TY - JOUR A1 - Würthner, Frank A1 - Noll, Niklas T1 - A Calix[4]arene‐Based Cyclic Dinuclear Ruthenium Complex for Light‐Driven Catalytic Water Oxidation JF - Chemistry - A European Journal N2 - A cyclic dinuclear ruthenium(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) complex equipped with oligo(ethylene glycol)‐functionalized axial calix[4]arene ligands has been synthesized for homogenous catalytic water oxidation. This novel Ru(bda) macrocycle showed significantly increased catalytic activity in chemical and photocatalytic water oxidation compared to the archetype mononuclear reference [Ru(bda)(pic)\(_2\)]. Kinetic investigations, including kinetic isotope effect studies, disclosed a unimolecular water nucleophilic attack mechanism of this novel dinuclear water oxidation catalyst (WOC) under the involvement of the second coordination sphere. Photocatalytic water oxidation with this cyclic dinuclear Ru complex using [Ru(bpy)\(_3\)]Cl\(_2\) as a standard photosensitizer revealed a turnover frequency of 15.5 s\(^{−1}\) and a turnover number of 460. This so far highest photocatalytic performance reported for a Ru(bda) complex underlines the potential of this water‐soluble WOC for artificial photosynthesis. KW - water KW - oxidation KW - ruthenium KW - dinuclear KW - catalytic KW - artificial photosynthesis KW - homogenous catalysis KW - photocatalysis KW - ruthenium complexes KW - water oxidation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230030 UR - https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202004486 VL - 27 IS - 1 ER - TY - JOUR A1 - Würthner, Frank A1 - Meza-Chincha, Ana-Lucia A1 - Schindler, Dorothee A1 - Natali, Mirco T1 - Effects of Photosensitizers and Reaction Media on Light‐Driven Water Oxidation with Trinuclear Ruthenium Macrocycles JF - ChemPhotoChem N2 - Photocatalytic water oxidation is a promising process for the production of solar fuels and the elucidation of factors that influence this process is of high significance. Thus, we have studied in detail light‐driven water oxidation with a trinuclear Ru(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) macrocycle MC3 and its highly water soluble derivative m‐CH\(_2\)NMe\(_2\)‐MC3 using a series of ruthenium tris(bipyridine) complexes as photosensitizers under varied reaction conditions. Our investigations showed that the catalytic activities of these Ru macrocycles are significantly affected by the choice of photosensitizer (PS) and reaction media, in addition to buffer concentration, light intensity and concentration of the sensitizer. Our steady‐state and transient spectroscopic studies revealed that the photocatalytic performance of trinuclear Ru(bda) macrocycles is not limited by their intrinsic catalytic activities but rather by the efficiency of photogeneration of oxidant PS\(^+\) and its ability to act as an oxidizing agent to the catalysts as both are strongly dependent on the choice of photosensitizer and the amount of employed organic co‐solvent. KW - photosenitizers KW - water oxidation KW - ruthenium complexes KW - macrocycles KW - trinuclear KW - homogenous catalysis KW - photocatalysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230116 VL - 5 IS - 2 ER - TY - JOUR A1 - Weh, Manuel A1 - Rühe, Jessica A1 - Herbert, Benedikt A1 - Krause, Ana‐Maria A1 - Würthner, Frank T1 - Deracemization of Carbohelicenes by a Chiral Perylene Bisimide Cyclophane Template Catalyst JF - Angewandte Chemie International Edition N2 - Deracemization describes the conversion of a racemic mixture of a chiral molecule into an enantioenriched mixture or an enantiopure compound without structural modifications. Herein, we report an inherently chiral perylene bisimide (PBI) cyclophane whose chiral pocket is capable of transforming a racemic mixture of [5]‐helicene into an enantioenriched mixture with an enantiomeric excess of 66 %. UV/Vis and fluorescence titration studies reveal this cyclophane host composed of two helically twisted PBI dyes has high binding affinities for the respective homochiral carbohelicene guests, with outstanding binding constants of up to 3.9×10\(^{10}\) m\(^{-1}\) for [4]‐helicene. 2D NMR studies and single‐crystal X‐ray analysis demonstrate that the observed strong and enantioselective binding of homochiral carbohelicenes and the successful template‐catalyzed deracemization of [5]‐helicene can be explained by the enzyme‐like perfect shape complementarity of the macrocyclic supramolecular host. KW - chirality transfer KW - cyclophanes KW - deracemization KW - dyes/pigments KW - template catalysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244787 VL - 60 IS - 28 SP - 15323 EP - 15327 ER - TY - JOUR A1 - Shen, Chia-An A1 - Bialas, David A1 - Hecht, Markus A1 - Stepanenko, Vladimir A1 - Sugiyasu, Kazunori A1 - Würthner, Frank T1 - Polymorphism in squaraine dye aggregates by self-assembly pathway differentiation: panchromatic tubular dye nanorods versus J-aggregate nanosheets JF - Angewandte Chemie International Edition N2 - A bis(squaraine) dye equipped with alkyl and oligoethyleneglycol chains was synthesized by connecting two dicyanomethylene substituted squaraine dyes with a phenylene spacer unit. The aggregation behavior of this bis(squaraine) was investigated in non-polar toluene/tetrachloroethane (98:2) solvent mixture, which revealed competing cooperative self-assembly pathways into two supramolecular polymorphs with entirely different packing structures and UV/Vis/NIR absorption properties. The self-assembly pathway can be controlled by the cooling rate from a heated solution of the monomers. For both polymorphs, quasi-equilibrium conditions between monomers and the respective aggregates can be established to derive thermodynamic parameters and insights into the self-assembly mechanisms. AFM measurements revealed a nanosheet structure with a height of 2 nm for the thermodynamically more stable polymorph and a tubular nanorod structure with a helical pitch of 13 nm and a diameter of 5 nm for the kinetically favored polymorph. Together with wide angle X-ray scattering measurements, packing models were derived: the thermodynamic polymorph consists of brick-work type nanosheets that exhibit red-shifted absorption bands as typical for J-aggregates, while the nanorod polymorph consists of eight supramolecular polymer strands of the bis(squaraine) intertwined to form a chimney-type tubular structure. The absorption of this aggregate covers a large spectral range from 550 to 875 nm, which cannot be rationalized by the conventional exciton theory. By applying the Essential States Model and considering intermolecular charge transfer, the aggregate spectrum was adequately reproduced, revealing that the broad absorption spectrum is due to pronounced donor-acceptor overlap within the bis(squaraine) nanorods. The latter is also responsible for the pronounced bathochromic shift observed for the nanosheet structure as a result of the slip-stacked arranged squaraine chromophores. KW - organic chemistry KW - supramolecular polymers KW - nanorods and nanosheets KW - polymorphism KW - squaraine dyes KW - cooperative self-assembly Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256443 IS - 21 ET - 60 ER - TY - JOUR A1 - Schindler, Dorothee A1 - Meza-Chincha, Anna-Lucia A1 - Roth, Maximilian A1 - Würthner, Frank T1 - Structure-Activity Relationship for Di- up to Tetranuclear Macrocyclic Ruthenium Catalysts in Homogeneous Water Oxidation JF - Chemistry—A European Journal N2 - Two di- and tetranuclear Ru(bda) (bda: 2,2′-bipyridine-6,6′-dicarboxylate) macrocyclic complexes were synthesized and their catalytic activities in chemical and photochemical water oxidation investigated in a comparative manner to our previously reported trinuclear congener. Our studies have shown that the catalytic activities of this homologous series of multinuclear Ru(bda) macrocycles in homogeneous water oxidation are dependent on their size, exhibiting highest efficiencies for the largest tetranuclear catalyst. The turnover frequencies (TOFs) have increased from di- to tetranuclear macrocycles not only per catalyst molecule but more importantly also per Ru unit with TOF of 6 \(^{-1}\) to 8.7 \(^{-1}\) and 10.5 s\(^{-1}\) in chemical and 0.6 s\(^{-1}\) to 3.3 \(^{-1}\) and 5.8 \(^{-1}\) in photochemical water oxidation per Ru unit, respectively. Thus, for the first time, a clear structure–activity relationship could be established for this novel class of macrocyclic water oxidation catalysts. KW - homogeneous catalysis KW - water oxidation KW - ruthenium catalysts KW - renewable fuels KW - metallomacrocycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256792 VL - 27 IS - 68 ER - TY - JOUR A1 - Schembri, Tim A1 - Kim, Jin Hong A1 - Liess, Andreas A1 - Stepanenko, Vladimir A1 - Stolte, Matthias A1 - Würthner, Frank T1 - Semitransparent Layers of Social Self‐Sorting Merocyanine Dyes for Ultranarrow Bandwidth Organic Photodiodes JF - Advanced Optical Materials N2 - Two dipolar merocyanines consisting of the same π‐conjugated chromophore but different alkyl substituents adopt very different packing arrangements in their respective solid state with either H‐ or J‐type exciton coupling, leading to ultranarrow absorption bands at 477 and 750 nm, respectively, due to exchange narrowing. The social self‐sorting behavior of these push‐pull chromophores in their mixed thin films is evaluated and the impact on morphology as well as opto‐electronical properties is determined. The implementation of this well‐tuned two‐component material with tailored optical features allows to optimize planar heterojunction organic photodiodes with fullerene ​(C\(_{60}\)) with either dual or single wavelength selectivity in the blue and NIR spectral range with ultranarrow bandwidths of only 11 nm (200 cm\(^{-1}\)) and an external quantum efficiency of up to 18% at 754 nm under 0 V bias. The application of these photodiodes as low‐power consuming heart rate monitors is demonstrated by a reflectance‐mode photoplethysmography (PPG) sensor. KW - exciton coupling KW - merocyanine dyes/pigments KW - narrow bandwidth KW - organic photodiodes KW - social self‐sorting Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244762 VL - 9 IS - 15 ER - TY - JOUR A1 - Renner, Rebecca A1 - Mahlmeister, Bernhard A1 - Anhalt, Olga A1 - Stolte, Matthias A1 - Würthner, Frank T1 - Chiral Perylene Bisimide Dyes by Interlocked Arene Substituents in the Bay Area JF - Chemistry - A European Journal N2 - A series of perylene bisimide (PBI) dyes bearing various aryl substituents in 1,6,7,12 bay positions has been synthesized by Suzuki cross-coupling reaction. These molecules exhibit an exceptionally large and conformationally fixed twist angle of the PBI π-core due to the high steric congestion imparted by the aryl substituents in bay positions. Single crystal X-ray analyses of phenyl-, naphthyl- and pyrenyl-functionalized PBIs reveal interlocked π-π-stacking motifs, leading to conformational chirality and the possibility for the isolation of enantiopure atropoisomers by semipreparative HPLC. The interlocked arrangement endows these molecules with substantial racemization barriers of about 120 kJ mol\(^{−1}\) for the tetraphenyl- and tetra-2-naphthyl-substituted derivatives, which is among the highest racemization barriers for axially chiral PBIs. Variable temperature NMR studies reveal the presence of a multitude of up to fourteen conformational isomers in solution that are interconverted via smaller activation barriers of about 65 kJ mol\(^{−1}\). The redox and optical properties of these core-twisted PBIs have been characterized by cyclic voltammetry, UV/Vis/NIR and fluorescence spectroscopy and their respective atropo-enantiomers were further characterized by circular dichroism (CD) and circular polarized luminescence (CPL) spectroscopy. KW - Suzuki coupling KW - perylenebisimide dyes KW - circular polarized luminescence KW - chirality Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249070 VL - 27 IS - 46 SP - 11997 EP - 12006 ER - TY - JOUR A1 - Kim, Jin Hong A1 - Liess, Andreas A1 - Stolte, Matthias A1 - Krause, Ana-Maria A1 - Stepanenko, Vladimir A1 - Zhong, Chuwei A1 - Bialas, David A1 - Spano, Frank A1 - Würthner, Frank T1 - An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye JF - Advanced Materials N2 - A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications. KW - squaraine dyes KW - crystal engineering KW - J-aggregates KW - near-infrared sensitivity KW - organic photodiodes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256374 VL - 33 IS - 26 ER -