SSTR4 bekannt. Um das subtypspezifische Signalverhalten des SSTR4 weiter zu untersuchen, wurden im Rahmen dieser Arbeit Proteine gesucht, die intrazellulär mit dem SSTR4 interagieren und so seine physiologischen Effekte beeinflussen. In einem ersten Ansatz konnten drei mögli-che Interaktionspartner mit Hilfe des Hefe-Zwei-Hybrid-Systems identifiziert werden, die aber in nachfolgenden Untersuchungen als unpezifisch eingestuft wurden. Mit Hilfe einer Affinitätschromatografie wurden dann zwei Proteine identifiziert, die spezifisch mit dem SSTR4 interagieren. Sowohl PSD-95 als auch PSD-93 (Postsynaptic density protein of 95 kDa bzw. 93kDa) wurden mit einem immobilisierten Peptid präzipitiert, das die neun C-terminalen Aminosäuren des SSTR4 enthält. Die Interaktion des SSTR4 mit PSD 95 wurde im Weiteren näher charakterisiert. In einem Bindungsexperiment mit rekombinaten Proteinen konnte gezeigt werden, dass die Interaktion durch die 1. und 2. PDZ-Domäne von PSD-95 vermittelt wird. In humanen embryonalen Nieren-Zellen (HEK293), die den SSTR4 stabil exprimieren, konnte PSD-95 mit dem Rezeptor koimmunpräzipitiert werden. Nach Koexpression von PSD-95 und SSTR4 findet man eine partielle Kolokalisierung beider Proteine an der Zellmembran, wobei aber der Großteil des PSD-95 weiterhin eine diffuse zytoplasmatische Verteilung zeigt. Die Interaktion wurde in vivo sowohl immunhistochemisch in kultivierten Hippocampus-Neuronen als auch durch Koimmunpräzipitation beider Proteine aus Rattengehirn-Lysaten nachgewiesen. Die Interaktion von PSD-95 mit dem SSTR4 beeinflußt weder die Agonisten-induzierte Internalisierung des Rezeptors in HEK293-Zellen, noch die Kopplung des Rezeptors an einen G-Protein-gekoppelten einwärtsgleichrichtenden Kaliumkanal in Oozyten des afrikanischen Krallenfrosches Xenopus laevis. Durch die Interaktion mit PSD-95 wird der SSTR4 in physikalische Nähe zu bestimmten Zielproteinen gebracht, über die nachfolgend die Somatostatineffekte weitervermittelt werden. So ermöglicht die Interaktion vermutlich eine Integration des SSTR4 in den postsynaptischen Komplex aus PSD-95 und Glutamatrezeptoren, wo der SSTR4 die bereits beschrieben regulatorischen Effekte auf die Glutamat-vermittelte exzitatorische Signaltransduktion ausüben kann. N2 - Somatostatin is a regulatory peptid, which affects a multiplicity of biological processes within the body. The effects of Somatostatin are mediated by a family of five G-protein-coupled receptors, which act on several downstream signaltransduction pathways either in a G-protein-dependent way or probably in a G-protein-independent manner via intracellular interacting proteins. The somatostatin receptor subtype 4 (SSTR4) is mainly expressed in brain, where it inhibits the excitatory neurotransmission. In addition, excitatory effects of SSTR4 have also been published. In order to examine the subtype specific signalling of SSTR4, I tried to identify intracellular proteins which interact directly with the SSTR4 and affect its physiological effects. Using the yeast two-hybrid system I identified three possible interaction partners for SSTR4, which were however classified as non-specific in subsequent experiments. In a second approach two proteins which interact with SSTR4 could be identified by affinity-chromatography. Both proteins PSD-95 and PSD-93 (Postsynaptic density protein of 95 kDa and 93kDa) were precipitated specifically with an immobilized peptid that contains the nine C-terminal amino acids of SSTR4. The interaction of the SSTR4 with PSD-95 was further characterized. In a binding experiment with recombinant proteins I could show that the interaction is mediated by the 1st and 2nd PDZ-domain of PSD-95. In human embryonic kidney cells (HEK293) which stably express SSTR4, PSD-95 could be coprecipitated with the receptor. After coexpression of PSD-95 and SSTR4 both proteins are partially colocalized at the plasma membrane. The majority of the PSD-95 however shows a diffuse cytoplasmic distribution. The in vivo interaction was proven by immunohistochemistry on cultivated hippocampal neurons and by coimmunoprecipitation of both proteins from rat brain lysates. The interaction of PSD-95 with SSTR4 affected neither the agonist induced internalisation of the receptor in HEK293 cells, nor the coupling of the receptor to a G-protein-coupled inwardly-rectifying potassium channel in oocytes obtained from the african clawed frog Xenopus laevis. By the interaction with PSD-95, SSTR4 is brought into physical proximity to certain target proteins which mediate the effects of somatostatin. Thus the interaction probably allows an integration of SSTR4 into the postsynaptic complex of PSD-95 and glutamergic receptors, where SSTR4 could regulate the glutamat-mediated excitatory signaltransduction. KW - Ratte KW - Somatostatin KW - G-Proteine KW - Rezeptor KW - G-Protein-gekoppelter Rezeptor KW - Somatostatinrezeptor Subtyp 4 KW - interagierende Proteine KW - PDZ-Domäne KW - PSD-95 KW - G-protein-coupled receptor KW - somatostatin receptor subtype 4 KW - interacting proteins KW - PDZ-domain KW - PSD-95 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14253 ER -