TY - THES A1 - Bergmann Borges, Alyssa T1 - The endo-lysosomal system of \(Trypanosoma\) \(brucei\): insights from a protist cell model T1 - Das Endo-lysosomale System von \(Trypanosoma\) \(brucei\): Erkenntnisse aus einem Protisten-Zellmodell N2 - Most of the studies in cell biology primarily focus on models from the opisthokont group of eukaryotes. However, opisthokonts do not encompass the full diversity of eukaryotes. Thus, it is necessary to broaden the research focus to other organisms to gain a comprehensive understanding of basic cellular processes shared across the tree of life. In this sense, Trypanosoma brucei, a unicellular eukaryote, emerges as a viable alternative. The collaborative efforts in genome sequencing and protein tagging over the past two decades have significantly expanded our knowledge on this organism and have provided valuable tools to facilitate a more detailed analysis of this parasite. Nevertheless, numerous questions still remain. The survival of T. brucei within the mammalian host is intricately linked to the endo-lysosomal system, which plays a critical role in surface glycoprotein recycling, antibody clearance, and plasma membrane homeostasis. However, the dynamics of the duplication of the endo-lysosomal system during T. brucei proliferation and its potential relationship with plasma membrane growth remain poorly understood. Thus, as the primary objective, this thesis explores the endo-lysosomal system of T. brucei in the context of the cell cycle, providing insights on cell surface growth, endosome duplication, and clathrin recruitment. In addition, the study revisits ferritin endocytosis to provide quantitative data on the involvement of TbRab proteins (TbRab5A, TbRab7, and TbRab11) and the different endosomal subpopulations (early, late, and recycling endosomes, respectively) in the transport of this fluid-phase marker. Notably, while these subpopulations function as distinct compartments, different TbRabs can be found within the same region or structure, suggesting a potential physical connection between the endosomal subpopulations. The potential physical connection of endosomes is further explored within the context of the cell cycle and, finally, the duplication and morphological plasticity of the lysosome are also investigated. Overall, these findings provide insights into the dynamics of plasma membrane growth and the coordinated duplication of the endo-lysosomal system during T. brucei proliferation. The early duplication of endosomes suggests their potential involvement in plasma membrane growth, while the late duplication of the lysosome indicates a reduced role in this process. The recruitment of clathrin and TbRab GTPases to the site of endosome formation supports the assumption that the newly formed endosomal system is active during cell division and, consequently, indicates its potential role in plasma membrane homeostasis. Furthermore, considering the vast diversity within the Trypanosoma genus, which includes ~500 described species, the macroevolution of the group was investigated using the combined information of the 18S rRNA gene sequence and structure. The sequence-structure analysis of T. brucei and other 42 trypanosome species was conducted in the context of the diversity of Trypanosomatida, the order in which trypanosomes are placed. An additional analysis focused on Trypanosoma highlighted key aspects of the group’s macroevolution. To explore these aspects further, additional trypanosome species were included, and the changes in the Trypanosoma tree topology were analyzed. The sequence-structure phylogeny confirmed the independent evolutionary history of the human pathogens T. brucei and Trypanosoma cruzi, while also providing insights into the evolution of the Aquatic clade, paraphyly of groups, and species classification into subgenera. N2 - Die meisten Studien in der Zellbiologie konzentrieren sich in erster Linie auf Modelle aus der Opisthokont-Gruppe der Eukaryonten. Die Opisthokonten umfassen jedoch nicht die gesamte Vielfalt der Eukaryonten. Daher ist es notwendig, den Forschungsschwerpunkt auf andere Organismen auszuweiten, um ein umfassendes Verständnis grundlegender zellulärer Prozesse zu erlangen, die im gesamten Lebensbaum vorkommen. In diesem Sinne stellt Trypanosoma brucei, ein einzelliger Eukaryote, eine brauchbare Alternative dar. Die gemeinsamen Anstrengungen bei der Genomsequenzierung und der Markierung von Proteinen in den letzten zwei Jahrzehnten haben unser Wissen über diesen Organismus erheblich erweitert und wertvolle Instrumente für eine detailliertere Analyse dieses Parasiten bereitgestellt. Dennoch bleiben noch zahlreiche Fragen offen. Das Überleben von T. brucei im Säugetierwirt ist eng mit dem endo-lysosomalen System verknüpft, das eine entscheidende Rolle beim Recycling von Oberflächenglykoproteinen, der Antikörper-Clearance und der Homöostase der Plasmamembran spielt. Die Dynamik der Verdoppelung des endo-lysosomalen Systems während der Vermehrung von T. brucei und seine mögliche Beziehung zum Wachstum der Plasmamembran sind jedoch noch wenig bekannt. In dieser Arbeit wird daher das endo-lysosomale System von T. brucei im Kontext des Zellzyklus untersucht, um Erkenntnisse über das Wachstum der Zelloberfläche, die Verdopplung der Endosomen und die Clathrin-Rekrutierung zu gewinnen. Darüber hinaus wird in der Studie die Ferritin-Endozytose erneut untersucht, um quantitative Daten über die Beteiligung der TbRab-Proteine (TbRab5A, TbRab7 und TbRab11) und der verschiedenen endosomalen Subpopulationen (frühe, späte bzw. Recycling-Endosomen) am Transport dieses Flüssigphasenmarkers zu erhalten. Bemerkenswert ist, dass diese Subpopulationen zwar als unterschiedliche Kompartimente fungieren, aber verschiedene TbRabs in derselben Region oder Struktur gefunden werden können, was auf eine mögliche physische Verbindung zwischen den endosomalen Subpopulationen hindeutet. Die potenzielle physikalische Verbindung von Endosomen wird im Zusammenhang mit dem Zellzyklus weiter erforscht, und schließlich werden auch die Verdopplung und die morphologische Plastizität des Lysosoms untersucht. Insgesamt bieten diese Ergebnisse Einblicke in die Dynamik des Plasmamembranwachstums und die koordinierte Verdopplung des endo-lysosomalen Systems während der Proliferation von T. brucei. Die frühe Verdoppelung der Endosomen deutet auf ihre mögliche Beteiligung am Plasmamembranwachstum hin, während die späte Verdoppelung der Lysosomen auf eine geringere Rolle in diesem Prozess hindeutet. Die Rekrutierung von Clathrin- und TbRab-GTPasen an der Stelle der Endosomenbildung unterstützt die Annahme, dass das neu gebildete endosomale System während der Zellteilung aktiv ist, und deutet folglich auf seine potenzielle Rolle bei der Homöostase der Plasmamembran hin. In Anbetracht der enormen Vielfalt innerhalb der Gattung Trypanosoma, die etwa 500 beschriebene Arten umfasst, wurde die Makroevolution der Gruppe anhand der kombinierten Informationen der 18S rRNA-Gensequenz und Struktur untersucht. Die Sequenz-Struktur-Analyse von T. brucei und anderen 42 Trypanosomen-Arten wurde im Zusammenhang mit der Vielfalt der Trypanosomatida, der Ordnung, in die Trypanosomen eingeordnet werden, durchgeführt. Eine zusätzliche Analyse, die sich auf Trypanosoma konzentrierte, hob Schlüsselaspekte der Makroevolution dieser Gruppe hervor. Um diese Aspekte weiter zu erforschen, wurden zusätzliche Trypanosomenarten einbezogen und die Veränderungen in der Topologie des Trypanosoma-Baums analysiert. Die Sequenz-Struktur-Phylogenie bestätigte die unabhängige Evolutionsgeschichte der humanen Krankheitserreger T. brucei und Trypanosoma cruzi, während sie gleichzeitig Einblicke in die Evolution der aquatischen Klade, die Paraphylie von Gruppen und die Klassifizierung der Arten in Untergattungen lieferte. KW - 18S rRNA KW - Endocytose KW - Zellzyklus KW - Phylogenie KW - Endocytosis KW - Cell cycle KW - Trypanosoma KW - Phylogeny KW - Sequence-Structure KW - Endosomes KW - Lysosome Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-329248 ER - TY - THES A1 - Koetschan, Christian T1 - The Eukaryotic ITS2 Database - A workbench for modelling RNA sequence-structure evolution T1 - Die Eukaryotische ITS2 Datenbank - Eine Plattform zur Modellierung von RNA Sequenzstruktur Evolution N2 - In den vergangenen Jahren etablierte sich der Marker „internal transcribed spacer 2" (ITS2) zu einem häufig genutzten Werkzeug in der molekularen Phylogenetik der Eukaryoten. Seine schnell evolvierende Sequenz eignet sich bestens für den Einsatz in niedrigeren phylogenetischen Ebenen. Die ITS2 faltet jedoch auch in eine sehr konservierte Sekundärstruktur. Diese ermöglicht die Unterscheidung weit entfernter Arten. Eine Kombination aus beiden in einer Sequenzstrukturanalyse verbessert die Auflösung des Markers und ermöglicht die Rekonstruktion von robusteren Bäumen auf höherer taxonomischer Breite. Jedoch war die Durchführung solch einer Analyse, die die Nutzung unterschiedlichster Programme und Datenbanken vorraussetzte, für den klassischen Biologen nicht einfach durchführbar. Um diese Hürde zu umgehen, habe ich den „ITS2 Workbench“ entwickelt, eine im Internet nutzbare Arbeitsplattform zur automatisierten sequenzstrukturbasierten phylogenetischen Analyse basierend auf der ITS2 (http://its2.bioapps.biozentrum.uni-wuerzburg.de). Die Entwicklung begann mit der Längenoptimierung unterschiedlicher „Hidden Markov Model“ (HMM)-Topologien, die erfolgreich auf ein Modell zur Sequenzstrukturvorhersage der ITS2 angewandt wurden. Hierbei wird durch die Analyse von Sequenzbestandteilen in Kombination mit der Längenverteilung verschiedener Helixregionen die Struktur vorhergesagt. Anschließend konnte ich HMMs auch bei der Sequenzstrukturgenerierung einsetzen um die ITS2 innerhalb einer gegebenen Sequenz zu lokalisieren. Dieses neu implementierte Verfahren verdoppelte die Anzahl vorhergesagter Strukturen und verkürzte die Laufzeit auf wenige Tage. Zusammen mit weiteren Optimierungen des Homologiemodellierungsprozesses kann ich nun erschöpfend Sekundärstrukturen in mehreren Interationen vorhersagen. Diese Optimierungen liefern derzeit 380.000 annotierte Sequenzen einschließlich 288.000 Strukturvorhersagen. Um diese Strukturen für die Berechnung von Alignments und phylogenetischen Bäumen zu verwenden hab ich das R-Paket „treeforge“ entwickelt. Es ermöglicht die Generierung von Sequenzstrukturalignments auf bis zu vier unterschiedlich kodierten Alphabeten. Damit können erstmals auch strukturelle Basenpaarungen in die Alignmentberechnung mit einbezogen werden, die eine Schätzung neuer Scorematrizen vorraussetzten. Das R-Paket ermöglicht zusätzlich die Rekonstruktion von „Maximum Parsimony“, „Maximum Likelihood“ und „Neighbour Joining“ Bäumen auf allen vier Alphabeten mittels weniger Zeilen Programmcode. Das Paket wurde eingesetzt, um die noch umstrittene Phylogenie der „chlorophyceae“ zu rekonstruieren und könnte in zukünftigen Versionen des ITS2 workbench verwendet werden. Die ITS2 Plattform basiert auf einer modernen und sehr umfangreichen Web 2.0 Oberfläche und beinhaltet neuste AJAX und Web-Service Technologien. Sie umfasst die HMM basierte Sequenzannotation, Strukturvorhersage durch Energieminimierung bzw. Homologiemodellierung, Alignmentberechnung und Baumrekonstruktion basierend auf einem flexiblen Datenpool, der Änderungen am Datensatz automatisch aktualisiert. Zusätzlich wird eine Detektion von Sequenzmotiven ermöglicht, die zur Kontrolle von Annotation und Strukturvorhersage dienen kann. Eine BLAST basierte Suche auf Sequenz- und Strukturebene bietet zusätzlich eine Vereinfachung des Taxonsamplings. Alle Funktionen sowie die Nutzung der ITS2 Webseite sind in einer kurzen Videoanleitung dargestellt. Die Plattform lässt jedoch nur eine bestimmte Größe von Datensätzen zu. Dies liegt vor allem an der erheblichen Rechenleistung, die bei diesen Berechnungen benötigt wird. Um die Funktion dieses Verfahrens auch auf großen Datenmengen zu demonstrieren, wurde eine voll automatisierte Rekonstruktion des Grünalgenbaumes (Chlorophyta) durchgeführt. Diese erfolgreiche, auf dem ITS2 Marker basierende Studie spricht für die Sequenz-Strukturanalyse auf weiteren Daten in der Phylogenetik. Hier bietet der ITS2 Workbench den idealen Ausgangspunkt. N2 - During the past years, the internal transcribed spacer 2 (ITS2) was established as a commonly used molecular phylogenetic marker for the eukaryotes. Its fast evolving sequence is predestinated for the use in low-level phylogenetics. However, the ITS2 also consists of a very conserved secondary structure. This enables the discrimination between more distantly related species. The combination of both in a sequence-structure based analysis increases the resolution of the marker and enables even more robust tree reconstructions on a broader taxonomic range. But, performing such an analysis required the application of different programs and databases making the use of the ITS2 non trivial for the typical biologist. To overcome this hindrance, I have developed the ITS2 Workbench, a completely web-based tool for automated phylogenetic sequence-structure analyses using the ITS2 (http://its2.bioapps.biozentrum.uni-wuerzburg.de). The development started with an optimization of length modelling topologies for Hidden Markov Models (HMMs), which were successfully applied on a secondary structure prediction model of the ITS2 marker. Here, structure is predicted by considering the sequences' composition in combination with the length distribution of different helical regions. Next, I integrated HMMs into the sequence-structure generation process for the delineation of the ITS2 within a given sequence. This re-implemented pipeline could more than double the number of structure predictions and reduce the runtime to a few days. Together with further optimizations of the homology modelling process I can now exhaustively predict secondary structures in several iterations. These modifications currently provide 380,000 annotated sequences including 288,000 structure predictions. To include these structures in the calculation of alignments and phylogenetic trees, I developed the R-package "treeforge". It generates sequence-structure alignments on up to four different coding alphabets. For the first time also structural bonds were considered in alignments, which required the estimation of new scoring matrices. Now, the reconstruction of Maximum Parsimony, Maximum Likelihood as well as Neighbour Joining trees on all four alphabets requires just a few lines of code. The package was used to resolve the controversial chlorophyceaen dataset and could be integrated into future versions of the ITS2 workbench. The platform is based on a modern, feature-rich Web 2.0 user interface equipped with the latest AJAX and Web-service technologies. It performs HMM-based sequence annotation, structure prediction by energy minimization or homology modelling, alignment calculation and tree reconstruction on a flexible data pool that repeats calculations according to data changes. Further, it provides sequence motif detection to control annotation and structure prediction and a sequence-structure based BLAST search, which facilitates the taxon sampling process. All features and the usage of the ITS2 workbench are explained in a video tutorial. However, the workbench bears some limitations regarding the size of datasets. This is caused mainly due to the immense computational power needed for such extensive calculations. To demonstrate the validity of the approach also for large-scale analyses, a fully automated reconstruction of the Chlorophyta (Green Algal) Tree of Life was performed. The successful application of the marker even on large datasets underlines the capabilities of ITS2 sequence-structure analysis and suggests its utilization on further datasets. The ITS2 workbench provides an excellent starting point for such endeavours. KW - Ribosomale RNA KW - Datenbank KW - Marker KW - Phylogenie KW - Evolution KW - Sequenz KW - Struktur KW - Hidden Markov Model KW - Evolution KW - ribosomal RNA KW - workbench KW - sequence-structure Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73128 ER -