TY - JOUR A1 - Lindner, Thomas A1 - Giesel, Frederik L. A1 - Kratochwil, Clemens A1 - Serfling, Sebastian E. T1 - Radioligands Targeting Fibroblast Activation Protein (FAP) JF - Cancers N2 - Simple Summary FAP-targeted radiotracers, recently introduced in cancer treatment, accumulate in Cancer-Associated Fibroblasts (CAFs). CAFs are present in tumor lesions but do not correspond to genuine cancer cells, although they behave in an abnormal and disease-promoting manner. One of their characteristic features, the expression of the surface protein FAP, can be utilized to discriminate between cancerous and healthy tissues. By the choice of an appropriate radionuclide, FAP-targeted tracers can be used for imaging or therapy in many cancer types. Therefore, the first successful application of FAP-targeted imaging has led to an enormous and growing interest in nuclear medicine and radiopharmacy. Abstract Targeting fibroblast activation protein (FAP) in cancer-associated fibroblasts (CAFs) has attracted significant attention in nuclear medicine. Since these cells are present in most cancerous tissues and FAP is rarely expressed in healthy tissues, anti-FAP tracers have a potential as pan-tumor agents. Compared to the standard tumor tracer [\(^{18}\)F]FDG, these tracers show better tumor-to-background ratios (TBR) in many indications. Unlike [\(^{18}\)F]FDG, FAP-targeted tracers do not require exhausting preparations, such as dietary restrictions on the part of the patient, and offer the possibility of radioligand therapy (RLT) in a theragnostic approach. Although a radiolabeled antibody was clinically investigated as early as the 1990s, the breakthrough event for FAP-targeting in nuclear medicine was the introduction and clinical application of the so-called FAPI-tracers in 2018. From then, the development and application of FAP-targeted tracers became hot topics for the radiopharmaceutical and nuclear medicine community, and attracted the interest of pharmaceutical companies. The aim of this review is to provide a comprehensive overview of the development of FAP-targeted radiopharmaceuticals and their application in nuclear medicine. KW - FAP KW - cancer associated fibroblasts KW - radiopharmaceuticals KW - drug discovery Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250121 SN - 2072-6694 VL - 13 IS - 22 ER - TY - JOUR A1 - Giesel, Frederik L. A1 - Kratochwil, Clemens A1 - Schlittenhardt, Joel A1 - Dendl, Katharina A1 - Eiber, Matthias A1 - Staudinger, Fabian A1 - Kessler, Lukas A1 - Fendler, Wolfgang P. A1 - Lindner, Thomas A1 - Koerber, Stefan A. A1 - Cardinale, Jens A1 - Sennung, David A1 - Roehrich, Manuel A1 - Debus, Juergen A1 - Sathekge, Mike A1 - Haberkorn, Uwe A1 - Calais, Jeremie A1 - Serfling, Sebastian A1 - Buck, Andreas L. T1 - Head-to-head intra-individual comparison of biodistribution and tumor uptake of \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT in cancer patients JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose FAPI ligands (fibroblast activation protein inhibitor), a novel class of radiotracers for PET/CT imaging, demonstrated in previous studies rapid and high tumor uptake. The purpose of this study is the head-to-head intra-individual comparison of \(^{68}\)Ga-FAPI versus standard-of-care \(^{18}\)F-FDG in PET/CT in organ biodistribution and tumor uptake in patients with various cancers. Material and Methods This international retrospective multicenter analysis included PET/CT data from 71 patients from 6 centers who underwent both \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG PET/CT within a median time interval of 10 days (range 1–89 days). Volumes of interest (VOIs) were manually drawn in normal organs and tumor lesions to quantify tracer uptake by SUVmax and SUVmean. Furthermore, tumor-to-background ratios (TBR) were generated (SUVmax tumor/ SUVmax organ). Results A total of 71 patients were studied of, which 28 were female and 43 male (median age 60). In 41 of 71 patients, the primary tumor was present. Forty-three of 71 patients exhibited 162 metastatic lesions. \(^{68}\)Ga-FAPI uptake in primary tumors and metastases was comparable to 18F-FDG in most cases. The SUVmax was significantly lower for \(^{68}\)Ga-FAPI than \(^{18}\)F-FDG in background tissues such as the brain, oral mucosa, myocardium, blood pool, liver, pancreas, and colon. Thus, \(^{68}\)Ga-FAPI TBRs were significantly higher than 18F-FDG TBRs in some sites, including liver and bone metastases. Conclusion Quantitative tumor uptake is comparable between \(^{68}\)Ga-FAPI and \(^{18}\)F-FDG, but lower background uptake in most normal organs results in equal or higher TBRs for \(^{68}\)Ga-FAPI. Thus, \(^{68}\)Ga-FAPI PET/CT may yield improved diagnostic information in various cancers and especially in tumor locations with high physiological \(^{18}\)F-FDG uptake. KW - FAPI PET/CT KW - FDG PET/CT KW - cancer-associated fibroblast KW - various cancer diseases Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-307252 SN - 1619-7070 SN - 1619-7089 VL - 48 IS - 13 ER -