TY - THES A1 - Deubner, Ralph T1 - Quantitative NMR-Spektroskopie zur Reinheitsbestimmung von Arzneistoffen T1 - Quantitative NMR spectroscopy for purity determination of active pharmaceutical ingredients N2 - Quantitative Bestimmungen Anhand verschiedener Substanzen konnte im Rahmen dieser Arbeit gezeigt werden, dass die NMR-Spektroskopie in der Lage ist, Verunreinigungen von Arzneistoffen zu quantifizieren. Für das Antidepressivum Fluvoxamin ist im Arzneibuch eine Ionenpaarchroma-tographie vorgeschrieben, um die Verunreinigung des wirksamen E-Isomers durch das Z-Isomer zu quantifizieren. Ionenpaarchromatographischen Methoden mangelt es häufig an der Robustheit. Eine quantitative Auswertung der NMR-Spektren einer Mischung beider Isomere ist ohne aufwändige Probenvorbereitung möglich. In den 1H-NMR-Spektren der Mischung sind die Signale der Was-serstoffe beider Isomere an Position 2 gut voneinander getrennt. Werden diese quantitativ ausgewertet, dann ist es nach Optimierung insbesondere hinsichtlich der T1-Relaxationszeit möglich, den Anteil des Z-Isomers auf 0,2 % zu begrenzen. Auch für die Bestimmung der Abbauprodukte des Perphenazinenantats konnte gezeigt werden, dass die qNMR eine geeignete Methode darstellt. Perphenazine-nantat kann durch Esterhydrolyse gespalten werden. Zur Auswertung der 1H-NMR-Spektren wird der Vergleich der Integralflächen der Signale der Wasserstoffe an Position 21 des Perphenazins mit dem zusammenfallenden Signal der Wasserstoffe an Position 11 beider Substanzen herangezogen. Es konnte sowohl Perphenazin als Abbauprodukt des Esters als auch Perphena-zinenantat in Perphenazin quantifiziert werden. Zusätzlich kann der Bereich der aromatischen Wasserstoffe zu einer Aussage über die Oxidation genutzt werden. Bei der Oxidation des Schwefels im Phenothiazinring zum Sulfoxid und zum Sul-fon ändern sich die chemischen Verschiebungen der Wasserstoffkerne in diesem Ringsystem. Dadurch wird eine halbquantitative Aussage ermöglicht. Schließlich konnten die beiden Epimere Chinin und Chinidin jeweils als Verunrei-nigung des anderen Chinaalkaloides quantifiziert werden. Auch in diesem Fall lie-gen in den 1H-NMR-Spektren in DMSO-d6 von Mischungen dieser beiden Verbin-dungen Signale weit genug auseinander, um eine Quantifizierung zu ermöglichen. In beiden Fällen, der Bestimmung von Chinidin in Chinin und von Chinin in Chini-din konnte dies auf einem Niveau von 2,5% geschehen, was den Anforderungen der Arzneibücher entspricht. Gentamicinsulfat Die 1H-NMR-Spektroskopie wurde ebenfalls zur Charakterisierung der Zusam-mensetzung des Antibiotkums Gentamicin eingesetzt. Gentamicin, das fermentativ aus Micromonospora purpurea gewonnen wird, besteht aus verschiedenen Haupt- und Nebenkomponenten, deren Zusammensetzung je nach Fermentationsbedingungen schwankt. Nach einer Reihe von Todesfällen im Zusammenhang mit der Anwendung des Antibiotikums Gentamicin in den USA wurde vermutet, dass diese auf verschiede-ne Verunreinigungen zurückzuführen sind. In der aktuellen Arzneibuch-Monographie wird eine HPLC-Methode beschrieben, die zwar die Hauptkomponenten quantifizieren kann, aber nicht alle Nebenkomponenten gut abtrennt. Auch ist die gesamte Elutionszeit sehr lang, so dass spät eluierende Substanzen breite Peaks zeigen. Außerdem ist der benutzte gepulste amperometrische Detektor sehr empfindlich und die Methode insgesamt daher wenig robust. Unter Zuhilfenahme von ein- und zweidimensionalen Standardmesstechniken sowie selektiver TOCSY-Messungen konnten alle Signale in den 1H- und 13C-NMR-Spektren der Haupt- und Nebenkomponenten von Gentamicin vollständig zugeordnet werden. Dabei zeigte sich, dass der Bereich der anomeren Wasserstoffe sehr gut geeignet ist, Aussagen über die Reinheit und über das Verhältnis der Hauptkomponenten zueinander treffen zu können. In dem in der Abbildung gezeigten Ausschnitt aus einem 400 MHz-1H-NMR-Spektrum ist eine Integration der H20-Signale der Hauptkomponenten aufgrund mangelnder Trennung nicht möglich. Diese ist jedoch in 600 MHz-Spektren möglich. Auf diese Weise können die Verhältnisse der Hauptkomponenten zueinander bestimmt werden. Die so erhaltenen Ergebnisse zeigen eine sehr gute Übereinstimmung mit den aus einer MEKC-Trennung erhaltenen Daten. Das zeigt die sehr gute Ergänzung dieser beiden Methoden. Insgesamt wurden für diese Arbeit über 40 Gentamicin-Proben verschiedener Hersteller untersucht, miteinander verglichen und in verschiedene Gruppen einge-teilt. Als Leitverunreinigung hat sich dabei Sisomicin erwiesen. Daneben konnte der Vergleich der Verunreinigungsprofile Hinweise auf Handelswege geben. Unter den untersuchten Proben waren auch diejenigen, zu den Todesfällen führten. Die-se konnten den stark verunreinigten Gruppen zugeordnet werden. N2 - Quantitative analysis It could be shown on the basis of different substances that the NMR spectroscopy is able to quantify impurities of pharmaceuticals. For the quantification of impurities of the antidepressive drug fluvoxamine the pharmacopoeia describes an ion-pair chromatographic method. Since the antide-pressive activity resides on the E-isomer the content of the Z-isomer has to be lim-ited. Since ion-pair chromatography often lacks of robustness, qNMR is an alterna-tive. The quantitative evaluation of 1H NMR spectra of a mixture of the two isomers is possible without extensive sample preparation. The signals of the hydrogens at position 2 of both isomers are well separated in the spectrum. If these are quantitative evaluated, under optimized conditions, e.g. with respect to T1-relaxation time, it is possible to limit the content of the Z-isomer to 0.2%. For analysis of degradation products of perphenazine enantate qNMR is a suitable method. Perphenazine enantate can be cleaved by ester hydrolysis. Using the integral area of the signal of the hydrogens at position 21 of per-phenazine in comparison to the integral area of the overlapping signals of the hydrogens at position 11 of both substances perphenazine and perphenazine enan-tate it was possible to quantify perphenazine as a degradation product of per-phenazine as well perphenazine enantate in perphenazine. Additionally the area of the aromatic hydrogens can be used for the analysis of the oxidation. The oxidation of the sulfur of the the phenothiazine-moiety to the sulfoxide and the sulfone changes the chemical shifts of the corresponding hydrogens. This enables a half-quantitative assessment. Finally it was possible to quantify the two epimers quinine and quinidine as an impurity in either drug. Again signals of both substances could be identified to be used for quantification. In both cases quinine as impurity of quinidine and vice versa the impurity can be limited to 2.5 per cent as required by the pharmacopeias. Gentamicin sulfate 1H-NMR spectroscopy was also used as an analytical method to characterize the composition of gentamicin. Gentamicin is produced from Micromonospora purpurea by fermentation and consists of different main and side components. The composition varies when applying different fermentation conditions. A number of deaths in connection with the application of the antibiotic drug gen-tamicin in the USA were reported. Different impurities were suspected to be re-sponsible for these deaths. In the current pharmacopoeia monograph an HPLC method is described which is able to quantify all main components but does not separate all side components. In addition, the total elution time is long. Thus late eluting substances show very broad peaks. Furthermore the used pulsed am-perometric detector is very sensitive and the method is not very robust over all. Using one- and two-dimensional routine NMR techniques and selective TOCSY experiments it was possible to assign all signals in the 1H- and 13C-NMR spectra of all main and side components. The area of the anomeric hydrogens is appropriate to evaluate the purity of gentamicin and the proportions between the main compo-nents. In the part of the 400 MHz 1H-NMR spectrum integration of the H20 signals of the main components is impossible due to the missing baseline separation. However, using 600 MHz spectra integration is possible. In this way the proportions between the main components can be determined. The results achieved in this way show good accordance to the results obtained with an MEKC separation. More than 40 gentamicin samples from different manufactures were studied, com-pared and divided into several groups, based on their impurity profile. As a lead impurity sisimocin has been identified. Besides that, the comparison of the impurity profiles enables to trace the trade ways. Some of the samples which led to the deaths were among the samples being classified in the impure groups. KW - Arzneimittel KW - Qualitätskontrolle KW - NMR-Spektroskopie KW - Quantitative Analyse KW - NMR-Spektroskopie KW - quantitativ KW - Verunreinigungen KW - Arzneistoffe KW - NMR-spectroscopy KW - quantitative KW - impurities KW - active pharmaceutical ingredients Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8364 ER - TY - THES A1 - Waibel, Benjamin T1 - NMR-Methoden zur Identifizierung von Makromolekül-Ligand-Interaktionen T1 - NMR-techniques to identify macromolecule-ligand-interactions N2 - Komplexstrukturen können über NMR-Experimente aufgeklärt werden, die intermolekulare Wechselwirkungen über den Raum detektieren können. Meist kommen dabei NOE- bzw. ROE-Experimente und Weiterentwicklungen dieser Sequenzen zum Einsatz. Auch mit einfachen Versuchen, wie der Bestimmung der Veränderung der chemischen Verschiebungen bei Komplexierung, lassen sich wertvolle Strukturinformationen gewinnen. Durch die Bindung eines Liganden an ein Makromolekül ändern sich viele NMR-spezifische Parameter des Liganden. Dazu gehören NMR-Relaxationszeiten und Diffusionskoeffizienten mit deren Hilfe sich Dissoziationskonstanten der Komplexe ermitteln lassen. Die vorliegende Arbeit beschäftigt sich mit den Möglichkeiten der Identifizierung und Charakterisierung von Ligand-Makromolekül-Interaktionen mittels NMR-Spektroskopie. Drei unterschiedliche Fragestellungen wurden bearbeitet. Einfluss von Harnstoff auf beta-Cyclodextrin-Einschlusskomplexe mit Dipeptiden: Bei kapillarelektrophoretischen Enantiomerentrennungen von Dipeptiden mittels beta-Cyclodextrin kommen häufig sehr hohe Konzentrationen an Harnstoff zum Einsatz, um die Wasserlöslichkeit des beta-CD zu verbessern. Dabei wird die eventuelle Beteiligung des Harnstoffs am Komplex oftmals außer Acht gelassen. Durch den Einsatz unterschiedlichster NMR- und Simulations-Techniken konnte die Beteiligung des Harnstoffs an dem Komplex untersucht und aufgeklärt werden. Relaxationsstudien von Fluorchinolonen mit Micrococcus luteus: Ziel dieser Versuchsreihe war es, anhand von longitudinalen und transversalen Relaxationsmessungen Einblick in das Bindungsverhalten von Fluorchinolonen (Gyrasehemmer) an Bakterienzellen zu erhalten. Mittels der Bestimmung von selektiven 1H-T1-Zeiten in Abhängigkeit des Antibiotikum/Bakterien-Verhältnisses konnten Dissoziationskonstanten der untersuchten Pharmaka an die Bakterienzelle ermittelt werden. Desweiteren wurden 19F-Spin-Spin-Relaxationsexperimente durchgeführt. Proteinbindungsstudien von Gyrasehemmern an BSA: Durch die Bindung von Fluorchinolonen an bovines Serumalbumin ändern sich die scheinbare Molekülmasse und der hydrodynamische Radius des Arzneistoffs stark. Durch selektive T1-Relaxationsmessungen konnten für drei Gyrasehemmer mit unterschiedlichen Proteinbindungseigenschaften die jeweiligen Dissoziationskonstanten an das Albumin ermittelt werden. Eine weitere Möglichkeit Dissoziationskonstanten zu bestimmen war es, Diffusionskoeffizienten bei unterschiedlichen Konzentrationsverhältnissen zu bestimnmen. Über die Ermittlung sogenannter „Affinitätsindices“ war es möglich, die Stärke der Proteinbindung zu charakterisieren. Um den Effekt unterschiedlicher Korrelationszeiten verschiedener Kerne auszumitteln, wurde eine Normalisierung dieser Indices durchgeführt. Auch die Werte dieser Affinitätsindices gaben die Stärke der Proteinbindung der unterschiedlichen Antibiotika sehr gut wider. N2 - The structure of a complex can be clarified by NMR-experiments, which detect intermolecular interactions through space e.g. NOE- and ROE-experiments or further developments of these techniques. Beside these, the determination of the chemical shifts provides useful structural informations. Upon binding to a macromolecule, several NMR-parameters of a small ligand change dramatically. This includes parameters such as different NMR-relaxation times and diffusion coefficients which can be used to determine dissociation constants. The present thesis deals with the possibility of identification and characterization of complexes by NMR-spectroscopy. Three different problems were investigated. Influence of urea to beta-cyclodextrin inclusion complexes with dipeptides: Due to the limited aqueous solubility of beta-CD, enantioseparations utilizing beta-CD as chiral selector are often performed in buffers containing high concentrations of urea. Therefore, the involvement of urea in the constitution of the complex should be kept in mind. In this project the influence of urea was investigated and elucidated by using different NMR- and simulation techniques. Relaxation studies of fluoroquinolones with Micrococcus luteus: The main goal of this investigation was to get an insight in the binding behaviour of fluoroquinolones to a bacterial cell by performing longitudinal and transversal relaxation experiments. Using the determination of selective 1H-T1-relaxation times in dependence of varying the antibiotic/bacteria-relation, dissociation constants of the antibiotic to bacterial cells could be identified. Furthermore, 19F-spin-spin-relaxation experiments were performed. Protein binding studies of fluoroquinolones to BSA: By binding of the fluoroquinolones to bovine serum albumin the apparent molecular mass and the hydrodynamic radius of the ligand strongly change. In this project dissociation constants of three different fluoroquinolones with different binding characteristics were determined by measuring selective relaxation rates. Another possibility to assess dissociation constants of fluoroquinolons was the determination of the antibiotics diffusion constants at different concentration levels. The determination of the so called “affinity indices” offered a further possibility to evaluate the degree of protein binding. To eliminate the effect of different correlation times of different nuclei, a normalization of the affinity indices was performed. The fitted affinity indices also reflect the protein binding of the antibiotics properly. KW - Kernspinrelaxation KW - Fluor-19-NMR-Spektroskopie KW - PFG-NMR-Spektroskopie KW - NMR-Spektroskopie KW - Cyclodextrin KW - Fluorchinolone KW - Proteinbindung KW - Diffusionskonstante KW - Affinitätsindex KW - NMR-spectroscopy KW - cyclodextrins KW - fluoroquinolones KW - diffusion constant KW - relaxation Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26589 ER -