TY - JOUR A1 - Ashraf, Kerolos A1 - Yasrebi, Kaveh A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Lalk, Michael A1 - Hilgeroth, Andreas T1 - Novel effective small-molecule antibacterials against \(Enterococcus\) strains JF - Molecules N2 - \(Enterococcus\) species cause increasing numbers of infections in hospitals. They contribute to the increasing mortality rates, mostly in patients with comorbidities, who suffer from severe diseases. \(Enterococcus\) resistances against most antibiotics have been described, including novel antibiotics. Therefore, there is an ongoing demand for novel types of antibiotics that may overcome bacterial resistances. We discovered a novel class of antibiotics resulting from a simple one-pot reaction of indole and \(o\)-phthaldialdehyde. Differently substituted indolyl benzocarbazoles were yielded. Both the indole substitution and the positioning at the molecular scaffold influence the antibacterial activity towards the various strains of \(Enterococcus\) species with the highest relevance to nosocomial infections. Structure-activity relationships are discussed, and the first lead compounds were identified as also being effective in the case of a vancomycin resistance. KW - medicine KW - antibacterial activity KW - synthesis KW - derivatives KW - structure-activity KW - lead structure Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172628 VL - 22 IS - 12 ER - TY - JOUR A1 - Blättner, Sebastian A1 - Das, Sudip A1 - Paprotka, Kerstin A1 - Eilers, Ursula A1 - Krischke, Markus A1 - Kretschmer, Dorothee A1 - Remmele, Christian W. A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Schuelein-Voelk, Christina A1 - Hertlein, Tobias A1 - Mueller, Martin J. A1 - Huettel, Bruno A1 - Reinhardt, Richard A1 - Ohlsen, Knut A1 - Rudel, Thomas A1 - Fraunholz, Martin J. T1 - Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes JF - PLoS Pathogens N2 - Community-acquired (CA) Staphylococcus aureus cause various diseases even in healthy individuals. Enhanced virulence of CA-strains is partly attributed to increased production of toxins such as phenol-soluble modulins (PSM). The pathogen is internalized efficiently by mammalian host cells and intracellular S. aureus has recently been shown to contribute to disease. Upon internalization, cytotoxic S. aureus strains can disrupt phagosomal membranes and kill host cells in a PSM-dependent manner. However, PSM are not sufficient for these processes. Here we screened for factors required for intracellular S. aureus virulence. We infected escape reporter host cells with strains from an established transposon mutant library and detected phagosomal escape rates using automated microscopy. We thereby, among other factors, identified a non-ribosomal peptide synthetase (NRPS) to be required for efficient phagosomal escape and intracellular survival of S. aureus as well as induction of host cell death. By genetic complementation as well as supplementation with the synthetic NRPS product, the cyclic dipeptide phevalin, wild-type phenotypes were restored. We further demonstrate that the NRPS is contributing to virulence in a mouse pneumonia model. Together, our data illustrate a hitherto unrecognized function of the S. aureus NRPS and its dipeptide product during S. aureus infection. KW - cell death KW - cytotoxicity KW - Staphylococcus aureus KW - host cells KW - neutrophils KW - macrophages KW - transposable elements KW - epithelial cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180380 VL - 12 IS - 9 ER - TY - JOUR A1 - Gehrmann, Robin A1 - Hertlein, Tobias A1 - Hopke, Elisa A1 - Ohlsen, Knut A1 - Lalk, Michael A1 - Hilgeroth, Andreas T1 - Novel small-molecule hybrid-antibacterial agents against S. aureus and MRSA strains JF - Molecules N2 - Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies. KW - antibacterial activity KW - synthesis KW - substituent KW - structure–activity KW - inhibition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252371 SN - 1420-3049 VL - 27 IS - 1 ER - TY - JOUR A1 - Gomes, Sara F. Martins A1 - Westermann, Alexander J. A1 - Sauerwein, Till A1 - Hertlein, Tobias A1 - Förstner, Konrad U. A1 - Ohlsen, Knut A1 - Metzger, Marco A1 - Shusta, Eric V. A1 - Kim, Brandon J. A1 - Appelt-Menzel, Antje A1 - Schubert-Unkmeir, Alexandra T1 - Induced pluripotent stem cell-derived brain endothelial cells as a cellular model to study Neisseria meningitidis infection JF - Frontiers in Microbiology N2 - Meningococcal meningitis is a severe central nervous system infection that occurs when Neisseria meningitidis (Nm) penetrates brain endothelial cells (BECs) of the meningeal blood-cerebrospinal fluid barrier. As a human-specific pathogen, in vivo models are greatly limited and pose a significant challenge. In vitro cell models have been developed, however, most lack critical BEC phenotypes limiting their usefulness. Human BECs generated from induced pluripotent stem cells (iPSCs) retain BEC properties and offer the prospect of modeling the human-specific Nm interaction with BECs. Here, we exploit iPSC-BECs as a novel cellular model to study Nm host-pathogen interactions, and provide an overview of host responses to Nm infection. Using iPSC-BECs, we first confirmed that multiple Nm strains and mutants follow similar phenotypes to previously described models. The recruitment of the recently published pilus adhesin receptor CD147 underneath meningococcal microcolonies could be verified in iPSC-BECs. Nm was also observed to significantly increase the expression of pro-inflammatory and neutrophil-specific chemokines IL6, CXCL1, CXCL2, CXCL8, and CCL20, and the secretion of IFN-γ and RANTES. For the first time, we directly observe that Nm disrupts the three tight junction proteins ZO-1, Occludin, and Claudin-5, which become frayed and/or discontinuous in BECs upon Nm challenge. In accordance with tight junction loss, a sharp loss in trans-endothelial electrical resistance, and an increase in sodium fluorescein permeability and in bacterial transmigration, was observed. Finally, we established RNA-Seq of sorted, infected iPSC-BECs, providing expression data of Nm-responsive host genes. Altogether, this model provides novel insights into Nm pathogenesis, including an impact of Nm on barrier properties and tight junction complexes, and suggests that the paracellular route may contribute to Nm traversal of BECs. KW - Neisseria meningitidis KW - meningococcus KW - bacteria KW - stem cells KW - blood-cerebrospinal fluid barrier KW - blood-brain barrier KW - brain endothelial cells Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201562 VL - 10 IS - 1181 ER - TY - JOUR A1 - Hanzelmann, Dennis A1 - Joo, Hwang-Soo A1 - Franz-Wachtel, Mirita A1 - Hertlein, Tobias A1 - Stevanovic, Stefan A1 - Macek, Boris A1 - Wolz, Christiane A1 - Götz, Friedrich A1 - Otto, Michael A1 - Kretschmer, Dorothee A1 - Peschel, Andreas T1 - Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants JF - Nature Communications N2 - Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. KW - Pathogens KW - Toll-like receptors Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165975 VL - 7 ER - TY - THES A1 - Hertlein, Tobias T1 - Visualization of Staphylococcus aureus infections and antibiotic therapy by bioluminescence and 19F magnetic resonance imaging with perfluorocarbon emulsions T1 - Darstellung von Staphylococcus aureus Infektionen und Antibiotikatherapie durch Biolumineszenzbildgebung und 19F-Kernspintomografie mit Perfluorcarbon-Emulsionen N2 - Staphylococcus aureus is a major threat to public health systems all over the globe. This second most cause of nosocomial infections is able to provoke a wide variety of different types of infection in humans and animals, ranging from superficial skin and skin structure infections to invasive disease like sepsis or pneumonia. But not enough, this pathogen is also notorious in acquiring and/or developing resistance to antimicrobial compounds, thus limiting available treatment options severely. Therefore, development of new compounds and strategies to fight S. aureus is of paramount importance. But since only 1 out of 5 compounds, which entered clinical trials, becomes a drug, the preclinical evaluation of promising compounds has to be reconsidered, too. The aim of this thesis was to address both sides of this problem: first, to improve preclinical testing by incorporating in vivo imaging technologies to the preclinical testing procedure in order to acquire additional and clearer data about efficacy of promising compounds and second, by evaluating lysostaphin, which is a promising, new option to fight S. aureus infections. The first aim of this thesis focused on the establishment of a dual modality in vivo imaging platform, consisting of Bioluminescence Imaging (BLI) and Magnetic Resonance Imaging (MRI), to offer detailed insights into the course and gravity of S. aureus infection in the murine thigh infection model. Since luciferase-expressing S. aureus strains were generated in former studies and enabled thus bioluminescence imaging of bacterial infection, this technology should be implemented into the compound evaluation platform in order to non-invasively track the bacterial burden over time. MRI, in contrast, was only rarely used in earlier studies to visualize and measure the course of infection or efficacy of anti-bacterial therapy. Thus, the first set of experiments was performed to identify benefits and drawbacks of visualizing S. aureus infections in the mouse model by different MR methods. Native, proton-based MR imaging showed in this regard increased T2 relaxation times in the infected thigh muscles, but it was not possible to define a clear border between infected and uninfected tissue. Iron oxide nanoparticles and perfluorocarbon emulsions, two MR contrast agents or tracer, in contrast, offered this distinction. Iron oxide particles were detected in this regard by their distortion of 1H signal in proton-based MRI, while perfluorocarbon emulsion was identified by 19F MRI. Mammals do not harbor sufficient intrinsic amounts of 19F to deliver specific signal and therefore, 19F MR imaging visualizes only the signal of administered perfluorocarbon emulsion. The in vivo accumulation of perfluorocarbon emulsion can be imaged by 19F MRI and overlayed on a simultaneously acquired 1H MR image, which shows the anatomical context in clear detail. Since this is advantageous compared to contrast agent based MR methods like iron oxide particle-based MRI, further experiments were performed with perfluorocarbon emulsions and 19F MRI. Experimental studies to elucidate the accumulation of perfluorocarbon emulsion at the site of infection showed robust 19F MR signals after administration between day 2 and at least day 8 p.i.. Perfluorocarbon emulsion accumulated in all investigated mice in the shape of a ‘hollow sphere’ at the rim of the abscess area and the signal remained stable as long as the infection prevailed. In order to identify the mechanism of accumulation, flow cytometry, cell sorting and histology studies were performed. Flow cytometry and cell sorting analysis of immune cells at the site of infection showed that neutrophils, monocytes, macrophages and dendritic cells carried contrast media at the site of infection with neutrophils accounting for the overwhelming portion of perfluorocarbon signal. In general, most of the signal was associated with immune cells, thus indicating specific immune cell dependent accumulation. Histology supported this observation since perfluorocarbon emulsion related fluorescence could only be visualized in close proximity to immune cell nuclei. After establishing and testing of 19F MRI with perfluorocarbon emulsions as infection imaging modality, the effects of antibiotic therapy upon MR signal was investigated in order to evaluate the capability of this modality for preclinical testing procedure. Thus, the efficacy of vancomycin and linezolid, two clinically highly relevant anti - S. aureus compounds, were tested in the murine thigh infection model. Both of them showed reduction of the colony forming units and bioluminescence signal, but also of perfluorocarbon emulsion accumulation strength and volume at the site of infection, which was visualized and quantified by 19F MRI. The efficacy pattern with linezolid being more efficient in clearing bacterial infection was shown similarly by all three methods. In consequence, 19F MRI with perfluorocarbon emulsion as MR tracer proved to be capable to visualize antibacterial therapy in preclinical testing models. The next step was consequently to evaluate a promising new compound against S. aureus infections. Thus, lysostaphin, an endo-peptidase that cleaves the cell wall of S. aureus, was tested in different concentrations alone or in combination with oxacillin for efficacy in murine thigh and catheter associated infection models. Lysostaphin only in the concentration of 5 mg/kg body weight or combined with oxacillin in the concentration of 2 mg/kg showed strong reduction of bacterial burden by colony forming unit determination and bioluminescence imaging in both models. The perfluorocarbon accumulation was investigated in the thigh infection model by 19F MRI and was strongly reduced in terms of volume and signal strength in both above-mentioned groups. In general, lysostaphin showed comparable or superior efficacy than vancomycin or oxacillin alone. Therefore, further development of lysostaphin for the treatment of S. aureus infections is recommended by these experiments. Overall, the antibiotic efficacy pattern of all applied antibiotic regimens was similar with all three applied methods, demonstrating the usefulness of MRI for antibiotic efficacy testing. Importantly, treatment with oxacillin either alone or in combination with lysostaphin resulted in stronger perfluorocarbon emulsion accumulation at the site of infection than expected compared to the results from bioluminescence imaging and colony forming unit determination. This might be an indication for immunomodulatory properties of oxacillin. Further murine infection experiments demonstrated in this context a differential release of cytokine and chemokines in the infected thigh muscle in dependence of the applied antibacterial therapy. Especially treatment with oxacillin, but to a less degree with minocycline or linezolid, too, exhibited high levels of various cytokines and chemokines, although they reduced the bacterial burden efficiently. In consequence, possible immunomodulatory effects of antibacterial compounds have to be taken into account for future applications of imaging platforms relying on the visualization of the immune response. However, this observation opens a new field for these imaging modalities since it might be extraordinary interesting to study the immunomodulatory effects of compounds or even bacterial factors in vivo. And finally, a two modality imaging platform which combines methods to visualize on the one hand the bacterial burden and on the other hand the immune response offers an innovative, new platform to study host-pathogen interaction in vivo in a non-invasive fashion. In summary, it could be shown that perfluorocarbon emulsions accumulate in immune cells at the site of infection in the murine S. aureus thigh infection model. The accumulation pattern shapes a ‘hollow sphere’ at the rim of the abscess area and its size and perfluorocarbon content is dependent on the severity of disease and/or efficacy of antibiotic therapy. Thus, 19F MRI with perfluorocarbon emulsions is a useful imaging modality to visualize sites and course of infection as well as to evaluate promising antibacterial drug candidates. Furthermore, since the accumulation of tracer depends on immune cells, it might be additionally interesting for studies regarding the immune response to infections, auto-immune diseases or cancer, but also to investigate the efficacy of immunomodulatory compounds and immunization. N2 - Staphylococcus aureus ist als zweithäufigste Ursache nosokomialer Infektionen eine ernste Bedrohung für Gesundheitssysteme weltweit. Dieses Pathogen ist in der Lage eine Vielzahl verschiedener Krankheitsformen, von oberflächlichen Wund- und Gewebsinfektionen bis hin zu invasiven Erkrankungen wie Bakteriämie oder Pneumonie, in Mensch und Tier zu verursachen. Zudem erwies sich dieser Krankheitserreger in der Vergangenheit als höchst anpassungsfähig durch den Erwerb oder die Entwicklung von Resistenzen gegenüber antibakterieller Substanzen, wodurch die Verfügbarkeit wirksamer Therapiemöglichkeiten drastisch eingeschränkt wurde. Aus diesem Grund ist die Entwicklung neuer Antibiotika und Behandlungsstrategien gegen S. aureus Infektionen von enormem gesellschaftlichem Interesse. Da aber lediglich eine von fünf Substanzen, die in klinische Studien eintreten, später als Medikament zugelassen wird, sollte die präklinische Evaluierung neuer, vielversprechender Therapeutika ebenso verbessert und überdacht werden. Diese Doktorarbeit addressiert in diesem Zusammenhang beide Facetten: zum einen wurde durch Einbeziehung von in vivo Bildgebungstechnologien ein deutlicheres Bild von der Effizienz neuer Substanzen während der präklinischen Evaluierung ermöglicht, zum anderen wurde mit Lysostaphin eine neuartige Substanzklasse zur Behandlung von S. aureus Infektionen getestet. Primärziel dieser Arbeit war deshalb die Entwicklung und Etablierung einer dualen Bildgebungsplattform bestehend aus Biolumineszenz- (BLI) und Kernspintomografischer (MRI) Bildgebung, um detaillierte Einblicke in Verlauf und Schwere von S. aureus Infektionen im Muskelinfektionsmodell der Maus zu ermöglichen. Die Biolumineszenzbildgebung bakterieller Infektionen wurde durch die Entwicklung von Luziferase-exprimierenden S. aureus Stämmen bereits in früheren Arbeiten ermöglicht und wurde in die Bildgebungsplatform integriert, um die Entwicklung der Bakterienlast nicht-invasiv verfolgen zu können. Kernspintomografie wurde in früheren Arbeiten hingegen kaum zur Darstellung der Effizienz anti-bakterieller Therapien während der Präklinik verwendet. Aus diesem Grund dienten die ersten Experimente zur Erkennung von Vor- und Nachteilen der Darstellung von S. aureus Infektionen im Tiermodell durch verschiedene Kernspintomografische Bildgebungsmethoden. Native, Protonen-basierte Kernspintomografie wies verlängerte T2 Relaxationszeiten im infizierten Muskelgewebe nach, doch eine klare Eingrenzung des infizierten Bereiches war nicht möglich. Die Anwendung von Eisenoxid und Perfluorcarbon Nanopartikeln, zwei Kontrastmittel zur Kernspintomografie, ermöglichte ebendiese. Eisenoxid Nanopartikel wurden durch ihren Signalstöreffekt auf das MR Protonensignal detektiert, während Perfluorcarbon Emulsionen durch 19F basierte Kernspintomografie nachgewiesen wurden. Säugetiere verfügen nicht über ausreichende Mengen von 19F Atomen, um ein spezifisches Signal zu liefern, weshalb 19F Kernspintomografie lediglich applizierte Perfluorcarbon Emulsion in vivo abbilden kann. Dieses Bild kann dann über ein zugleich aufgenommenes Protonen MR Bild gelegt werden, wodurch die Akkumulation des Kontrastmittels im Detail in anatomischer Umgebung dargestellt werden kann. Da es sich hierbei um einen Vorteil gegenüber anderen Kontrastmittel-basierten MR Bildgebungsmethoden wie Eisenoxid Nanopartikel gestützter Kernspintomografie handelt, wurden nachfolgende Experimente mit Perfluorcarbon Emulsionen durchgeführt. Studien zur Bildgebung der Perfluorcarbon Akkumulation am Infektionsherd des Muskelabszessmodels von S. aureus in der Maus zeigten deutliches 19F MR Signal nach Gabe zwischen Tag 2 und Tag 8 p.i.. In allen untersuchten Tieren zeigte sich eine Ansammlung des Kontrastmittels in Form einer Hohlkugel um den Abszessbereich, wobei das Signal während der gesamten Infektion stabil war. Um den Akkumulationsmechanismus zu identifizieren, wurden Durchflusszytometrie-, Zellseparations- und histologische Experimente durchgeführt. In diesem Zusammenhang erwiesen sich Neutrophile, Makrophagen, Monozyten und Dendritische Zellen als Perfluorcarbon-tragende Immunzelltypen, wobei das Gros an Kontrastmittel in Neutrophilen nachgewiesen werden konnte. Im Allgemeinen war der Großteil des Perfluorcarbonsignals mit Immunzellen assoziert, weshalb eine spezifische Immunzell-abhängige Akkumulation wahrscheinlich erscheint. Die histologischen Untersuchungen stützten diese Beobachtung, da die Kontrastmittel assoziierten Fluoreszenzmarker nur in der Nähe von Immunzellnuclei gefunden werden konnten. Die Etablierung von 19F Kernspintomografie mit Perfluorcarbon Emulsionen als Infektionsbildgebungsmethode ermöglichte im nächsten Schritt die Untersuchung von antibakterieller Therapie auf das MR Signal, um die Eignung dieser Methode für die Präklinik zu evaluieren. Deshalb wurden die Wirksamkeit von Vancomycin und Linezolid, zweier klinisch höchst relevanter Antibiotika zur Behandlung von S. aureus Infektionen, im Muskelabszessmodel der Maus untersucht. Beide erwiesen sich als effizient in der Verringerung der bakteriellen Last im infizierten Muskel und des Bakterien-Biolumineszenzsignals, aber auch bei der Reduktion der Stärke und des Volumens der Perfluorcarbon Akkumulation am Infektionsherd, die durch 19F Kernspintomografie dargestellt und vermessen wurde. Alle drei Methoden zeigten dabei das gleiche Effizienzmuster nach dem Linezolid wirksamer bei der Bekämpfung der Infektion war. Folglich erwies sich 19F Kernspintomografie mit Perfluorcarbon Emulsionen als effektiv um den antibakteriellen Effekt von Antibiotika in präklinischen Modellen zu untersuchen. Konsequenterweise wurde im nächsten Schritt eine neuartige Substanz zur Behandlung von S. aureus Infektionen mit Hilfe der Bildgebungsplattform untersucht: Lyostaphin. Diese Endopeptidase schneidet spezifisch die Zellwand von S. aureus und wurde in verschiedenen Konzentrationen oder in Kombination mit Oxacillin im Muskelabszess- oder Katheterinfektionsmodell der Maus gestestet. Lysostaphin in der Konzentration von 5 mg/kg Körpergewicht (Maus) oder Lysostaphin in der Konzentration von 2 mg/kg in Kombination mit Oxacillin führten zu einer starken Verringerung der Bakterienlast und des Biolumineszenzsignals in beiden Modellen. Die Ansammlung von Perfluorcarbon Kontrastmittel war zudem in diesen beiden Gruppen stark reduziert im Vergleich zur Negativkontrolle und den mit Vancomycin und Oxacillin behandelten Tieren. Zusammenfassend kann festgestellt werden, dass Lysostaphin eine vergleichbare oder bessere Wirksamkeit als Vancomycin oder Oxacillin alleine lieferte. Aus diesem Grund scheint eine Weiterentwicklung dieser Substanz zur Behandlung von S. aureus empfohlen. Der Nutzen der Bildgebungsplattform wurde in diesen Experimenten zudem dadurch deutlich, dass alle drei Methoden zur Bestimmung der Schwere der Erkrankung ähnliche Wirksamkeiten der Antibiotika anzeigten. Dennoch muss festgestellt werden, dass die Gruppen, die Oxacillin entweder alleine oder in Kombination mit Lysostaphin erhielten, stärkere Perfluorocarbon Akkumulation am Infektionsherd aufwiesen als von den Bakterienlast- oder Biolumineszenz-Ergebnissen zu erwarten gewesen wäre. Ein Grund hierfür könnten mögliche immunomodulatorischen Effekte von Oxacillin sein. Tatsächlich zeigten weitere Experimente Variationen in den Konzentrationen von Cytokinen und Chemokinen im infizierten Muskel in Abhängigkeit der verwendeten Antibiotikatherapie. Besonders die Behandlung mit Oxacillin, in geringerem Maße aber auch mit Minocyclin oder Linezolid, führte zu erhöhten Konzentrationen, wenngleich die Bakterienlast deutlich reduziert werden konnte. Folglich sollten mögliche immuno-modulatorischen Effekte antibakterieller Substanzen bei zukünftiger Anwendung von Bildgebungsplattform, die auf dem Markieren von Immunzellen basieren, mit ins Kalkül gezogen werden. Auf der anderen Seite eröffnet diese Beobachtung ein neues Anwendungsfeld für diese Bildgebungsmethoden, da es außerordentlich interessant erscheint, damit immuno-modulatorische Substanzen oder bakterielle Faktoren in vivo zu untersuchen. Zu guter Letzt, ermöglicht diese Bildgebungsplattform, die Methoden zur Darstellung der bakteriellen Last auf der einen und des Immunsystems auf der anderen Seite verknüpft, eine innovative, neue Möglichkeit Wirt-Pathogen Interaktionen nicht-invasiv und in vivo studieren zu können. Zusammenfassend konnte gezeigt werden, dass Perfluorcarbon Emulsionen in Immunzellen am Infektionsherd des S. aureus Muskelabszessmodells der Maus akkumulieren. Die Ansammlung formt eine Hohlkugel am Rand des Abszessbereiches, deren Größe und Fluorgehalt von der Schwere der Erkrankung und/oder der Wirksamkeit der angewandten Antibiotikatherapie abhängt. Aus diesem Grund erwies sich 19F Kernspintomografie mit Perfluorcarbon Emulsionen als Kontrastmittel als nützliche Platform zur präklinischen Evaluierung antibakterieller Substanzen. Weiterhin erscheint diese Methode wegen der Akkumulation des Kontrastmittels in Immunzellen, als interessant zum Studium der Immunantwort gegenüber Infektionen, aber auch Krebs oder Autoimmunerkrankungen sowie zur Erforschung von immuno-modulatorischen Substanzen und Impfansätzen. KW - Staphylococcus aureus KW - Kernspintomographie KW - Infektion KW - In vivo Imaging KW - Infection imaging KW - Infektionsbildgebung KW - Antibiotikum KW - Bilderzeugung KW - Molekulare Bildgebung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105349 ER - TY - JOUR A1 - Hertlein, Tobias A1 - Sturm, Volker A1 - Jakob, Peter A1 - Ohlsen, Knut T1 - \(^{19}\)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model JF - PLoS ONE N2 - Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of \(^{19}\)F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of \(^{19}\)F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the \(^{19}\)F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions \(^{19}\)F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. KW - staphylococcus aureus KW - abscesses KW - vancomycin KW - antibiotics KW - magnetic resonance imaging KW - emulsions KW - bioluminescence imaging KW - in vivo imaging Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130113 VL - 8 IS - 5 ER - TY - JOUR A1 - Hertlein, Tobias A1 - Sturm, Volker A1 - Kircher, Stefan A1 - Basse-Lüsebrink, Thomas A1 - Haddad, Daniel A1 - Ohlsen, Knut A1 - Jakob, Peter T1 - Visualization of Abscess Formation in a Murine Thigh Infection Model of \(Staphylococcus\) \(aureus\) by (19)F-Magnetic Resonance Imaging (MRI) JF - PLoS ONE N2 - Background: During the last years, (19)F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce (19)F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis. KW - Soft-tissue infection KW - In-vivo KW - Iron-oxide KW - F-19 MRI KW - Inflammation KW - Particles KW - Tracking KW - Lesions KW - Images KW - Rats Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142846 VL - 6 IS - 3 ER - TY - JOUR A1 - Hung, Sophia A1 - Dreher, Liane A1 - Diessner, Joachim A1 - Schwarz, Stefan A1 - Ohlsen, Knut A1 - Hertlein, Tobias T1 - MRSA infection in the thigh muscle leads to systemic disease, strong inflammation, and loss of human monocytes in humanized mice JF - Frontiers in Immunology N2 - MRSA (Methicillin-resistant Staphylococcus aureus) is the second-leading cause of deaths by antibiotic-resistant bacteria globally, with more than 100,000 attributable deaths annually. Despite the high urgency to develop a vaccine to control this pathogen, all clinical trials with pre-clinically effective candidates failed so far. The recent development of “humanized” mice might help to edge the pre-clinical evaluation closer to the clinical situation and thus close this gap. We infected humanized NSG mice (huNSG: (NOD)-scid IL2R\(_γ\)\(^{null}\) mice engrafted with human CD34+ hematopoietic stem cells) locally with S. aureus USA300 LAC* lux into the thigh muscle in order to investigate the human immune response to acute and chronic infection. These mice proved not only to be more susceptible to MRSA infection than wild-type or “murinized” mice, but displayed furthermore inferior survival and signs of systemic infection in an otherwise localized infection model. The rate of humanization correlated directly with the severity of disease and survival of the mice. Human and murine cytokine levels in blood and at the primary site of infection were strongly elevated in huNSG mice compared to all control groups. And importantly, differences in human and murine immune cell lineages surfaced during the infection, with human monocyte and B cell numbers in blood and bone marrow being significantly reduced at the later time point of infection. Murine monocytes in contrast behaved conversely by increasing cell numbers. This study demonstrates significant differences in the in vivo behavior of human and murine cells towards S. aureus infection, which might help to sharpen the translational potential of pre-clinical models for future therapeutic approaches. KW - humanized mice KW - MRSA - methicillin-resistant Staphylococcus aureus KW - monocyte KW - bacterial infection model KW - inflammation KW - NSG KW - staphylocccal infection/epidemiology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-278050 SN - 1664-3224 VL - 13 ER - TY - JOUR A1 - Jakob, Peter A1 - Hertlein, Tobias A1 - Sturm, Volker A1 - Kircher, Stefan A1 - Basse-Lüsebrink, Thomas A1 - Haddad, Daniel A1 - Ohlsen, Knut T1 - Visualization of Abscess Formation in a Murine Thigh Infection Model of Staphylococcus aureus by 19F-Magnetic Resonance Imaging (MRI) N2 - Background: During the last years, 19F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent based MRI methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce 19F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis. KW - Staphylococcus aureus Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74994 ER - TY - JOUR A1 - Mielich-Süss, Benjamin A1 - Wagner, Rabea M. A1 - Mietrach, Nicole A1 - Hertlein, Tobias A1 - Marincola, Gabriella A1 - Ohlsen, Knut A1 - Geibel, Sebastian A1 - Lopez, Daniel T1 - Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus JF - PLoS Pathogens N2 - Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM), a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS) as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen. KW - flotillin KW - scaffold protein KW - Staphylococcus aureus KW - type VII secretion system Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170035 VL - 13 IS - 11 ER - TY - JOUR A1 - Mühlberg, Eric A1 - Umstätter, Florian A1 - Domhan, Cornelius A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Krause, Andreas A1 - Kleist, Christian A1 - Beijer, Barbro A1 - Zimmermann, Stefan A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci JF - Pharmaceuticals N2 - Multidrug-resistant bacteria represent one of the most important health care problems worldwide. While there are numerous drugs available for standard therapy, there are only a few compounds capable of serving as a last resort for severe infections. Therefore, approaches to control multidrug-resistant bacteria must be implemented. Here, a strategy of reactivating the established glycopeptide antibiotic vancomycin by structural modification with polycationic peptides and subsequent fatty acid conjugation to overcome the resistance of multidrug-resistant bacteria was followed. This study especially focuses on the structure–activity relationship, depending on the modification site and fatty acid chain length. The synthesized conjugates showed high antimicrobial potential on vancomycin-resistant enterococci. We were able to demonstrate that the antimicrobial activity of the vancomycin-lipopeptide conjugates depends on the chain length of the attached fatty acid. All conjugates showed good cytocompatibility in vitro and in vivo. Radiolabeling enabled the in vivo determination of pharmacokinetics in Wistar rats by molecular imaging and biodistribution studies. An improved biodistribution profile in comparison to unmodified vancomycin was observed. While vancomycin is rapidly excreted by the kidneys, the most potent conjugate shows a hepatobiliary excretion profile. In conclusion, these results demonstrate the potential of the structural modification of already established antibiotics to provide highly active compounds for tackling multidrug-resistant bacteria. KW - antibiotics KW - multidrug-resistant bacteria KW - enterococci KW - vancomycin KW - structural modification KW - fatty acids KW - polycationic peptides Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205879 SN - 1424-8247 VL - 13 IS - 6 ER - TY - JOUR A1 - Nguyen, Minh Thu A1 - Kraft, Beatrice A1 - Yu, Wenqi A1 - Demicrioglu, Dogan Doruk A1 - Hertlein, Tobias A1 - Burian, Marc A1 - Schmaler, Mathias A1 - Boller, Klaus A1 - Bekeredjian-Ding, Isabelle A1 - Ohlsen, Knut A1 - Schittek, Birgit A1 - Götz, Friedrich T1 - The vSa\(\alpha\) Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells JF - PLoS Pathogens N2 - All Staphylococcus aureus genomes contain a genomic island, which is termed vSa\(\alpha\) and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the vSa\(\alpha\) islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I vSa\(\alpha\) island. Since the contribution of the lpl gene cluster encoded in the vSa\(\alpha\) island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the vSa\(\alpha\) encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes high-lights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor. KW - resistant Staphylococcus-aureus KW - bacterial lipoproteins KW - internalization KW - evolution KW - fibronectin-binding protein KW - toll-like receptor 2 KW - epithelial cells KW - genome sequence KW - activation KW - mechanisms Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151856 VL - 11 IS - 6 ER - TY - JOUR A1 - Seethaler, Marius A1 - Hertlein, Tobias A1 - Hopke, Elisa A1 - Köhling, Paul A1 - Ohlsen, Knut A1 - Lalk, Michael A1 - Hilgeroth, Andreas T1 - Novel effective fluorinated benzothiophene-indole hybrid antibacterials against S. aureus and MRSA strains JF - Pharmaceuticals N2 - Increasing antibacterial drug resistance threatens global health, unfortunately, however, efforts to find novel antibacterial agents have been scaled back by the pharmaceutical industry due to concerns about a poor return on investment. Nevertheless, there is an urgent need to find novel antibacterial compounds to combat antibacterial drug resistance. The synthesis of novel drugs from natural sources is mostly cost-intensive due to those drugs’ complicated structures. Therefore, it is necessary to find novel antibacterials by simple synthesis to become more attractive for industrial production. We succeeded in the discovery of four antibacterial compound (sub)classes accessible in a simple one-pot reaction based on fluorinated benzothiophene-indole hybrids. They have been evaluated against various S. aureus and MRSA strains. Structure- and substituent-dependent activities have been found within the (sub)classes and promising lead compounds have been identified. In addition, bacterial pyruvate kinase was found to be the molecular target of the active compounds. In conclusion, simple one-pot synthesis of benzothiophene-indoles represents a promising strategy for the search of novel antimicrobial compounds. KW - antibacterial drug resistance KW - structure activity KW - synthesis KW - inhibition KW - substituent Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288253 SN - 1424-8247 VL - 15 IS - 9 ER - TY - JOUR A1 - Seethaler, Marius A1 - Hertlein, Tobias A1 - Wecklein, Björn A1 - Ymeraj, Alba A1 - Ohlsen, Knut A1 - Lalk, Michael A1 - Hilgeroth, Andreas T1 - Novel small-molecule antibacterials against Gram-positive pathogens of Staphylococcus and Enterococcus species JF - Antibiotics N2 - Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials. KW - antibacterial activity KW - synthesis KW - substituent KW - structure-activity KW - inhibition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193130 SN - 2079-6382 VL - 8 IS - 4 ER - TY - JOUR A1 - Selle, Martina A1 - Hertlein, Tobias A1 - Oesterreich, Babett A1 - Klemm, Theresa A1 - Kloppot, Peggy A1 - Müller, Elke A1 - Ehricht, Ralf A1 - Stentzel, Sebastian A1 - Bröker, Barbara M. A1 - Engelmann, Susanne A1 - Ohlsen, Knut T1 - Global antibody response to Staphylococcus aureus live-cell vaccination JF - Scientific Reports N2 - The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. KW - pathogens KW - bacterial infection KW - cell vaccines KW - Staphylococcus aureus Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181245 VL - 6 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Boyny, Aziza A1 - Hertlein, Tobias A1 - Sroka, Aneta A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kessie, David A1 - Mehling, Helene A1 - Potempa, Jan A1 - Ohlsen, Knut A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A. KW - Staphylococcus aureus KW - Staphylococcal infection KW - host cells KW - HeLa cells KW - cytotoxicity KW - intracellular pathogens KW - apoptosis KW - epithelial cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263908 VL - 17 IS - 9 ER - TY - JOUR A1 - Umstätter, Florian A1 - Domhan, Cornelius A1 - Hertlein, Tobias A1 - Ohlsen, Knut A1 - Mühlberg, Eric A1 - Kleist, Christian A1 - Zimmermann, Stefan A1 - Beijer, Barbro A1 - Klika, Karel D. A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides JF - Angewandte Chemie International Edition N2 - Multidrug‐resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site‐specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000‐fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d‐Ala‐d‐Ala revealed a mode of action beyond inhibition of cell‐wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics. KW - antibiotics KW - bacterial resistance KW - glycopeptide antibiotics KW - peptide conjugates KW - vancomycin Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215550 VL - 59 IS - 23 SP - 8823 EP - 8827 ER - TY - JOUR A1 - Umstätter, Florian A1 - Werner, Julia A1 - Zerlin, Leah A1 - Mühlberg, Eric A1 - Kleist, Christian A1 - Klika, Karel D. A1 - Hertlein, Tobias A1 - Beijer, Barbro A1 - Domhan, Cornelius A1 - Zimmermann, Stefan A1 - Ohlsen, Knut A1 - Haberkorn, Uwe A1 - Mier, Walter A1 - Uhl, Philipp T1 - Impact of linker modification and PEGylation of vancomycin conjugates on structure-activity relationships and pharmacokinetics JF - Pharmaceuticals N2 - As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity. KW - glycopeptide antibiotics KW - antimicrobial resistance KW - vancomycin KW - polycationic peptides KW - linker influence KW - pharmacokinetics KW - PEGylation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-255197 SN - 1424-8247 VL - 15 IS - 2 ER -