TY - THES A1 - Nahler, Michael T1 - Isomorphism classes of almost completely decomposable groups T1 - Isomorphieklassen fast vollständig zerlegbarer Gruppen N2 - In this thesis we investigate near-isomorphism classes and isomorphism classes of almost completely decomposable groups. In Chapter 2 we introduce the concept of almost completely decomposable groups and sum up their most important facts. A local group is an almost completely decomposable group with a primary regulator quotient. A uniform group is a rigid local group with a homocyclic regulator quotient. In Chapter 3 a weakening of isomorphism, called type-isomorphism, appears. It is shown that type-isomorphism agrees with Lady's near-isomorphism. By the Main Decomposition Theorem and the Primary Reduction Theorem we are allowed to restrict ourselves on clipped local groups, namely groups without a direct rank-one summand. In Chapter 4 we collect facts of matrices over commutative rings with an identity element. Matrices over the local ring (Z / p^e Z) of residue classes of the rational integers modulo a prime power play an important role. In Chapter 5 we introduce representing matrices of finite essential extensions. Here a normal form for local groups is found by the Gauß algorithm. Uniform groups have representing matrices in Hermite normal form. The classification problems for almost completely decomposable groups up to isomorphism and up to near-isomorphism can be rephrased as equivalence problems for the representing matrices. In Chapter 6 we derive a criterion for the representing matrices of local groups in Gauß normal form. In Chapter 7 we formulate the matrix criterion for uniform groups. Two representing matrices in Hermite normal form describe isomorphic groups if and only if the rest blocks of the representing matrices are T-diagonally equivalent. Starting from a fixed near-isomorphism class in Chapter 8 we investigate isomorphism classes of uniform groups. We count groups and isomorphism classes. In Chapter 9 we specialize on uniform groups of rank 2r with a regulator quotient of rank r such that the rest block of the representing matrix is invertible and normed. N2 - In dieser Dissertation untersuchen wir Near-Isomorphieklassen und Isomorphieklassen von fast vollständig zerlegbaren Gruppen. In Kapitel 2 führen wir den Begriff von fast vollständig zerlegbaren Gruppen ein und fassen ihre wichtigsten Eigenschaften zusammen. Eine lokale Gruppe ist eine fast vollständig zerlegbaren Gruppe mit einem primären Regulatorquotienten. Eine uniforme Gruppe ist eine rigid lokale Gruppe mit einem homozyklischen Regulatorquotienten. In Kapitel 3 erscheint eine Abschwächung von Isomorphie, genannt Typ-Isomorphie. Es wurde gezeigt, dass Typ-Isomorphie mit der Near-Isomorphie von Lady übereinstimmt. Wegen des Hauptzerlegungssatzes und des primären Reduktionssatzes können wir uns auf clipped lokale Gruppen beschränken, also Gruppen ohne direkten Rang-eins Summanden. In Kapitel 4 sammeln wir Eigenschaften von Matrizen über kommutativen Ringen mit Eins. Matrizen über dem lokalen Ring (Z / p^e Z) von Restklassen modulo einer Primzahlpotenz spielen eine wichtige Rolle. In Kapitel 5 führen wir Darstellungsmatrizen von endlichen wesentlichen Erweiterungen ein. Hier wird eine Normalform für lokale Gruppen mit Hilfe des Gaußschen Algorithmus gefunden. Uniforme Gruppen haben eine Darstellungsmatix in Hermite Normalform. Die Klassifikationsprobleme von fast vollständig zerlegbaren Gruppen bis auf Isomorphie und bis auf Near-Isomorphie können als Äquivalenzprobleme für die Darstellungsmatrizen umformuliert werden. In Kapitel 6 leiten wir ein Kriterium ab für die Darstellungsmatrizen von lokalen Gruppen in Gaußscher Normalform. In Kaptel 7 formulieren wir das Matrixkriterium für uniforme Gruppen. Zwei Darstellungsmatrizen in Hermite Normalform beschreiben genau dann isomorphe Gruppen, wenn die Restblöcke ihrer Darstellungsmatrizen T-diagonal äquivalent sind. Ausgehend von einer festgehaltenen Near-Isomorphieklasse untersuchen wir Isomorphieklassen von uniformen Gruppen in Kapitel 8. Wir zählen Gruppen und Isomorphieklassen. In Kapitel 9 spezialisieren wir uns auf uniforme Gruppen vom Rang 2r und mit einem Regulatorquotienten vom Rang r, so dass der Restblock der Darstellungsmatrix invertierbar und normiert ist. KW - Fast vollständig zerlegbare Gruppe KW - Isomorphieklasse KW - Darstellungsmatrix KW - fast vollständig zerlegbare Gruppe KW - isomorph KW - near-isomorph KW - Isomorphie KW - Near-Isomorphie KW - Darstellungsmatrix KW - almost completely decomosable group KW - isomorphic KW - near-isomorphic KW - isomorpism KW - near-isomorphism KW - representing matrix Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2817 ER - TY - THES A1 - Reith, Steffen T1 - Generalized Satisfiability Problems T1 - Verallgemeinerte Erfüllbarkeitsprobleme N2 - In the last 40 years, complexity theory has grown to a rich and powerful field in theoretical computer science. The main task of complexity theory is the classification of problems with respect to their consumption of resources (e.g., running time or required memory). To study the computational complexity (i.e., consumption of resources) of problems, similar problems are grouped into so called complexity classes. During the systematic study of numerous problems of practical relevance, no efficient algorithm for a great number of studied problems was found. Moreover, it was unclear whether such algorithms exist. A major breakthrough in this situation was the introduction of the complexity classes P and NP and the identification of hardest problems in NP. These hardest problems of NP are nowadays known as NP-complete problems. One prominent example of an NP-complete problem is the satisfiability problem of propositional formulas (SAT). Here we get a propositional formula as an input and it must be decided whether an assignment for the propositional variables exists, such that this assignment satisfies the given formula. The intensive study of NP led to numerous related classes, e.g., the classes of the polynomial-time hierarchy PH, P, #P, PP, NL, L and #L. During the study of these classes, problems related to propositional formulas were often identified to be complete problems for these classes. Hence some questions arise: Why is SAT so hard to solve? Are there modifications of SAT which are complete for other well-known complexity classes? In the context of these questions a result by E. Post is extremely useful. He identified and characterized all classes of Boolean functions being closed under superposition. It is possible to study problems which are connected to generalized propositional logic by using this result, which was done in this thesis. Hence, many different problems connected to propositional logic were studied and classified with respect to their computational complexity, clearing the borderline between easy and hard problems. N2 - In den letzten 40 Jahren hat sich die Komplexitätstheorie zu einem reichen und mächtigen Gebiet innerhalb der theoretischen Informatik entwickelt. Dabei ist die hauptsächliche Aufgabenstellung der Komplexitätstheorie die Klassifikation von Problemen bezüglich des Bedarfs von Rechenzeit oder Speicherplatz zu ihrer Lösung. Um die Komplexität von Problemen (d.h. den Bedarf von Resourcen) einzuordnen, werden Probleme mit ähnlichem Ressourcenbedarf in gleiche sogenannte Komplexitätsklassen einsortiert. Bei der systematischen Untersuchung einer Vielzahl von praktisch relevanten Problemen wurden jedoch keine effizienten Algorithmen für viele der untersuchten Probleme gefunden und es ist unklar, ob solche Algorithmen überhaupt existieren. Ein Durchbruch bei der Untersuchung dieser Problematik war die Einführung der Komplexitätsklassen P und NP und die Identifizierung von schwersten Problemen in NP. Diese schwierigsten Probleme von NP sind heute als sogenannte NP-vollständige Probleme bekannt. Ein prominentes Beispiel für ein NP-vollständiges Problem ist das Erfüllbarkeitsproblem für aussagenlogische Formeln (SAT). Hier ist eine aussagenlogische Formel als Eingabe gegeben und es muss bestimmt werden, ob eine Belegung der Wahrheitswertevariablen existiert, so dass diese Belegung die gegebene Formel erfüllt. Das intensive Studium der Klasse NP führte zu einer Vielzahl von anderen Komplexitätsklassen, wie z.B. die der Polynomialzeithierarchie PH, P, #P, PP, NL, L oder #L. Beim Studium dieser Klassen wurden sehr oft Probleme im Zusammenhang mit aussagenlogischen Formeln als schwierigste (vollständige) Probleme für diese Klassen identifiziert. Deshalb stellt sich folgende Frage: Welche Eigenschaften des Erfüllbarkeitsproblems SAT bewirken, dass es eines der schwersten Probleme der Klasse NP ist? Gibt es Einschränkungen oder Verallgemeinerungen des Erfüllbarkeitsproblems, die vollständig für andere bekannte Komplexitätsklassen sind? Im Zusammenhang mit solchen Fragestellungen ist ein Ergebnis von E. Post von extremem Nutzen. Er identifizierte und charakterisierte alle Klassen von Booleschen Funktionen, die unter Superposition abgeschlossen sind. Mit Hilfe dieses Resultats ist es möglich, Probleme im Zusammenhang mit verallgemeinerten Aussagenlogiken zu studieren, was in der vorliegenden Arbeit durchgeführt wurde. Dabei wurde eine Vielzahl von verschiedenen Problemen, die in Zusammenhang mit der Aussagenlogik stehen, studiert und bezüglich ihrer Komplexität klassifiziert. Dadurch wird die Grenzlinie zwischen einfach lösbaren Problemen und schweren Problemen sichtbar. KW - Erfüllbarkeitsproblem KW - Komplexitätstheorie KW - Boolesche Funktionen KW - Isomorphie KW - abgeschlossene Klassen KW - Zählprobleme KW - Computational complexity KW - Boolean functions KW - Boolean isomorphism KW - Boolean equivalence KW - Dichotomy KW - counting problems Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74 ER -