TY - JOUR A1 - Spangardt, Christoph A1 - Keßler, Christoph A1 - Dobrzewski, Ramona A1 - Tepler, Antonia A1 - Hanio, Simon A1 - Klaubert, Bernd A1 - Meinel, Lorenz T1 - Leveraging dissolution by autoinjector designs JF - Pharmaceutics N2 - Chemical warfare or terrorism attacks with organophosphates may place intoxicated subjects under immediate life-threatening and psychologically demanding conditions. Antidotes, such as the oxime HI-6, which must be formulated as a powder for reconstitution reflecting the molecule’s light sensitivity and instability in aqueous solutions, dramatically improve recovery—but only if used soon after exposure. Muscle tremors, anxiety, and loss of consciousness after exposure jeopardize proper administration, translating into demanding specifications for the dissolution of HI-6. Reflecting the patients’ catastrophic situation and anticipated desire to react immediately to chemical weapon exposure, the dissolution should be completed within ten seconds. We are developing multi-dose and single-dose autoinjectors to reliably meet these dissolution requirements. The temporal and spatial course of dissolution within the various autoinjector designs was profiled colorimetrically. Based on these colorimetric insights with model dyes, we developed experimental setups integrating online conductometry to push experiments toward the relevant molecule, HI-6. The resulting blueprints for autoinjector designs integrated small-scale rotor systems, boosting dissolution across a wide range of viscosities, and meeting the required dissolution specifications driven by the use of these drug products in extreme situations. KW - autoinjector KW - dissolution KW - oxime KW - response surface KW - nerve agent Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297271 SN - 1999-4923 VL - 14 IS - 11 ER - TY - JOUR A1 - Masota, Nelson E. A1 - Ohlsen, Knut A1 - Schollmayer, Curd A1 - Meinel, Lorenz A1 - Holzgrabe, Ulrike T1 - Isolation and characterization of galloylglucoses effective against multidrug-resistant strains of Escherichia coli and Klebsiella pneumoniae JF - Molecules N2 - The search for new antibiotics against multidrug-resistant (MDR), Gram-negative bacteria is crucial with respect to filling the antibiotics development pipeline, which is subject to a critical shortage of novel molecules. Screening of natural products is a promising approach for identifying antimicrobial compounds hosting a higher degree of novelty. Here, we report the isolation and characterization of four galloylglucoses active against different MDR strains of Escherichia coli and Klebsiella pneumoniae. A crude acetone extract was prepared from Paeonia officinalis Linnaeus leaves, and bioautography-guided isolation of active compounds from the extract was performed by liquid–liquid extraction, as well as open column, flash, and preparative chromatographic methods. Isolated active compounds were characterized and elucidated by a combination of spectroscopic and spectrometric techniques. In vitro antimicrobial susceptibility testing was carried out on E. coli and K. pneumoniae using 2 reference strains and 13 strains hosting a wide range of MDR phenotypes. Furthermore, in vivo antibacterial activities were assessed using Galleria mellonella larvae, and compounds 1,2,3,4,6-penta-O-galloyl-β-d-glucose, 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-d-glucose, 6-O-digalloyl-1,2,3,4-tetra-O-galloyl-β-d-glucose, and 3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose were isolated and characterized. They showed minimum inhibitory concentration (MIC) values in the range of 2–256 µg/mL across tested bacterial strains. These findings have added to the number of known galloylglucoses from P. officinalis and highlight their potential against MDR Gram-negative bacteria. KW - antimicrobial resistance KW - Enterobacteriaceae KW - Paeonia KW - gallotannins KW - isolation KW - structural elucidation KW - Escherichia coli KW - Klebsiella pneumoniae Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286179 SN - 1420-3049 VL - 27 IS - 15 ER - TY - JOUR A1 - Cataldi, Eleonora A1 - Raschig, Martina A1 - Gutmann, Marcus A1 - Geppert, Patrick T. A1 - Ruopp, Matthias A1 - Schock, Marvin A1 - Gerwe, Hubert A1 - Bertermann, Rüdiger A1 - Meinel, Lorenz A1 - Finze, Maik A1 - Nowak‐Król, Agnieszka A1 - Decker, Michael A1 - Lühmann, Tessa T1 - Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch JF - ChemBioChem N2 - The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site‐specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure. KW - amber light KW - decafluoroazobezene KW - peptide stapling KW - photocontrol KW - perfluoroarylation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312480 VL - 24 IS - 5 ER - TY - JOUR A1 - Raschig, Martina A1 - Ramírez‐Zavala, Bernardo A1 - Wiest, Johannes A1 - Saedtler, Marco A1 - Gutmann, Marcus A1 - Holzgrabe, Ulrike A1 - Morschhäuser, Joachim A1 - Meinel, Lorenz T1 - Azobenzene derivatives with activity against drug‐resistant Candida albicans and Candida auris JF - Archiv der Pharmazie N2 - Increasing resistance against antimycotic drugs challenges anti‐infective therapies today and contributes to the mortality of infections by drug‐resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'‐dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole‐susceptible and fluconazole‐resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds. KW - antifungal drug KW - azobenzenes KW - Candida auris KW - Candida albicans Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312295 VL - 356 IS - 2 ER - TY - JOUR A1 - Schlauersbach, Jonas A1 - Hanio, Simon A1 - Raschig, Martina A1 - Lenz, Bettina A1 - Scherf-Cavel, Oliver A1 - Meinel, Lorenz T1 - Bile and excipient interactions directing drug pharmacokinetics in rats JF - European Journal of Pharmaceutics and Biopharmaceutics N2 - Bile solubilization plays a major role in the absorption of poorly water-soluble drugs. Excipients used in oral drug formulations impact bile-colloidal properties and their molecular interactions. Polymer-induced changes of bile colloids, e.g., by Eudragit E, reduced the flux of the bile interacting drug Perphenazine whereas bile non-interacting Metoprolol was not impacted. This study corroborates these in vitro findings in rats. Eudragit E significantly reduced systemic availability of Perphenazine but not Metoprolol compared to the oral administrations without polymer. This study confirms the necessity to carefully select polymers for bile interacting drugs whereas non-bile interacting drugs are more robust in terms of excipient choice for formulation. The perspective of bile interaction may introduce interesting biopharmaceutical leverage for better performing oral formulations of tomorrow. KW - in vitro-in vivo correlation KW - pharmacokinetics KW - bile KW - excipient KW - rat study Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-296969 VL - 178 ET - accepted version ER - TY - JOUR A1 - Schlauersbach, Jonas A1 - Hanio, Simon A1 - Lenz, Bettina A1 - Vemulapalli, Sahithya P. B. A1 - Griesinger, Christian A1 - Pöppler, Ann-Christin A1 - Harlacher, Cornelius A1 - Galli, Bruno A1 - Meinel, Lorenz T1 - Leveraging bile solubilization of poorly water-soluble drugs by rational polymer selection JF - Journal of Controlled Release N2 - Poorly water-soluble drugs frequently solubilize into bile colloids and this natural mechanism is key for efficient bioavailability. We tested the impact of pharmaceutical polymers on this solubilization interplay using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and by assessing the flux across model membranes. Eudragit E, Soluplus, and a therapeutically used model polymer, Colesevelam, impacted the bile-colloidal geometry and molecular interaction. These polymer-induced changes reduced the flux of poorly water-soluble and bile interacting drugs (Perphenazine, Imatinib) but did not impact the flux of bile non-interacting Metoprolol. Non-bile interacting polymers (Kollidon VA 64, HPMC-AS) neither impacted the flux of colloid-interacting nor colloid-non-interacting drugs. These insights into the drug substance/polymer/bile colloid interplay potentially point towards a practical optimization parameter steering formulations to efficient bile-solubilization by rational polymer selection. KW - polymer drug interaction KW - flux KW - bile salt KW - simulated intestinal fluid KW - colloid Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-296957 VL - 330 ET - Accepted Version ER - TY - JOUR A1 - Güntzel, Paul A1 - Schilling, Klaus A1 - Hanio, Simon A1 - Schlauersbach, Jonas A1 - Schollmayer, Curd A1 - Meinel, Lorenz A1 - Holzgrabe, Ulrike T1 - Bioinspired Ion Pairs Transforming Papaverine into a Protic Ionic Liquid and Salts JF - ACS Omega N2 - Microbial, mammalian, and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, for example, with carboxylic acids or mineral acids, is a natural blueprint to maintain basic metabolites in solution. Here, we aim at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with the basic natural product papaverine resulting in enhanced aqueous solubility. The obtained PILs were characterized by H-1-N-15 HMBC nuclear magnetic resonance (NMR) and in the solid state using X-ray powder diffraction, differential scanning calorimetry, and dissolution measurements. Furthermore, their supramolecular pattern in aqueous solution was studied by means of potentiometric and photometrical solubility, NMR aggregation assay, dynamic light scattering, zeta potential, and viscosity measurements. Thereby, we identified the naturally occurring carboxylic acids, citric acid, malic acid, and tartaric acid, as being appropriate counterions for papaverine and which will facilitate the formation of PILs with their beneficial characteristics, like the improved dissolution rate and enhanced apparent solubility. KW - solubility KW - transport KW - strategy KW - drugs KW - forms KW - acids Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230265 VL - 5 IS - 30 ER - TY - JOUR A1 - Pöppler, Ann-Christin A1 - Lübtow, Michael M. A1 - Schlauersbach, Jonas A1 - Wiest, Johannes A1 - Meinel, Lorenz A1 - Luxenhofer, Robert T1 - Loading dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy JF - Angewandte Chemie International Edition N2 - Detailed insight into the internal structure of drug‐loaded polymeric micelles is scarce, but important for developing optimized delivery systems. We observed that an increase in the curcumin loading of triblock copolymers based on poly(2‐oxazolines) and poly(2‐oxazines) results in poorer dissolution properties. Using solid‐state NMR spectroscopy and complementary tools we propose a loading‐dependent structural model on the molecular level that provides an explanation for these pronounced differences. Changes in the chemical shifts and cross‐peaks in 2D NMR experiments give evidence for the involvement of the hydrophobic polymer block in the curcumin coordination at low loadings, while at higher loadings an increase in the interaction with the hydrophilic polymer blocks is observed. The involvement of the hydrophilic compartment may be critical for ultrahigh‐loaded polymer micelles and can help to rationalize specific polymer modifications to improve the performance of similar drug delivery systems. KW - dissolution rates KW - micelles KW - polymers KW - short-range order KW - solid-state NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206705 VL - 58 IS - 51 ER - TY - JOUR A1 - Wandrey, Georg A1 - Wurzel, Joel A1 - Hoffmann, Kyra A1 - Ladner, Tobias A1 - Büchs, Jochen A1 - Meinel, Lorenz A1 - Lühmann, Tessa T1 - Probing unnatural amino acid integration into enhanced green fluorescent protein by genetic code expansion with a high-throughput screening platform JF - Journal of Biological Engineering N2 - Background Genetic code expansion has developed into an elegant tool to incorporate unnatural amino acids (uAA) at predefined sites in the protein backbone in response to an amber codon. However, recombinant production and yield of uAA comprising proteins are challenged due to the additional translation machinery required for uAA incorporation. Results We developed a microtiter plate-based high-throughput monitoring system (HTMS) to study and optimize uAA integration in the model protein enhanced green fluorescence protein (eGFP). Two uAA, propargyl-L-lysine (Plk) and (S)-2-amino-6-((2-azidoethoxy) carbonylamino) hexanoic acid (Alk), were incorporated at the same site into eGFP co-expressing the native PylRS/tRNAPyl CUA pair originating from Methanosarcina barkeri in E. coli. The site-specific uAA functionalization was confirmed by LC-MS/MS analysis. uAA-eGFP production and biomass growth in parallelized E. coli cultivations was correlated to (i) uAA concentration and the (ii) time of uAA addition to the expression medium as well as to induction parameters including the (iii) time and (iv) amount of IPTG supplementation. The online measurements of the HTMS were consolidated by end point-detection using standard enzyme-linked immunosorbent procedures. Conclusion The developed HTMS is powerful tool for parallelized and rapid screening. In light of uAA integration, future applications may include parallelized screening of different PylRS/tRNAPyl CUA pairs as well as further optimization of culture conditions. KW - protein engineering KW - amber codon suppression KW - online monitoring system KW - high-throughput screening KW - unnatural amino acid KW - bio-orthogonal chemistry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166304 VL - 10 IS - 11 ER - TY - JOUR A1 - Firdessa, Rebuma A1 - Good, Liam A1 - Amstalden, Maria Cecilia A1 - Chindera, Kantaraja A1 - Kamaruzzaman, Nor Fadhilah A1 - Schultheis, Martina A1 - Röger, Bianca A1 - Hecht, Nina A1 - Oelschlaeger, Tobias A. A1 - Meinel, Lorenz A1 - Lühmann, Tessa A1 - Moll, Heidrun T1 - Pathogen- and host-directed antileishmanial effects mediated by polyhexanide (PHMB) JF - PLoS Neglected Tropical Diseases N2 - Background Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. Methodology/Principal Findings Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. Conclusions Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators. KW - resistance KW - activation KW - dendritic cells KW - Cutaneous leishmaniasis KW - topical treatment KW - biocide polyhexamethylene biguanide KW - experimental visceral leishmaniasis KW - drug-delivery systems KW - therapy KW - paromomycin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148162 VL - 9 IS - 10 ER - TY - JOUR A1 - Jakob, Franz A1 - Ebert, Regina A1 - Rudert, Maximilian A1 - Nöth, Ulrich A1 - Walles, Heike A1 - Docheva, Denitsa A1 - Schieker, Matthias A1 - Meinel, Lorenz A1 - Groll, Jürgen T1 - In situ guided tissue regeneration in musculoskeletal diseases and aging JF - Cell and Tissue Research N2 - In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide “minimal invasive” applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future. KW - in situ guided tissue regeneration KW - stem cells KW - scaffolds KW - regenerative medicine KW - mesenchymal tissues Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124738 VL - 347 IS - 3 ER -