TY - JOUR A1 - Lausch, Angela A1 - Borg, Erik A1 - Bumberger, Jan A1 - Dietrich, Peter A1 - Heurich, Marco A1 - Huth, Andreas A1 - Jung, András A1 - Klenke, Reinhard A1 - Knapp, Sonja A1 - Mollenhauer, Hannes A1 - Paasche, Hendrik A1 - Paulheim, Heiko A1 - Pause, Marion A1 - Schweitzer, Christian A1 - Schmulius, Christiane A1 - Settele, Josef A1 - Skidmore, Andrew K. A1 - Wegmann, Martin A1 - Zacharias, Steffen A1 - Kirsten, Toralf A1 - Schaepman, Michael E. T1 - Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches JF - Remote Sensing N2 - Forest ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our forest ecosystems as well as their ecosystem functions. The relationships between drivers, stress, and ecosystem functions in forest ecosystems are complex, multi-faceted, and often non-linear, and yet forest managers, decision makers, and politicians need to be able to make rapid decisions that are data-driven and based on short and long-term monitoring information, complex modeling, and analysis approaches. A huge number of long-standing and standardized forest health inventory approaches already exist, and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis, and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. Therefore, this paper discusses and presents in detail five sets of requirements, including their relevance, necessity, and the possible solutions that would be necessary for establishing a feasible multi-source forest health monitoring network for the 21st century. Namely, these requirements are: (1) understanding the effects of multiple stressors on forest health; (2) using remote sensing (RS) approaches to monitor forest health; (3) coupling different monitoring approaches; (4) using data science as a bridge between complex and multidimensional big forest health (FH) data; and (5) a future multi-source forest health monitoring network. It became apparent that no existing monitoring approach, technique, model, or platform is sufficient on its own to monitor, model, forecast, or assess forest health and its resilience. In order to advance the development of a multi-source forest health monitoring network, we argue that in order to gain a better understanding of forest health in our complex world, it would be conducive to implement the concepts of data science with the components: (i) digitalization; (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles; (iii) Semantic Web; (iv) proof, trust, and uncertainties; (v) tools for data science analysis; and (vi) easy tools for scientists, data managers, and stakeholders for decision-making support. KW - forest health KW - in situ forest monitoring KW - remote sensing KW - data science KW - digitalization KW - big data KW - semantic web KW - linked open data KW - FAIR KW - multi-source forest health monitoring network Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197691 SN - 2072-4292 VL - 10 IS - 7 ER - TY - JOUR A1 - Latifi, Hooman A1 - Holzwarth, Stefanie A1 - Skidmore, Andrew A1 - Brůna, Josef A1 - Červenka, Jaroslav A1 - Darvishzadeh, Roshanak A1 - Hais, Martin A1 - Heiden, Uta A1 - Homolová, Lucie A1 - Krzystek, Peter A1 - Schneider, Thomas A1 - Starý, Martin A1 - Wang, Tiejun A1 - Müller, Jörg A1 - Heurich, Marco T1 - A laboratory for conceiving Essential Biodiversity Variables (EBVs)—The ‘Data pool initiative for the Bohemian Forest Ecosystem’ JF - Methods in Ecology and Evolution N2 - Effects of climate change‐induced events on forest ecosystem dynamics of composition, function and structure call for increased long‐term, interdisciplinary and integrated research on biodiversity indicators, in particular within strictly protected areas with extensive non‐intervention zones. The long‐established concept of forest supersites generally relies on long‐term funds from national agencies and goes beyond the logistic and financial capabilities of state‐ or region‐wide protected area administrations, universities and research institutes. We introduce the concept of data pools as a smaller‐scale, user‐driven and reasonable alternative to co‐develop remote sensing and forest ecosystem science to validated products, biodiversity indicators and management plans. We demonstrate this concept with the Bohemian Forest Ecosystem Data Pool, which has been established as an interdisciplinary, international data pool within the strictly protected Bavarian Forest and Šumava National Parks and currently comprises 10 active partners. We demonstrate how the structure and impact of the data pool differs from comparable cases. We assessed the international influence and visibility of the data pool with the help of a systematic literature search and a brief analysis of the results. Results primarily suggest an increase in the impact and visibility of published material during the life span of the data pool, with highest visibilities achieved by research conducted on leaf traits, vegetation phenology and 3D‐based forest inventory. We conclude that the data pool results in an efficient contribution to the concept of global biodiversity observatory by evolving towards a training platform, functioning as a pool of data and algorithms, directly communicating with management for implementation and providing test fields for feasibility studies on earth observation missions. KW - bohemian forest ecosystem KW - data pool KW - forest ecosystem science KW - remote sensing KW - remote sensing‐enabled essential biodiversity variables Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262743 VL - 12 IS - 11 ER - TY - JOUR A1 - Latifi, Hooman A1 - Heurich, Marco T1 - Multi-scale remote sensing-assisted forest inventory: a glimpse of the state-of-the-art and future prospects JF - Remote Sensing N2 - Advances in remote inventory and analysis of forest resources during the last decade have reached a level to be now considered as a crucial complement, if not a surrogate, to the long-existing field-based methods. This is mostly reflected in not only the use of multiple-band new active and passive remote sensing data for forest inventory, but also in the methodic and algorithmic developments and/or adoptions that aim at maximizing the predictive or calibration performances, thereby minimizing both random and systematic errors, in particular for multi-scale spatial domains. With this in mind, this editorial note wraps up the recently-published Remote Sensing special issue “Remote Sensing-Based Forest Inventories from Landscape to Global Scale”, which hosted a set of state-of-the-art experiments on remotely sensed inventory of forest resources conducted by a number of prominent researchers worldwide. KW - remote sensing KW - forest resources inventory KW - spatial scale Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197358 SN - 2072-4292 VL - 11 IS - 11 ER -