TY - JOUR A1 - Grunz, Jan-Peter A1 - Pennig, Lenhard A1 - Fieber, Tabea A1 - Gietzen, Carsten Herbert A1 - Heidenreich, Julius Frederik A1 - Huflage, Henner A1 - Gruschwitz, Philipp A1 - Kuhl, Philipp Josef A1 - Petritsch, Bernhard A1 - Kosmala, Aleksander A1 - Bley, Thorsten Alexander A1 - Gassenmaier, Tobias T1 - Twin robotic x-ray system in small bone and joint trauma: Impact of cone-beam computed tomography on treatment decisions JF - European Radiology N2 - Objectives Trauma evaluation of extremities can be challenging in conventional radiography. A multi-use x-ray system with cone-beam CT (CBCT) option facilitates ancillary 3-D imaging without repositioning. We assessed the clinical value of CBCT scans by analyzing the influence of additional findings on therapy. Methods Ninety-two patients underwent radiography and subsequent CBCT imaging with the twin robotic scanner (76 wrist/hand/finger and 16 ankle/foot/toe trauma scans). Reports by on-call radiologists before and after CBCT were compared regarding fracture detection, joint affliction, comminuted injuries, and diagnostic confidence. An orthopedic surgeon recommended therapy based on reported findings. Surgical reports (N = 52) and clinical follow-up (N = 85) were used as reference standard. Results CBCT detected more fractures (83/64 of 85), joint involvements (69/53 of 71), and multi-fragment situations (68/50 of 70) than radiography (all p < 0.001). Six fractures suspected in radiographs were ruled out by CBCT. Treatment changes based on additional information from CBCT were recommended in 29 patients (31.5%). While agreement between advised therapy before CBCT and actual treatment was moderate (κ = 0.41 [95% confidence interval 0.35–0.47]; p < 0.001), agreement after CBCT was almost perfect (κ = 0.88 [0.83–0.93]; p < 0.001). Diagnostic confidence increased considerably for CBCT studies (p < 0.001). Median effective dose for CBCT was 4.3 μSv [3.3–5.3 μSv] compared to 0.2 μSv [0.1–0.2 μSv] for radiography. Conclusions CBCT provides advantages for the evaluation of acute small bone and joint trauma by detecting and excluding extremity fractures and fracture-related findings more reliably than radiographs. Additional findings induced therapy change in one third of patients, suggesting substantial clinical impact. KW - cone-beamcomputed tomography KW - extremities KW - fractures, bone KW - radiography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235233 SN - 0938-7994 VL - 31 ER - TY - JOUR A1 - Gruschwitz, Philipp A1 - Hartung, Viktor A1 - Kleefeldt, Florian A1 - Ergün, Süleyman A1 - Lichthardt, Sven A1 - Huflage, Henner A1 - Hendel, Robin A1 - Kunz, Andreas Steven A1 - Pannenbecker, Pauline A1 - Kuhl, Philipp Josef A1 - Augustin, Anne Marie A1 - Bley, Thorsten Alexander A1 - Petritsch, Bernhard A1 - Grunz, Jan-Peter T1 - Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model JF - Scientific Reports N2 - This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall’s concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability. KW - experimental models of disease KW - preclinical research KW - translational research Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357912 VL - 13 ER -