TY - JOUR A1 - Dirk, Robin A1 - Fischer, Jonas L. A1 - Schardt, Simon A1 - Ankenbrand, Markus J. A1 - Fischer, Sabine C. T1 - Recognition and reconstruction of cell differentiation patterns with deep learning JF - PLoS Computational Biology N2 - Abstract Cell lineage decisions occur in three-dimensional spatial patterns that are difficult to identify by eye. There is an ongoing effort to replicate such patterns using mathematical modeling. One approach uses long ranging cell-cell communication to replicate common spatial arrangements like checkerboard and engulfing patterns. In this model, the cell-cell communication has been implemented as a signal that disperses throughout the tissue. On the other hand, machine learning models have been developed for pattern recognition and pattern reconstruction tasks. We combined synthetic data generated by the mathematical model with spatial summary statistics and deep learning algorithms to recognize and reconstruct cell fate patterns in organoids of mouse embryonic stem cells. Application of Moran’s index and pair correlation functions for in vitro and synthetic data from the model showed local clustering and radial segregation. To assess the patterns as a whole, a graph neural network was developed and trained on synthetic data from the model. Application to in vitro data predicted a low signal dispersion value. To test this result, we implemented a multilayer perceptron for the prediction of a given cell fate based on the fates of the neighboring cells. The results show a 70% accuracy of cell fate imputation based on the nine nearest neighbors of a cell. Overall, our approach combines deep learning with mathematical modeling to link cell fate patterns with potential underlying mechanisms. Author summary Mammalian embryo development relies on organized differentiation of stem cells into different lineages. Particularly at the early stages of embryogenesis, cells of different fates form three-dimensional spatial patterns that are difficult to identify by eye. Pattern quantification and mathematical modeling have produced first insights into potential mechanisms for the cell fate arrangements. However, these approaches have relied on classifications of the patterns such as inside-out or random, or used summary statistics such as pair correlation functions or cluster radii. Deep neural networks allow characterizing patterns directly. Since the tissue context can be readily reproduced by a graph, we implemented a graph neural network to characterize the patterns of embryonic stem cell organoids as a whole. In addition, we implemented a multilayer perceptron model to reconstruct the fate of a given cell based on its neighbors. To train and test the models, we used synthetic data generated by our mathematical model for cell-cell communication. This interplay of deep learning and mathematical modeling in combination with summary statistics allowed us to identify a potential mechanism for cell fate determination in mouse embryonic stem cells. Our results agree with a mechanism with a dispersion of the intercellular signal that links a cell’s fate to those of the local neighborhood. KW - recognition KW - reconstruction KW - cell differentiation patterns KW - deep learning KW - mouse embryonic stem cells KW - multilayer perceptron model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350167 VL - 19 IS - 10 ER - TY - JOUR A1 - Pook, Torsten A1 - Freudenthal, Jan A1 - Korte, Arthur A1 - Simianer, Henner T1 - Using Local Convolutional Neural Networks for Genomic Prediction JF - Frontiers in Genetics N2 - The prediction of breeding values and phenotypes is of central importance for both livestock and crop breeding. In this study, we analyze the use of artificial neural networks (ANN) and, in particular, local convolutional neural networks (LCNN) for genomic prediction, as a region-specific filter corresponds much better with our prior genetic knowledge on the genetic architecture of traits than traditional convolutional neural networks. Model performances are evaluated on a simulated maize data panel (n = 10,000; p = 34,595) and real Arabidopsis data (n = 2,039; p = 180,000) for a variety of traits based on their predictive ability. The baseline LCNN, containing one local convolutional layer (kernel size: 10) and two fully connected layers with 64 nodes each, is outperforming commonly proposed ANNs (multi layer perceptrons and convolutional neural networks) for basically all considered traits. For traits with high heritability and large training population as present in the simulated data, LCNN are even outperforming state-of-the-art methods like genomic best linear unbiased prediction (GBLUP), Bayesian models and extended GBLUP, indicated by an increase in predictive ability of up to 24%. However, for small training populations, these state-of-the-art methods outperform all considered ANNs. Nevertheless, the LCNN still outperforms all other considered ANNs by around 10%. Minor improvements to the tested baseline network architecture of the LCNN were obtained by increasing the kernel size and of reducing the stride, whereas the number of subsequent fully connected layers and their node sizes had neglectable impact. Although gains in predictive ability were obtained for large scale data sets by using LCNNs, the practical use of ANNs comes with additional problems, such as the need of genotyping all considered individuals, the lack of estimation of heritability and reliability. Furthermore, breeding values are additive by design, whereas ANN-based estimates are not. However, ANNs also comes with new opportunities, as networks can easily be extended to account for additional inputs (omics, weather etc.) and outputs (multi-trait models), and computing time increases linearly with the number of individuals. With advances in high-throughput phenotyping and cheaper genotyping, ANNs can become a valid alternative for genomic prediction. KW - phenotype prediction KW - Keras KW - genomic selection KW - selection KW - breeding KW - machine learning KW - deep learning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216436 VL - 11 ER -