TY - JOUR A1 - Palmisano, Chiara A1 - Brandt, Gregor A1 - Vissani, Matteo A1 - Pozzi, Nicoló G. A1 - Canessa, Andrea A1 - Brumberg, Joachim A1 - Marotta, Giorgio A1 - Volkmann, Jens A1 - Mazzoni, Alberto A1 - Pezzoli, Gianni A1 - Frigo, Carlo A. A1 - Isaias, Ioannis U. T1 - Gait Initiation in Parkinson’s Disease: Impact of Dopamine Depletion and Initial Stance Condition JF - Frontiers in Bioengineering and Biotechnology N2 - Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson’s disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment. KW - gait initiation KW - Parkinson’s disease KW - basal ganglia KW - dopamine KW - base of support KW - anthropometric measurements Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200801 SN - 2296-4185 VL - 8 ER - TY - JOUR A1 - Brumberg, Joachim A1 - Küsters, Sebastian A1 - Al-Momani, Ehab A1 - Marotta, Giorgio A1 - Cosgrove, Kelly P. A1 - van Dyck, Christopher H. A1 - Herrmann, Ken A1 - Homola, György A. A1 - Pezzoli, Gianni A1 - Buck, Andreas K. A1 - Volkmann, Jens A1 - Samnick, Samuel A1 - Isaias, Ioannis U. T1 - Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study JF - Annals of Clinical and Translational Neurology N2 - Objective: To investigate the association between levodopa‐induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods: This study included 13 Parkinson's disease patients with peak‐of‐dose levodopa‐induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5‐[\(^{123}\)I]iodo‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine single‐photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N‐ω‐fluoropropyl‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)nortropane single‐photon emission computed tomography, to measure dopamine reuptake transporter density and 2‐[\(^{18}\)F]fluoro‐2‐deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic‐depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression. KW - levodopa-induced dyskinesia KW - cholinergic activity KW - Parkinson’s disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170406 VL - 4 IS - 9 ER - TY - JOUR A1 - Mencacci, Niccoló E. A1 - Isaias, Ioannis U. A1 - Reich, Martin M. A1 - Ganos, Christos A1 - Plagnol, Vincent A1 - Polke, James M. A1 - Bras, Jose A1 - Hersheson, Joshua A1 - Stamelou, Maria A1 - Pittman, Alan M. A1 - Noyce, Alastair J. A1 - Mok, Kin Y. A1 - Opladen, Thomas A1 - Kunstmann, Erdmute A1 - Hodecker, Sybille A1 - Münchau, Alexander A1 - Volkmann, Jens A1 - Samnick, Samuel A1 - Sidle, Katie A1 - Nanji, Tina A1 - Sweeney, Mary G. A1 - Houlden, Henry A1 - Batla, Amit A1 - Zecchinelli, Anna L. A1 - Pezzoli, Gianni A1 - Marotta, Giorgio A1 - Lees, Andrew A1 - Alegria, Paulo A1 - Krack, Paul A1 - Cormier-Dequaire, Florence A1 - Lesage, Suzanne A1 - Brice, Alexis A1 - Heutink, Peter A1 - Gasser, Thomas A1 - Lubbe, Steven J. A1 - Morris, Huw R. A1 - Taba, Pille A1 - Koks, Sulev A1 - Majounie, Elisa A1 - Gibbs, J. Raphael A1 - Singleton, Andrew A1 - Hardy, John A1 - Klebe, Stephan A1 - Bhatia, Kailash P. A1 - Wood, Nicholas W. T1 - Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers JF - Brain N2 - GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease. KW - DOPA-responsive-dystonia KW - GCH1 KW - Parkinson's disease KW - dopamine KW - exome sequencing Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121268 VL - 137 IS - 9 ER - TY - JOUR A1 - Isaias, Ioannis Ugo A1 - Spiegel, Jörg A1 - Brumberg, Joachim A1 - Cosgrove, Kelly P. A1 - Marotta, Giorgio A1 - Oishi, Naoya A1 - Higuchi, Takahiro A1 - Küsters, Sebastian A1 - Schiller, Markus A1 - Dillmann, Ulrich A1 - van Dyck, Christopher H. A1 - Buck, Andreas A1 - Herrmann, Ken A1 - Schloegl, Susanne A1 - Volkmann, Jens A1 - Lassmann, Michael A1 - Fassbender, Klaus A1 - Lorenz, Reinhard A1 - Samnick, Samuel T1 - Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson's disease JF - Frontiers in Aging Neuroscience N2 - We investigated in vivo brain nicotinic acetylcholine receptor (nAChR) distribution in cognitively intact subjects with Parkinson's disease (PD) at an early stage of the disease. Fourteen patients and 13 healthy subjects were imaged with single photon emission computed tomography and the radiotracer 5-[(123)I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ([(123)I]5IA). Patients were selected according to several criteria, including short duration of motor signs (<7 years) and normal scores at an extensive neuropsychological evaluation. In PD patients, nAChR density was significantly higher in the putamen, the insular cortex and the supplementary motor area and lower in the caudate nucleus, the orbitofrontal cortex, and the middle temporal gyrus. Disease duration positively correlated with nAChR density in the putamen ipsilateral (ρ = 0.56, p < 0.05) but not contralateral (ρ = 0.49, p = 0.07) to the clinically most affected hemibody. We observed, for the first time in vivo, higher nAChR density in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our findings support the notion of an up-regulated cholinergic activity at the striatal and possibly cortical level in cognitively intact PD patients at an early stage of disease. KW - nicotinic receptors KW - Parkinson disease KW - 5IA-SPECT KW - dopamine acetylcholine KW - cognitive decline Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119351 VL - 6 ER -