TY - JOUR A1 - Meir, Michael A1 - Kannapin, Felix A1 - Diefenbacher, Markus A1 - Ghoreishi, Yalda A1 - Kollmann, Catherine A1 - Flemming, Sven A1 - Germer, Christoph-Thomas A1 - Waschke, Jens A1 - Leven, Patrick A1 - Schneider, Reiner A1 - Wehner, Sven A1 - Burkard, Natalie A1 - Schlegel, Nicolas T1 - Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent JF - International Journal of Molecular Sciences N2 - Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAP\(^{cre}\) x Ai14\(^{floxed}\) mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor. KW - enteric glial cells KW - neurotrophic factors KW - intestinal epithelial barrier KW - GDNF5 KW - RET6 KW - inflammatory bowel disease KW - enteric nervous system KW - gut barrier KW - intercellular junctions Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258913 SN - 1422-0067 VL - 22 IS - 4 ER - TY - JOUR A1 - Burkard, Natalie A1 - Meir, Michael A1 - Kannapin, Felix A1 - Otto, Christoph A1 - Petzke, Maximilian A1 - Germer, Christoph-Thomas A1 - Waschke, Jens A1 - Schlegel, Nicolas T1 - Desmoglein2 Regulates Claudin2 Expression by Sequestering PI-3-Kinase in Intestinal Epithelial Cells JF - Frontiers in Immunology N2 - Inflammation-induced reduction of intestinal desmosomal cadherin Desmoglein 2 (Dsg2) is linked to changes of tight junctions (TJ) leading to impaired intestinal epithelial barrier (IEB) function by undefined mechanisms. We characterized the interplay between loss of Dsg2 and upregulation of pore-forming TJ protein Claudin2. Intraperitoneal application of Dsg2-stablising Tandem peptide (TP) attenuated impaired IEB function, reduction of Dsg2 and increased Claudin2 in DSS-induced colitis in C57Bl/6 mice. TP blocked loss of Dsg2-mediated adhesion and upregulation of Claudin2 in Caco2 cells challenged with TNFα. In Dsg2-deficient Caco2 cells basal expression of Claudin2 was increased which was paralleled by reduced transepithelial electrical resistance and by augmented phosphorylation of AKT\(^{Ser473}\) under basal conditions. Inhibition of phosphoinositid-3-kinase proved that PI-3-kinase/AKT-signaling is critical to upregulate Claudin2. In immunostaining PI-3-kinase dissociated from Dsg2 under inflammatory conditions. Immunoprecipitations and proximity ligation assays confirmed a direct interaction of Dsg2 and PI-3-kinase which was abrogated following TNFα application. In summary, Dsg2 regulates Claudin2 expression by sequestering PI-3-kinase to the cell borders in intestinal epithelium. KW - Claudin2 KW - Dsg2 KW - inflammation KW - intestinal barrier KW - PI-3-kinase KW - inflammatory bowel disease KW - desmosome KW - tight junction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-247059 SN - 1664-3224 VL - 12 ER -