TY - THES A1 - Förster, Frank T1 - Making the most of phylogeny: Unique adaptations in tardigrades and 216374 internal transcribed spacer 2 structures T1 - Einzigartige Anpassungen in Tardigraden und 216374 "internal transcribed spacer 2" Strukturen N2 - The phylum Tardigrada consists of about 1000 described species to date. The animals live in habitats within marine, freshwater and terrestrial ecosystems allover the world. Tardigrades are polyextremophiles. They are capable to resist extreme temperature, pressure or radiation. In the event of desiccation, tardigrades enter a so-called tun stage. The reason for their great tolerance capabilities against extreme environmental conditions is not discovered yet. Our Funcrypta project aims at finding answers to the question what mechanisms underlie these adaption capabilities particularly with regard to the species Milnesium tardigradum. The first part of this thesis describes the establishment of expressed sequence tags (ESTs) libraries for different stages of M. tardigradum. From proteomics data we bioinformatically identified 144 proteins with a known function and additionally 36 proteins which seemed to be specific for M. tardigradum. The generation of a comprehensive web-based database allows us to merge the proteome and transcriptome data. Therefore we created an annotation pipeline for the functional annotation of the protein and nucleotide sequences. Additionally, we clustered the obtained proteome dataset and identified some tardigrade-specific proteins (TSPs) which did not show homology to known proteins. Moreover, we examined the heat shock proteins of M. tardigradum and their different expression levels depending on the actual state of the animals. In further bioinformatical analyses of the whole data set, we discovered promising proteins and pathways which are described to be correlated with the stress tolerance, e.g. late embryogenesis abundant (LEA) proteins. Besides, we compared the tardigrades with nematodes, rotifers, yeast and man to identify shared and tardigrade specific stress pathways. An analysis of the 50 and 30 untranslated regions (UTRs) demonstrates a strong usage of stabilising motifs like the 15-lipoxygenase differentiation control element (15-LOX-DICE) but also reveals a lack of other common UTR motifs normally used, e.g. AU rich elements. The second part of this thesis focuses on the relatedness between several cryptic species within the tardigrade genus Paramacrobiotus. Therefore for the first time, we used the sequence-structure information of the internal transcribed spacer 2 (ITS2) as a phylogenetic marker in tardigrades. This allowed the description of three new species which were indistinguishable using morphological characters or common molecular markers like the 18S ribosomal ribonucleic acid (rRNA) or the Cytochrome c oxidase subunit I (COI). In a large in silico simulation study we also succeeded to show the benefit for the phylogenetic tree reconstruction by adding structure information to the ITS2 sequence. Next to the genus Paramacrobiotus we used the ITS2 to corroborate a monophyletic DO-group (Sphaeropleales) within the Chlorophyceae. Additionally we redesigned another comprehensive database—the ITS2 database resulting in a doubled number of sequence-structure pairs of the ITS2. In conclusion, this thesis shows the first insights (6 first author publications and 4 coauthor publications) into the reasons for the enormous adaption capabilities of tardigrades and offers a solution to the debate on the phylogenetic relatedness within the tardigrade genus Paramacrobiotus. N2 - Der Tierstamm Tardigrada besteht aus derzeitig etwa 1000 beschriebenen Arten. Die Tiere leben in Habitaten in marinen, limnischen und terrestrischen Ökosystemen auf der ganzen Welt. Tardigraden sind polyextremophil. Sie können extremer Temperatur, Druck oder Strahlung widerstehen. Beim Austrocknen bilden sie ein so genanntes Tönnchenstadium. Der Grund für die hohe Toleranz gegenüber extremen Umweltbedingungen ist bis jetzt nicht aufgeklärt worden. Unser Funcrypta Projekt versucht Antworten darauf zu finden, was die hinter dieser Anpassungsfähigkeit liegenden Mechanismen sind. Dabei steht die Art Milnesium tardigradum im Mittelpunkt. Der erste Teil dieser Arbeit beschreibt die Etablierung einer expressed sequence tags (ESTs) Bibliothek für verschiedene Stadien von M. tardigradum. Aus unseren Proteomansatz konnten wir bislang 144 Proteine bioinformatisch identifizieren, denen eine Funktion zugeordnet werden konnte. Darüber hinaus wurden 36 Proteine gefunden, welche spezifisch für M. tardigradum zu sein scheinen. Die Erstellung einer umfassenden internetbasierenden Datenbank erlaubt uns die Verknüpfung der Proteom und Transkriptomdaten. Dafür wurde eine Annotations-Pipeline erstellt um den Sequenzen Funktionen zuordnen zu können. Außerdem wurden die erhaltenen Proteindaten von uns geclustert. Dabei konnten wir einige Tardigraden-spezifische Proteine (tardigrade-specific protein, TSP) identifizieren die keinerlei Homologie zu bekannten Proteinen zeigen. Außerdem untersuchten wir die Hitze-Schock-Proteine von M. tardigradum und deren differenzielle Expression in Abhängigkeit vom Stadium der Tiere. In weiteren bioinformatischen Analysen konnten wir viel versprechende Proteine und Stoffwechselwege entdecken für die beschrieben ist, dass sie mit Stressreaktionen in Verbindung stehen, beispielsweise late embryogenesis abundant (LEA) Proteine. Des Weiteren verglichen wir Tardigraden mit Nematoden, Rotatorien, Hefe und dem Menschen, um gemeinsame und Tardigraden-spezifische Stoffwechselwege identifizieren zu können. Analysen der 50 und 30 untranslatierten Bereiche zeigen eine verstärkte Nutzung von stabilisierenden Motiven, wie dem 15-lipoxygenase differentiation control element (LEA). Im Gegensatz dazu werden häufig benutzte Motive, wie beispielsweise AU-reiche Bereiche, gar nicht gefunden. Der zweite Teil der Doktorarbeit beschäftigt sich mit den Verwandtschaftsverhältnissen einiger kryptischer Arten in der Tardigradengattung Paramacrobiotus. Hierfür haben wir, zum ersten Mal in Tardigraden, die Sequenz-Struktur-Informationen der internal transcribed spacer 2 Region als phylogenetischen Marker verwendet. Dies erlaubte uns die Beschreibung von drei neuen Arten, welche mit klassischen morphologischen Merkmalen oder anderen molekularen Markern wie 18S ribosomaler RNA oder Cytochrome c oxidase subunit I (COI) nicht unterschieden werden konnten. In einer umfangreichen in silico Simulationsstudie zeigten wir den Vorteil der bei der Rekonstruktion phylogenetischer Bäume unter der Hinzunahme der Strukturinformationen zur Sequenz der ITS2 entsteht. ITS2 Sequenz-Struktur-Informationen wurden außerdem auch dazu benutzt, eine monophyletische DO-Gruppe (Sphaeropleales) in den Chlorophyceae zu bestätigen. Zusätzlich haben wir eine umfassende Datenbank, die ITS2-Datenbank, überarbeitet. Dadurch konnten die Sequenz-Struktur-Informationen verdoppelt werden, die in dieser Datenbank verfügbar sind. Die vorliegende Doktorarbeit zeigt erste Einblicke (6 Erstautor- und 4 Koautor-Publikationen) in die Ursachen für die hervorragende Anpassungsfähigkeit der Tardigraden und beschreibt die erfolgreiche Aufklärung der Verwandtschaftsverhältnisse in der Tardigradengattung Paramacrobiotus. KW - Phylogenie KW - Bioinformatik KW - Würzburg / Universität / Lehrstuhl für Bioinformatik KW - Anpassung KW - Datenbank KW - ITS2 KW - Marker KW - Tardigraden KW - Bärtierchen KW - ITS2 KW - Marker KW - Tardigrades KW - Waterbear Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51466 ER - TY - THES A1 - Keller, Alexander T1 - Secondary (and tertiary) structure of the ITS2 and its application for phylogenetic tree reconstructions and species identification T1 - Sekundär- und Tertiärstruktur der ITS2 und Anwendung für phylogenetische Baumberechnungen und Arteerkennung N2 - Biodiversity may be investigated and explored by the means of genetic sequence information and molecular phylogenetics. Yet, with ribosomal genes, information for phylogenetic studies may not only be retained from the primary sequence, but also from the secondary structure. Software that is able to cope with two dimensional data and designed to answer taxonomic questions has been recently developed and published as a new scientific pipeline. This thesis is concerned with expanding this pipeline by a tool that facialiates the annotation of a ribosomal region, namely the ITS2. We were also able to show that this states a crucial step for secondary structure phylogenetics and for data allocation of the ITS2-database. This resulting freely available tool determines high quality annotations. In a further study, the complete phylogenetic pipeline has been evaluated on a theoretical basis in a comprehensive simulation study. We were able to show that both, the accuracy and the robustness of phylogenetic trees are largely improved by the approach. The second major part of this thesis concentrates on case studies that applied this pipeline to resolve questions in taxonomy and ecology. We were able to determine several independent phylogenies within the green algae that further corroborate the idea that secondary structures improve the obtainable phylogenetic signal, but now from a biological perspective. This approach was applicable in studies on the species and genus level, but due to the conservation of the secondary structure also for investigations on the deeper level of taxonomy. An additional case study with blue butterflies indicates that this approach is not restricted to plants, but may also be used for metazoan phylogenies. The importance of high quality phylogenetic trees is indicated by two ecological studies that have been conducted. By integrating secondary structure phylogenetics, we were able to answer questions about the evolution of ant-plant interactions and of communities of bacteria residing on different plant tissues. Finally, we speculate how phylogenetic methods with RNA may be further enhanced by integration of the third dimension. This has been a speculative idea that was supplemented with a small phylogenetic example, however it shows that the great potential of structural phylogenetics has not been fully exploited yet. Altogether, this thesis comprises aspects of several different biological disciplines, which are evolutionary biology and biodiversity research, community and invasion ecology as well as molecular and structural biology. Further, it is complemented by statistical approaches and development of informatical software. All these different research areas are combined by the means of bioinformatics as the central connective link into one comprehensive thesis. N2 - Biologische Diversität kann mit Hilfe molekularer Sequenzinformation und phylogenetischen Methoden erforscht und erfasst werden. Bei ribosomalen Genen kann man jedoch wertvolle Information nicht nur aus der Primärsequenz beziehen, sondern auch aus der Sekundärstruktur. In den letzen Jahren wurde Software entwickelt, die solche Daten für taxonomische Fragestellung verwerten kann. Diese Arbeit beschäftigt sich mit einer Erweiterung dieser Methodik durch eine Software-Anwendung, die die Annotation des ribosomalen Genes ITS2 deutlich vereinfacht. Mit dieser Studie konnten wir zeigen, dass dies einen entscheidenden Schritt der Sequenz-Struktur-Phylogenie und der Datenerfassung der ITS2-Datenbank darstellt. Die daraus resultierende und frei verfügbare Anwendung ermöglicht Annotationen von hoher Güte. In einer weiteren Studie wurde mittels Simulationen der gesamte Arbeitsfluß der Sequenz-Struktur Phylogenie auf theoretischer Ebene evaluiert. Dabei zeigte sich, dass sich sowohl die Genauigkeit, als auch die Robustheit von phylogenetischen Stammbäumen durch diesen Ansatz deutlich verbessern. Der zweite große Teil der Arbeit befasst sich mit Fallbeispielen, in denen dieser Arbeitsfluß zur Aufklärung von taxomonischen and ökologischen Fragestellungen Anwendung fand. In diesem Rahmen konnten wir mehrere und voneinander unabhängige Phylogenien ermitteln, welche die theoretischen Ergebnisse einer Verbesserung phylogenetischer Bäume auch von biologischer Seite aus bekräftigen. Der Ansatz war anwendbar in sehr feinskaligen Studien auf Art bzw. Gattungsniveau, aber durch die starke Konservierung der Sekundärstruktur auch an sehr weit von einander entfernten taxonomischen Gruppen. Eine weitere Studie, die sich mit der Phylogenie von Bläulingen befasst, zeigt deutlich, dass dieser Ansatz nicht nur für Fragestellungen bei Pflanzen, sondern auch im Tierreich angewandt werden kann. Die Bedeutung von qualitativ hochwertigen Stammbäumen auch für andere Fachbereiche wird an zwei unserer ökologischen Studien deutlich: Mit Hinzunahme von Sekundärstruktur war es uns möglich Fragestellungen über die Evolution von Ameisen-Pflanzen Interaktionen sowie über ökologische Gemeinschaften von Bakterien auf verschiedenen Pflanzenteilen zu beantworten. Zuletzt gehen wir spekulativ auf die Frage ein, wie Strukturphylogenie um die dritte Dimension erweitert werden kann. Dies bleibt zwar spekulativ und wurde nur um ein kleines Fallbeispiel ergänzt, jedoch zeigt sich deutlich, dass das Potential von Strukturphylogenie noch nicht erschöpft ist. Insgesamt befasst sich diese Arbeit mit Aspekten aus verschiedenen biologischen Disziplinen: Evolutionsbiologie und Biodiversitätsforschung, sowie Gemeinschafts- und Invasionsökologie, aber auch Molekular- und Strukturbiologie. Dies wurde ergänzt durch statistische Ansätze und Entwicklung von informatischer Software. Diese verschiedenen Forschungsrichtungen wurden mit Hilfe der Bioinformatik als zentrales Bindeglied vereint. KW - Phylogenie KW - Evolution KW - Sekundärstruktur KW - DNS-Sequenz KW - Algen KW - Ribosomale RNS KW - rRNA KW - secondary structure KW - phylogeny evolution KW - sequence Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56151 ER -