TY - THES A1 - Gamache [geb. Rupp], Mira Theresa T1 - Ligand Design for Ru(II) Photosensitizers in Photocatalytic Hydrogen Evolution T1 - Ligandendesign für Ru(II)-Photosensibilisatoren in der photokatalytischen Wasserstoffentwicklung T1 - Conception de ligands pour les photosensibilisateurs de Ru(II) dans l'évolution photocatalytique de l'hydrogène N2 - This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases. Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h. Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. N2 - In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt. Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert. Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann. N2 - Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas. Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h. L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène. KW - Fotokatalyse KW - Wasserstofferzeugung KW - Rutheniumkomplexe KW - Photosensibilisator KW - Artificial photosynthesis KW - Ligand design Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246766 N1 - This thesis was conducted as cotutelle-de-thèse between the Universität Würzburg and the Université de Montréal (Canada). ER - TY - THES A1 - Schulze, Marcus T1 - Ruthenium Complexes as Water Oxidation Catalysts and Photosensitizers T1 - Rutheniumkomplexe als Wasseroxidationskatalysatoren und Photosensibilisatoren N2 - In der vorliegenden Arbeit werden Aspekte der photokatalytischen Wasseroxidationsreaktion behandelt. Der erste Themenschwerpunkt der Dissertation beschäftigt sich mit einem supramolekularen Makrozyklus, der drei Rutheniummetallzentren enthält. Dieser neuartige Katalysator zeigt eine sehr hohe katalytische Aktivität und gewährt neue Einblicke in den Mechanismus der Wasseroxidationsreaktion. Des Weiteren wird auf die mit Licht interagierenden Komponenten der photokatalytischen Wasseroxidation eingegangen. Hierbei haben sich azabenz-anellierte Perylenderivate als vielseitige Farbstoffklasse herausgestellt. Die Kombination dieser Farbstoffe mit Metallkomplexen liefert metallorganische Verbindungen, die als Photosensibilisatoren eingesetzt werden können. N2 - The thesis discusses aspects of the photocatalytic water oxidation reaction. The first chapter deals with a supramolecular macrocycle which contains three ruthenium metal centers. This novel catalyst shows promising catalytic activity and provides insides into the mechanism of the water oxidation reaction. After this part, the focus lies on the light interacting components of the photocatalytic water oxidation. In this regard, the azabenz-annulated perylene derivatives appeared to be a promising dye class. The combination of these chromophores and metal complexes result in metal organic compounds, which have photosensitizer potential. KW - Farbstoff KW - Ruthenium KW - Fotokatalyse KW - Photosensibilisator KW - Makrozyklus KW - macrocycle KW - Wasseroxidationsreaktion KW - water oxidation reation KW - Perylen-Farbstoffe KW - perylene dyes KW - Katalyse KW - Wasserspaltung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142454 ER - TY - THES A1 - Klein, Johannes Hubert T1 - Electron Transfer and Spin Chemistry in Iridium-Dipyrrin Dyads and Triads T1 - Elektronentransfer und Spinchemie in Iridium-Dipyrrin-Dyaden und -Triaden N2 - The successful synthesis of a family of donor-iridium complex-acceptor triads (T1–T6, pMV1 and mMV1) and their electrochemical and photophysical properties were presented in this work. Triarylamines (TAA) were used as donors and naphthalene diimide (NDI) as acceptor. A bis-cyclometalated phenylpyrazole iridium dipyrrin complex acts as a photosensitiser. In addition, a molecular structure of T1 was obtained by single crystal X-ray diffraction. Transient absorption spectroscopy experiments of these triads resembled that upon excitation a photoinduced electron transfer efficiently generates long-lived, charge-separated (CS) states. Thereby, the electron-transfer mechanism depends on the excitation energy. The presence of singlet and triplet CS states was clarified by magnetic-field dependent transient-absorption spectroscopy in the nanosecond time regime. It was demonstrated that the magnetic field effect of charge-recombination kinetics showed for the first time a transition from the coherent to the incoherent spin-flip regime. The lifetime of the CS states could be drastically prolonged by varying the spacer between the iridium complex and the NDI unit by using a biphenyl instead of a phenylene unit in T4. A mixed-valence (MV) state of two TAA donors linked to an iridium metal centre were generated upon photoexcitation of triad pMV1 and mMV1. The mixed-valence character in these triads was proven by the analysis of an intervalence charge-transfer (IV-CT) band in the (near-infrared) NIR spectral region by femtosecond pump-probe experiments. These findings were supported by TD-DFT calculations. The synthesis of dyads (D1–D4) was performed. Thereby the dipyrrin ligand was substituted with electron withdrawing groups. The electrochemical and photophysical characterisation revealed that in one case (D4) it was possible to generate a CS state upon photoexcitation. N2 - In dieser Arbeit wurden die erfolgreiche Synthese einer Donor-Iridiumkomplex-Akzeptor-Familie (Triaden T1–T6, pMV1 und mMV1) und deren elektrochemischen und photophyiskalischen Eigenschaften vorgestellt. Als Donor wurden Triarylamine (TAA) verwendet, als Akzeptoreinheit diente ein Naphthalin-Diimid (NDI). Ein bis-cyclometallierter Phenylpyrazol-Iridium-Dipyrrin-Komplex übernahm die Aufgabe des Photosensibilisators. Die synthetischen Arbeiten konnten mit einer molekularen Struktur von T1 mittels Röntgenbeugung eines Einkristalls ergänzt werden. Bei Photoanregung der Triaden mit transienter Absorptions-Spektroskopie wurde die sehr effiziente Bildung von langlebigen, ladungsgetrennten (CS) Zuständen beobachtet. Es wurde zudem herausgefunden, dass der Elektronentransfer (ET)-Mechanismus von der verwendeten Anregungswellenlänge abhängt. Der Nachweis von Singulett und Triplett CS-Zuständen wurde mittels magnetfeldabhängiger, transienter Absorptions-Spektroskopie erbracht. Eine Analyse des Magnetfeldeffekts der Ladungsrekombinations-Kinetik zeigte zum ersten Mal einen Übergang von einem kohärenten zu einem inkohärenten Spinumkehrprozess. Die Lebenszeit des CS-Zustandes ließ sich dramatisch verlängern indem die Phenylen- durch eine Biphenyl-Brückeneinheit zwischen dem Iridiumkomplex und dem NDI ersetzt wurde. Gemischvalente Zustände konnten mittels photinduziertem Elektronentransfer in den Triaden pMV1 und mMV1 erzeugt werden. Im Fall von pMV1 wurde eine intensive Intervalenz-Ladungstransfer (IV-CT) Bande im nahinfraroten Spektralbereich mittels Femtosekunden transienter Anregungs-Abfrage-Spektroskopie beobachtet werden. Die Analyse dieser IV-CT Bande wurde mit TD-DFT Rechnungen vervollständigt. Die Synthese von Dyaden (D1–D4) wurde erfolgreich durchgeführt, dabei wurde der Dipyrrin-Ligand mit elektronenziehenden Substituenten versehen. Die spektroskopische und elektrochemische Analyse erbrachte nach erfolgter Lichtanregung in einem Fall (D4) ebenfalls einen CS-Zustand. KW - Elektronentransfer KW - Spin flip KW - Triad KW - Ladungstransfer KW - Photosensibilisator KW - photoinduced electron transfer KW - charge-separated state KW - spin chemistry KW - donor-photosensibilisator-acceptor triad KW - iridium complex KW - photoinduzierter Elektronentransfer KW - Spinchemie KW - Donor-Photosensibilisator-Akzeptor Triade KW - Iridiumkomplexe Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118726 ER -