TY - JOUR A1 - Lux, Thomas J. A1 - Banck, Michael A1 - Saßmannshausen, Zita A1 - Troya, Joel A1 - Krenzer, Adrian A1 - Fitting, Daniel A1 - Sudarevic, Boban A1 - Zoller, Wolfram G. A1 - Puppe, Frank A1 - Meining, Alexander A1 - Hann, Alexander T1 - Pilot study of a new freely available computer-aided polyp detection system in clinical practice JF - International Journal of Colorectal Disease N2 - Purpose Computer-aided polyp detection (CADe) systems for colonoscopy are already presented to increase adenoma detection rate (ADR) in randomized clinical trials. Those commercially available closed systems often do not allow for data collection and algorithm optimization, for example regarding the usage of different endoscopy processors. Here, we present the first clinical experiences of a, for research purposes publicly available, CADe system. Methods We developed an end-to-end data acquisition and polyp detection system named EndoMind. Examiners of four centers utilizing four different endoscopy processors used EndoMind during their clinical routine. Detected polyps, ADR, time to first detection of a polyp (TFD), and system usability were evaluated (NCT05006092). Results During 41 colonoscopies, EndoMind detected 29 of 29 adenomas in 66 of 66 polyps resulting in an ADR of 41.5%. Median TFD was 130 ms (95%-CI, 80–200 ms) while maintaining a median false positive rate of 2.2% (95%-CI, 1.7–2.8%). The four participating centers rated the system using the System Usability Scale with a median of 96.3 (95%-CI, 70–100). Conclusion EndoMind’s ability to acquire data, detect polyps in real-time, and high usability score indicate substantial practical value for research and clinical practice. Still, clinical benefit, measured by ADR, has to be determined in a prospective randomized controlled trial. KW - colonoscopy KW - polyp KW - artificial intelligence KW - deep learning KW - CADe Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324459 VL - 37 IS - 6 ER - TY - JOUR A1 - Krenzer, Adrian A1 - Banck, Michael A1 - Makowski, Kevin A1 - Hekalo, Amar A1 - Fitting, Daniel A1 - Troya, Joel A1 - Sudarevic, Boban A1 - Zoller, Wolfgang G. A1 - Hann, Alexander A1 - Puppe, Frank T1 - A real-time polyp-detection system with clinical application in colonoscopy using deep convolutional neural networks JF - Journal of Imaging N2 - Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is with a colonoscopy. During this procedure, the gastroenterologist searches for polyps. However, there is a potential risk of polyps being missed by the gastroenterologist. Automated detection of polyps helps to assist the gastroenterologist during a colonoscopy. There are already publications examining the problem of polyp detection in the literature. Nevertheless, most of these systems are only used in the research context and are not implemented for clinical application. Therefore, we introduce the first fully open-source automated polyp-detection system scoring best on current benchmark data and implementing it ready for clinical application. To create the polyp-detection system (ENDOMIND-Advanced), we combined our own collected data from different hospitals and practices in Germany with open-source datasets to create a dataset with over 500,000 annotated images. ENDOMIND-Advanced leverages a post-processing technique based on video detection to work in real-time with a stream of images. It is integrated into a prototype ready for application in clinical interventions. We achieve better performance compared to the best system in the literature and score a F1-score of 90.24% on the open-source CVC-VideoClinicDB benchmark. KW - machine learning KW - deep learning KW - endoscopy KW - gastroenterology KW - automation KW - object detection KW - video object detection KW - real-time Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304454 SN - 2313-433X VL - 9 IS - 2 ER - TY - JOUR A1 - Krenzer, Adrian A1 - Makowski, Kevin A1 - Hekalo, Amar A1 - Fitting, Daniel A1 - Troya, Joel A1 - Zoller, Wolfram G. A1 - Hann, Alexander A1 - Puppe, Frank T1 - Fast machine learning annotation in the medical domain: a semi-automated video annotation tool for gastroenterologists JF - BioMedical Engineering OnLine N2 - Background Machine learning, especially deep learning, is becoming more and more relevant in research and development in the medical domain. For all the supervised deep learning applications, data is the most critical factor in securing successful implementation and sustaining the progress of the machine learning model. Especially gastroenterological data, which often involves endoscopic videos, are cumbersome to annotate. Domain experts are needed to interpret and annotate the videos. To support those domain experts, we generated a framework. With this framework, instead of annotating every frame in the video sequence, experts are just performing key annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps. Subsequently, non-expert annotators supported by machine learning add the missing annotations for the frames in-between. Methods In our framework, an expert reviews the video and annotates a few video frames to verify the object’s annotations for the non-expert. In a second step, a non-expert has visual confirmation of the given object and can annotate all following and preceding frames with AI assistance. After the expert has finished, relevant frames will be selected and passed on to an AI model. This information allows the AI model to detect and mark the desired object on all following and preceding frames with an annotation. Therefore, the non-expert can adjust and modify the AI predictions and export the results, which can then be used to train the AI model. Results Using this framework, we were able to reduce workload of domain experts on average by a factor of 20 on our data. This is primarily due to the structure of the framework, which is designed to minimize the workload of the domain expert. Pairing this framework with a state-of-the-art semi-automated AI model enhances the annotation speed further. Through a prospective study with 10 participants, we show that semi-automated annotation using our tool doubles the annotation speed of non-expert annotators compared to a well-known state-of-the-art annotation tool. Conclusion In summary, we introduce a framework for fast expert annotation for gastroenterologists, which reduces the workload of the domain expert considerably while maintaining a very high annotation quality. The framework incorporates a semi-automated annotation system utilizing trained object detection models. The software and framework are open-source. KW - object detection KW - machine learning KW - deep learning KW - annotation KW - endoscopy KW - gastroenterology KW - automation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300231 VL - 21 IS - 1 ER -