TY - JOUR A1 - Masota, Nelson E. A1 - Ohlsen, Knut A1 - Schollmayer, Curd A1 - Meinel, Lorenz A1 - Holzgrabe, Ulrike T1 - Isolation and characterization of galloylglucoses effective against multidrug-resistant strains of Escherichia coli and Klebsiella pneumoniae JF - Molecules N2 - The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid–liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2–256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria. KW - antimicrobial resistance KW - Enterobacteriaceae KW - Paeonia KW - gallotannins KW - isolation KW - structural elucidation KW - Escherichia coli KW - Klebsiella pneumoniae Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286179 SN - 1420-3049 VL - 27 IS - 15 ER - TY - JOUR A1 - Raschig, Martina A1 - Ramírez‐Zavala, Bernardo A1 - Wiest, Johannes A1 - Saedtler, Marco A1 - Gutmann, Marcus A1 - Holzgrabe, Ulrike A1 - Morschhäuser, Joachim A1 - Meinel, Lorenz T1 - Azobenzene derivatives with activity against drug‐resistant Candida albicans and Candida auris JF - Archiv der Pharmazie N2 - Increasing resistance against antimycotic drugs challenges anti‐infective therapies today and contributes to the mortality of infections by drug‐resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'‐dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole‐susceptible and fluconazole‐resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds. KW - antifungal drug KW - azobenzenes KW - Candida auris KW - Candida albicans Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312295 VL - 356 IS - 2 ER - TY - JOUR A1 - Masota, Nelson E. A1 - Vogg, Gerd A1 - Ohlsen, Knut A1 - Holzgrabe, Ulrike T1 - Reproducibility challenges in the search for antibacterial compounds from nature JF - PLoS One N2 - Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts’ solutions in 10% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256–1024 μg/mL was observed in only 15.4% of identical plant species. These values were 4–16-fold higher than those reported earlier. Further, 18.2% of related plant species had MICs of 128–256 μg/mL. Besides, 29.2% and 95.8% of the extracts were soluble to sparingly soluble in 10% DMSO and acetone, respectively. Extracts’ solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65% and 95% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30% of the articles, whereas 40% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants’ extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges. KW - acetones KW - antibacterials KW - leaves KW - phytochemicals KW - solubility KW - plants KW - liquid chromatography-mass spectrometry KW - ethanol Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260239 VL - 16 IS - 7 ER - TY - JOUR A1 - Glaser, Jan A1 - Schurigt, Uta A1 - Suzuki, Brian M. A1 - Caffrey, Connor R. A1 - Holzgrabe, Ulrike T1 - Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl JF - Molecules N2 - Bornyl caffeate (1) was previously isolated by us from Valeriana (V.) wallichii rhizomes and identified as an anti-leishmanial substance. Here, we screened a small compound library of synthesized derivatives 1–30 for activity against schistosomula of Schistosoma (S.) mansoni. Compound 1 did not show any anti-schistosomal activity. However, strong phenotypic changes, including the formation of vacuoles, degeneration and death were observed after in vitro treatment with compounds 23 (thymyl cinnamate) and 27 (eugenyl cinnamate). Electron microscopy analysis of the induced vacuoles in the dying parasites suggests that 23 and 27 interfere with autophagy. KW - thymyl cinnamate KW - vacuoles KW - autophagy KW - anti-schistosomal activity KW - schistosoma KW - schistosomula KW - parasite KW - eugenyl cinnamate Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125712 VL - 20 ER - TY - JOUR A1 - Masic, Anita A1 - Valencia Hernandez, Ana Maria A1 - Hazra, Sudipta A1 - Glaser, Jan A1 - Holzgrabe, Ulrike A1 - Hazra, Banasri A1 - Schurigt, Uta T1 - Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice JF - PLoS One N2 - Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. KW - leishmania major KW - promastigotes KW - apoptosis KW - mitochondria KW - parasitic diseases KW - leishmania KW - leishmaniasis KW - mouse models Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125354 VL - 10 IS - 11 ER - TY - JOUR A1 - Glaser, Jan A1 - Schultheis, Martina A1 - Hazra, Sudipta A1 - Hazra, Banazri A1 - Moll, Heidrun A1 - Schurigt, Uta A1 - Holzgrabe, Ulrike T1 - Antileishmanial Lead Structures from Nature: Analysis of Structure-Activity Relationships of a Compound Library Derived from Caffeic Acid Bornyl Ester N2 - Bioassay-guided fractionation of a chloroform extract of Valeriana wallichii (V. wallichii) rhizomes lead to the isolation and identification of caffeic acid bornyl ester (1) as the active component against Leishmania major (L. major) promastigotes (IC50 = 48.8 µM). To investigate the structure-activity relationship (SAR), a library of compounds based on 1 was synthesized and tested in vitro against L. major and L. donovani promastigotes, and L. major amastigotes. Cytotoxicity was determined using a murine J774.1 cell line and bone marrow derived macrophages (BMDM). Some compounds showed antileishmanial activity in the concentration range of pentamidine and miltefosine which are the standard drugs in use. In the L. major amastigote assay compounds 15, 19 and 20 showed good activity with relatively low cytotoxicity against BMDM, resulting in acceptable selectivity indices. Molecules with adjacent phenolic hydroxyl groups exhibited elevated cytotoxicity against murine cell lines J774.1 and BMDM. The Michael system seems not to be essential for antileishmanial activity. Based on the results compound 27 can be regarded as new lead structure for further structure optimization KW - Valeriana wallichii KW - leishmaniasis KW - caffeic acid bornyl ester KW - structure-activity relationship Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112835 ER -