TY - THES A1 - Seiberlich, Nicole T1 - Advances in Non-Cartesian Parallel Magnetic Resonance Imaging using the GRAPPA Operator T1 - Fortschritte in der nicht-kartesischen parallelen Magnetresonanztomographie mittels des GRAPPA-Operators N2 - Magnetic Resonance Imaging (MRI) is an imaging modality which provides anatomical or functional images of the human body with variable contrasts in an arbitrarily positioned slice without the need for ionizing radiation. In MRI, data are not acquired directly, but in the reciprocal image space (otherwise known as k-space) through the application of spatially variable magnetic field gradients. The k-space is made up of a grid of data points which are generally acquired in a line-by-line fashion (Cartesian imaging). After the acquisition, the k-space data are transformed into the image domain using the Fast Fourier Transformation (FFT). However, the acquisition of data is not limited to the rectilinear Cartesian sampling scheme described above. Non-Cartesian acquisitions, where the data are collected along exotic trajectories, such as radial and spiral, have been shown to be beneficial in a number of applications. However, despite their additional properties and potential advantages, working with non-Cartesian data can be complicated. The primary difficulty is that non-Cartesian trajectories are made up of points which do not fall on a Cartesian grid, and a simple and fast FFT algorithm cannot be employed to reconstruct images from non-Cartesian data. In order to create an image, the non-Cartesian data are generally resampled on a Cartesian grid, an operation known as gridding, before the FFT is performed. Another challenge for non-Cartesian imaging is the combination of unusual trajectories with parallel imaging. This thesis has presented several new non-Cartesian parallel imaging methods which simplify both gridding and the reconstruction of images from undersampled data. In Chapter 4, a novel approach which uses the concepts of parallel imaging to grid data sampled along a non-Cartesian trajectory called GRAPPA Operator Gridding (GROG) is described. GROG shifts any acquired k-space data point to its nearest Cartesian location, thereby converting non-Cartesian to Cartesian data. The only requirements for GROG are a multi-channel acquisition and a calibration dataset for the determination of the GROG weights. Chapter 5 discusses an extension of GRAPPA Operator Gridding, namely Self-Calibrating GRAPPA Operator Gridding (SC-GROG). SC-GROG is a method by which non-Cartesian data can be gridded using spatial information from a multi-channel coil array without the need for an additional calibration dataset, as required in standard GROG. Although GROG can be used to grid undersampled datasets, it is important to note that this method uses parallel imaging only for gridding, and not to reconstruct artifact-free images from undersampled data. Chapter 6 introduces a simple, novel method for performing modified Cartesian GRAPPA reconstructions on undersampled non-Cartesian k-space data gridded using GROG to arrive at a non-aliased image. Because the undersampled non-Cartesian data cannot be reconstructed using a single GRAPPA kernel, several Cartesian patterns are selected for the reconstruction. Finally, Chapter 7 discusses a novel method of using GROG to mimic the bunched phase encoding acquisition (BPE) scheme. In MRI, it is generally assumed that an artifact-free image can be reconstructed only from sampled points which fulfill the Nyquist criterion. However, the BPE reconstruction is based on the Generalized Sampling Theorem of Papoulis, which states that a continuous signal can be reconstructed from sampled points as long as the points are on average sampled at the Nyquist frequency. A novel method of generating the “bunched” data using GRAPPA Operator Gridding (GROG), which shifts datapoints by small distances in k-space using the GRAPPA Operator instead of employing zig-zag shaped gradients, is presented in this chapter. With the conjugate gradient reconstruction method, these additional “bunched” points can then be used to reconstruct an artifact-free image from undersampled data. This method is referred to as GROG-facilitated Bunched Phase Encoding, or GROG-BPE. N2 - Die Magnetresonanztomographie (MRT) ist ein nichtinvasives bildgebendes Verfahren ohne Strahlenbelastung und eignet sich zur biomedizinischen Darstellung verschiedener Gewebetypen mit hoher räumlicher Auflösung und sehr gutem Kontrastverhalten. In der MRT erfolgt die Datenaufnahme im reziproken Bildraum – auch k-Raum genannt - welcher typischerweise entlang eines diskreten kartesischen Gitters abgetastet wird. Ein Bild erhält man schließlich durch eine schnelle Fouriertransformation der aufgenommenen k-Raum-Daten. Neben den kartesischen Akquisitionsschemata haben sich in den letzten Jahren auch vereinzelt nichtkartesische MRT-Verfahren in der klinischen Routine durchgesetzt. Solche nichtkartesischen Trajektorien erreichen eine hohe Abtasteffizienz, was zu einer Verkürzung der Messzeit führt. Die Schwierigkeit im Umgang mit nichtkartesischen Trajektorien liegt vor allem in der Tatsache begründet, dass nichtkartesisch akquirierte Datensätze vor Anwendung der schnellen Fouriertransformation auf ein kartesisches Gitter transformiert werden müssen („Gridding“). Hierzu gibt es eine Vielzahl von Verfahren, die von zahlreichen Parametern abhängen, womit ein hoher Aufwand und hohe Fehleranfälligkeit verbunden sind. Ein weiterer Nachteil dieser Gridding-Methoden ist, dass sie auf unvollständig aufgenommene Datensätze nicht angewendet werden können. Alternativ zu den konventionellen MR-Verfahren haben sich in den letzten Jahren die sogenannten parallelen Bildgebungsmethoden (beispielsweise SENSE oder GRAPPA) in der klinischen MRT etabliert, die mittlerweile von nahezu allen Herstellerfirmen kommerziell zur Verfügung gestellt werden. Die parallele Bildgebung erlaubt es, die Bildmesszeiten um einen Faktor 2 bis 4 zu verkürzen und lässt sich prinzipiell auf jede beliebige Bilgebungsmethode anwenden ohne dabei das Kontrastverhalten zu beeinflussen. In der klinischen Routine ist diese Technik allerdings lediglich auf kartesische MRT-Verfahren beschränkt, und es ist bisher noch nicht gelungen, die Vorteile der nichtkartesischen MRT-Verfahren optimal mit den Leistungsmerkmalen der parallelen MRT zu verknüpfen. Ziel dieser Arbeit war es, neue und effiziente Strategien zu entwickeln, um die nichtkartesische Magnetresonanztomographie für ein breiteres Anwendungsspektrum in der klinischen Praxis zu etablieren. Neben der Rekonstruktion von herkömmlich aufgenommenen nichtkartesischen Datensätzen sollten auch Verfahren entwickelt werden, die eine Kombination mit Messzeitverkürzungen durch parallele MRT-Verfahren erlauben. In Kapitel 4 wird ein neues paralleles Bildgebungsverfahren zum Gridding nichtkartesischer Datensätze namens „GRAPPA Operator Gridding“ (GROG) vorgestellt. GROG benutzt GRAPPA-ähnliche Gewichtungsfaktoren, um die nichtkartesischen Punkte auf ein kartesisches Gitter zu schieben. Im Gegensatz zu anderen Gridding-Methoden (wie beispielsweise dem „Convolution-Gridding“) werden bei der Anwendung von GROG Parameter wie Faltungskerne, Regularisierungswerte oder Funktionen nicht benötigt. Dies führt nicht nur zu einer erheblichen Vereinfachung des Griddingprozesses, sondern auch zur deutlichen Reduktion der Rechenoperationen. In Kapitel 5 wird eine Erweiterung des GROG-Algorithmus vorgestellt, welche ohne Kalibrierungsdatensätze auskommt („Self-Calibrating GROG“, SC-GROG). Die Gewichtungsfaktoren für die Verschiebungen der Datenpunkte werden in dieser Methode aus den akquirierten Punkten selbst gewonnen. Die erste Anwendung von GROG zur Vereinfachung der Rekonstruktion unvollständig aufgenommener nichtkartesischer Datensätze ist in Kapitel 6 beschrieben. Die Verwendung von GROG zur Transformation der unvollständig aufgenommenen nichtkartesischen Daten auf ein kartesisches Gitter erlaubt es, anschließend einen modifizierten GRAPPA-Algorithmus anzuwenden, und somit nichtkartesische Datensätze aus beschleunigten Experimenten zu rekonstruieren. Schließlich wurde GROG in Kapitel 7 auf die „Bunched Phase Encoding“ (BPE)-Methode angewendet. Bereits zuvor wurde gezeigt, dass das BPE-Verfahren in Verbindung mit einem „Conjugate Gradient“ Rekonstruktionsverfahren eine deutliche Verkürzung der Messzeit gestattet. Basierend auf dem verallgemeinerten Abtasttheorem nach Papoulis werden die Daten bei diesem Verfahren entlang einer extrem schnell oszillierenden Trajektorie aufgenommen. Nach Papoulis ermöglicht die lokal höhere Datendichte eine artefaktfreie Bildrekonstruktion trotz Unterabtastung in anderen k-Raumbereichen. Allerdings werden dabei erhebliche Ansprüche an die Gradienten-Hardware des Tomographen gestellt, wodurch das Konzept auf geringe Beschleunigungsfaktoren beschränkt wird. Im Rahmen dieser Arbeit konnte jedoch gezeigt werden, dass es möglich ist, auf dieses aufwändige Abtastschema zu verzichten, indem lediglich entlang einer regulären nicht-oszillierenden Trajektorie akquiriert wird und die höhere Datendichte nachträglich mittels GROG erreicht wird (GROG-BPE). KW - NMR-Tomographie KW - Bildgebendes Verfahren KW - Parallele Bildgebung KW - nicht-kartesische Bildgebung KW - Magnetic Resonance Imaging KW - Parallel Imaging KW - non-Cartesian Imaging KW - Image Reconstruction Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28321 ER - TY - THES A1 - Mendes Pereira, Lenon T1 - Morphological and Functional Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Human Lung T1 - Morphologische und funktionelle Magnetresonanztomographie der menschlichen Lunge mit ultrakurzen Echozeiten (UTE) N2 - In this thesis, a 3D Ultrashort echo time (3D-UTE) sequence was introduced in the Self-gated Non-Contrast-Enhanced Functional Lung Imaging (SENCEFUL) framework. The sequence was developed and implemented on a 3 Tesla MR scanner. The 3D-UTE technique consisted of a nonselective RF pulse followed by a koosh ball quasi-random sampling order of the k-space. Measurements in free-breathing and without contrast agent were performed in healthy subjects and a patient with lung cancer. A gating technique, using a combination of different coils with high signal correlation, was evaluated in-vivo and compared with a manual approach of coil selection. The gating signal offered an estimation of the breathing motion during measurement and was used as a reference to segment the acquired data into different breathing phases. Gradient delays and trajectory errors were corrected during post-processing using the Gradient Impulse Response Function. Iterative SENSE was then applied to determine the fully sampled data. In order to eliminate signal changes caused by motion, a 3D image registration was employed, and the results were compared to a 2D image registration method. Ventilation was assessed in 3D and regionally quantified by monitoring the signal changes in the lung parenchyma. Finally, image quality and quantitative ventilation values were compared to the standard 2D-SENCEFUL technique. 3D-UTE, combined with an automatic gating technique and SENCEFUL MRI, offered ventilation maps with high spatial resolution and SNR. Compared to the 2D method, UTE-SENCEFUL greatly improved the clinical quality of the structural images and the visualization of the lung parenchyma. Through‐plane motion, partial volume effects and ventilation artifacts were also reduced with a three-dimensional method for image registration. UTE-SENCEFUL was also able to quantify regional ventilation and presented similar results to previous studies. N2 - In dieser Arbeit wurde eine 3D-UTE (ultrashort echo time) Sequenz mit SENCEFUL-MRI kombiniert. Die Sequenz wurde für einen 3 T MR-Scanner entwickelt und implementiert. Die 3D-UTE-Technik bestand aus einem nichtselektiven HF- Impuls, gefolgt von einer quasi-zufälligen Abtastung des k-Raums. Messungen in freier Atmung und ohne Kontrastmittel wurden bei gesunden Probanden und einem Patienten mit Lungenkrebs durchgeführt. Zur Zuordnung der Daten zu verschiedene Atemphasen wurde eine Technik verwendet, die verschiedene Spulen mit hoher Signalkorrelation kombiniert. Die Ergebnisse wurden in einer in-vivo Messung bewertet und mit einem manuellen Ansatz der Spulenselektion verglichen. Die Technik ermöglichte eine Visualisierung der Atembewegung und wurde als Referenz verwendet, um die erfassten Daten in mehrere Atemphasen zu segmentieren. Gradientenverzögerungen und Trajektorienfehler wurden mit der "Gradient Impulse Response Function - GIRF" korrigiert. Bei der Bildrekonstruktion kam Iteratives SENSE zum Einsatz. Eine 3D-Bildregistrierung erlaubte es, Signaländerungen durch Bewegung zu eliminieren. Es erfolgte ein Vergleich der Ergebnisse mit einem 2D- Bildregistrierungsverfahren. Die Lungenventilation wurde in 3D gemessen und anhand der Signaländerungen im Lungenparenchym quantifiziert. Schließlich, wurden die Werte für die Bildqualität und Lungenventilation mit der Standard-2D-SENCEFUL-Technik verglichen. Die 3D-UTE-Sequenz in Kombination mit einer automatischen Gating-Technik und SENCEFUL-MRI, ermöglichte die Akquise von Ventilationskarten mit hoher räumlicher Auflösung und SNR. Im Vergleich zur 2D-Methode, verbesserte UTE- SENCEFUL die klinische Qualität der Morphologischen Bilder. Bewegung, Partialvolumeneffekte und Ventilationsartefakte wurden ebenfalls mit einer dreidimensionalen Methode zur Bildregistrierung reduziert. Insgesamt konnten mit der 3D-UTE Technik die Ergebnisse vorangegangener Studien reproduziert und die Bildqualität verbessert werden. KW - Kernspintomografie KW - Lunge KW - MRI KW - Ultrashort echo time - UTE KW - Magnetic Resonance Imaging KW - Lung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183176 ER - TY - THES A1 - Raghuraman, Sairamesh T1 - New RF coil arrays for Static and Dynamic Musculoskeletal Magnetic Resonance Imaging T1 - Neue RF-Spulen für statische und dynamisch muskuloskelettale Magnetische Resonanz-Bildgebung N2 - Magnetic Resonance Imaging at field strengths up to 3 T, has become a default diagnostic modality for a variety of disorders and injuries, due to multiple reasons ranging from its non-invasive nature to the possibility of obtaining high resolution images of internal organs and soft tissues. Despite tremendous advances, MR imaging of certain anatomical regions and applications present specific challenges to be overcome. One such application is MR Musculo-Skeletal Imaging. This work addresses a few difficult areas within MSK imaging from the hardware perspective, with coil solutions for dynamic imaging of knee and high field imaging of hand. Starting with a brief introduction to MR physics, different types of RF coils are introduced in chapter 1, followed by sections on design of birdcage coils, phased arrays and their characterization in chapter 2. Measurements, calculations and simulations, done during the course of this work, have been added to this chapter to give a quantitative feel of the concepts explained. Chapter 3 deals with the construction of a phased array receiver for dynamic imaging of knee of a large animal model, i.e. minipig, at 1.5 T. Starting with details on the various aspects of an application that need to be considered when an MR RF array is designed, the chapter details the complex geometry of the region of interest in a minipig and reasons that necessitate a high density array. The sizes of the individual elements that constitute the array have been arrived at by studying the ratio of unloaded to loaded Q factors and choosing a size that provides the best ratio but still maintains a uniform SNR throughout the movement of the knee. To have a minimum weight and to allow mechanical movement of the knee, the Preamplifiers were located in a separate box. A movement device was constructed to achieve adjustable periodic movement of the knee of the anesthetized animal. The constructed array has been characterized for its SNR and compared with an existing product coil to show the improvement. The movement device was also characterized for its reproducibility. High resolution static images with anatomical details marked have been presented. The 1/g maps show the accelerations possible with the array. Snapshots of obtained dynamic images trace the cruciate ligaments through a cycle of movement of the animal's knee. The hardware combination of a high density phased array and a movement device designed for a minipig's knee was used as a 'reference' and extended in chapter 4 for a human knee. In principle the challenges are similar for dynamic imaging of a human knee with regards to optimization of the elements, the associated electronics and the construction of the movement device. The size of the elements were optimized considering the field penetration / sensitivity required for the internal tissues. They were distributed around the curvature of the knee keeping in mind the acceleration required for dynamic imaging and the direction of the movement. The constructed movement device allows a periodic motion of the lower half of the leg, with the knee placed within the coil, enabling visualization of the tissues inside, while the leg is in motion. Imaging has been performed using dynamic interleaved acquisition sequence where higher effective TR and flip angles are achieved due to a combination of interleaving and segmentation of the sequence. The movement device has been characterized for its reproducibility while the SNR distribution of the constructed RF array has been compared with that of a commercially available standard 8 channel array. The results show the improvement in SNR and acceleration with the constructed geometry. High resolution static images, dynamic snapshots and the 3D segmentation of the obtained images prove the usefulness of the complete package provided in the design, for performing dynamic imaging at a clinically relevant field strength. A simple study is performed in chapter 5 to understand the effects of changes in overlap for coil configurations with different loads and at different frequencies. The noise levels of individual channels and the correlation between them are plotted against subtle changes in overlap, at 64 and 123 MHz. SNR for every overlap setup is also measured and plotted. Results show that achieving critical overlap is crucial to obtain the best possible SNR in those coil setups where the load offered by the sample is low. Chapter 6 of the thesis work deals with coil design for high field imaging of hand and wrists at 7 T, with an aim to achieve ultra high resolution imaging. At this field strength due to the increase in dielectric effects and the resulting decrease in homogeneity, whole body transmit coils are impractical and this has led engineers to design local transmit coils, for specific anatomies. While transmit or transceive arrays are usually preferred, to mitigate SAR effects, the spatial resolution obtained is limited. It is shown that a solution to this, with regards to hand imaging, can be a single volume transmit coil, along with high density receive arrays optimized for different regions of the hand. The use of a phased array for reception provides an increased SNR / penetration under high resolution. A volume transmit coil could pose issues in homogeneity at 7 T, but the specific anatomy of hand and wrist, with comparatively less water content, limits dielectric effects to have homogeneous B_1+ profile over the hand. To this effect, a bandpass birdcage and a 12 channel receive array are designed and characterized. Images of very high spatial resolution (0.16 x 0.16 x 0.16 mm3) with internal tissues marked are presented. In vivo 1/g maps show that an acceleration of up to 3 is possible and the EM simulation results presented show the uniform field along with SAR hotspots in the hand. To reduce the stress created due to the 'superman' position of imaging, provisions in the form of a holder and a hand rest have been designed and presented. Factors that contributed to the stability of the presented design are also listed, which would help future designs of receive arrays at high field strengths. In conclusion, the coils and related hardware presented in this thesis address the following two aspects of MSK imaging: Dynamic imaging of knee and High resolution imaging of hand / wrist. The presented hardware addresses specific challenges and provides solutions. It is hoped that these designs are steps in the direction of improving the existing coils to get a better knowledge and understanding of MSK diseases such as Rheumatoid Arthritis and Osteoarthritis. The hardware can aid our study of ligament reconstruction and development. The high density array and transmit coil design for hand / wrist also demonstrates the benefits of the obtained SNR at 7 T while maintaining SAR within limits. This design is a contribution towards optimizing hardware at high field strength, to make it clinically acceptable and approved by regulatory bodies. N2 - Die Magnetresonanztomographie mit Feldstärken bis zu 3 T ist zu einer Standard- Diag-nosemethode für eine Vielzahl von Erkrankungen und Verletzungen geworden. Das hat mehrere Gründe, angefangen von ihrer nicht-invasiven Natur bis hin zu ihrer Fähigkeit,hochaufgelöste Bilder von inneren Organen und Weichteilen zu erhalten. Trotz enormer Fortschritte stellt die MR-Bildgebung bestimmter anatomischer Regionen oder bei bestimmten Anwendungen und Fragestellungen eine besondere Herausforderung dar. Eine dieser Anwendungen ist die MR-Bildgebung am Muskuloskelettalen System (MSK). Die vorliegende Arbeit befasst sich mit einigen schwierigen Fragestellungen innerhalb der MSK-Bildgebung aus aus der Perspektive der Hardware-Entwicklung: mit Spulendesigns für die dynamische Bildgebung des Knies und mit MR-Bildgebung der Hand bei hohen Magentfeldern. Nach einer kurzen Einführung in die MR-Physik werden in Kapitel 1 dann verschiedene Typen von Hochfrequenz-Spulen (HF-Spulen) vorgestellt, gefolgt in Kapitel 2 mit Abhandlungen des Designs von Birdcage-Spulen, Phased Arrays und deren Charakterisierung. Außerdem enthält das Kapitel Messungen, Berechnungen und Simulationen, die im Rahmen dieser Arbeit durchgeführt wurden, um einen quantitativen Eindruck von den erläuterten Konzepten zu vermitteln. Kapitel 3 befasst sich mit dem Aufbau eines Phased-Array-Empfängers für die dynamische Bildgebung des Knies an einem großen Tiermodell (Minipig) bei 1,5 T. Es werden detailliert verschiedene Aspekte erläutert, die bei der Konstruktion eines RF-Arrays berücksichtigt werden müssen. Des Weiteren beschreibt das Kapitel die komplexe Geometrie des Zielbereichs am Knie des Minipigs und die Gründe für ein Array mitvielen Spulenelementen. ... KW - MRI KW - RF Coils KW - Dynamic Imaging KW - Magnetic Resonance Imaging KW - RF Coil arrays Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204165 ER - TY - THES A1 - Schindele, Andreas T1 - Proximal methods in medical image reconstruction and in nonsmooth optimal control of partial differential equations T1 - Proximale Methoden in der medizinischen Bildrekonstruktion und in der nicht-glatten optimalen Steuerung von partiellen Differenzialgleichungen N2 - Proximal methods are iterative optimization techniques for functionals, J = J1 + J2, consisting of a differentiable part J2 and a possibly nondifferentiable part J1. In this thesis proximal methods for finite- and infinite-dimensional optimization problems are discussed. In finite dimensions, they solve l1- and TV-minimization problems that are effectively applied to image reconstruction in magnetic resonance imaging (MRI). Convergence of these methods in this setting is proved. The proposed proximal scheme is compared to a split proximal scheme and it achieves a better signal-to-noise ratio. In addition, an application that uses parallel imaging is presented. In infinite dimensions, these methods are discussed to solve nonsmooth linear and bilinear elliptic and parabolic optimal control problems. In particular, fast convergence of these methods is proved. Furthermore, for benchmarking purposes, truncated proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of our proximal schemes that need less computation time than the semismooth Newton method in most cases. Results of numerical experiments are presented that successfully validate the theoretical estimates. N2 - Proximale Methoden sind iterative Optimierungsverfahren für Funktionale J = J1 +J2, die aus einem differenzierbaren Teil J2 und einem möglicherweise nichtdifferenzierbaren Teil bestehen. In dieser Arbeit werden proximale Methoden für endlich- und unendlichdimensionale Optimierungsprobleme diskutiert. In endlichen Dimensionen lösen diese `1- und TV-Minimierungsprobleme welche erfolgreich in der Bildrekonstruktion der Magnetresonanztomographie (MRT) angewendet wurden. Die Konvergenz dieser Methoden wurde in diesem Zusammenhang bewiesen. Die vorgestellten proximalen Methoden wurden mit einer geteilten proximalen Methode verglichen und konnten ein besseres Signal-Rausch-Verhältnis erzielen. Zusätzlich wurde eine Anwendung präsentiert, die parallele Bildgebung verwendet. Diese Methoden werden auch für unendlichdimensionale Probleme zur Lösung von nichtglatten linearen und bilinearen elliptischen und parabolischen optimalen Steuerungsproblemen diskutiert. Insbesondere wird die schnelle Konvergenz dieser Methoden bewiesen. Außerdem werden abgeschnittene proximale Methoden mit einem inexakten halbglatten Newtonverfahren verglichen. Die numerischen Ergebnisse demonstrieren die Effektivität der proximalen Methoden, welche im Vergleich zu den halbglatten Newtonverfahren in den meisten Fällen weniger Rechenzeit benötigen. Zusätzlich werden die theoretischen Abschätzungen bestätigt. KW - Optimale Kontrolle KW - Proximal-Punkt-Verfahren KW - Bildrekonstruktion KW - Komprimierte Abtastung KW - Optimal Control KW - Elliptic equations KW - Parabolic equations KW - Proximal Method KW - Semismooth Newton Method KW - Medical image reconstruction KW - Sparsity KW - Total Variation KW - Compressed Sensing KW - Magnetic Resonance Imaging KW - Partielle Differentialgleichung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136569 ER - TY - THES A1 - Ziener, Christian H. T1 - Spindephasierung im Kroghschen Kapillarmodell des Myokards T1 - Spin Dephasing in Krogh's Capillary Model of the Myocardium N2 - Der Zusammenhang zwischen den Parametern der Mikrostruktur des Myokards und der Spindephasierung wird hergestellt. Zur Beschreibung der Mikrostruktur des Myokards wurde das Kroghsche Kapillarmodell genutzt. In diesem Modell wird das Myokard auf eine einzige Kapillare reduziert, die von einem konzentrischen Gewebszylinder umgeben ist. In dem Gewebszylinder findet die Dephasierung und Diffusion statt. Mathematisch wird die Dephasierung durch die Bloch-Torrey-Gleichung beschrieben. Experimentell wurde der Signal-Zeit-Verlauf mittels einer PRESS-Sequenz und einer Gradienten-Echo-Sequenz gemessen. Mit den in dieser Arbeit vorgestellten Methoden ist der Zusammenhang zwischen Kapillarradius und Freien Induktionszerfall bekannt. N2 - The relation between the parameters of the microscopic structure of the myocardium and the spin dephasing is analyzed. The microscopic structure of the myocardium is described in terms of Krogh's capillary model. In this model the myocardium is reduced to a single capillary which is surrounded by a concentric tissue cylinder. In the tissue cylinder the dephasing and diffusion process occurs. Mathematically the dephasing process is described by the Bloch-Torrey-equation. Experimentally the Signal-time-decay was measured using a PRESS-sequence and a gradient-echo-sequence. Using the methods provided in this work, the relation between the capillary radius and the measured free induction decay can be given. KW - Herzmuskel KW - Magnetische Resonanz KW - Kernspinrelaxation KW - Myocardium KW - Dephasing KW - Magnetic Resonance Imaging Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73762 ER - TY - THES A1 - Klauer, Peter T1 - Vollständig integrierter Traveling-Wave-MPI-MRI-Hybridscanner T1 - Fully Integrated Traveling-Wave-MPI-MRI-Hybrid Scanner N2 - Magnetic Particle Imaging (MPI) ist ein neuartiges tomographisches Bildgebungsverfahren, welches in der Lage ist, dreidimensional die Verteilung von superparamagnetischen Nanopartikeln zu detektieren. Aufgrund des direkten Nachweises des Tracers ist MPI ein sehr schnelles und sensitives Verfahren [12] und benötigt für eine Einordnung des Tracers (z.B. im Gewebe) eine weitere bildgebende Modalität wie die Magnetresonanztomographie (MRI) oder die Computertomographie. Die strukturelle Einordnung wird häufig mit dem Fusion-Imaging-Verfahren durchgeführt, bei dem die Proben separat in den Geräten vermessen und die Datensätze retrospektiv korreliert werden [75][76]. In einem ersten Experiment wurde bereits ein Traveling-Wave-MPI-Scanner (TWMPI) [17] mit einem Niederfeld-MRI-Scanner kombiniert und die ersten Hybridmessung durchgeführt [15]. Der technische Aufwand, zwei separate Geräte aufzubauen sowie die Tatsache, dass ein MRI-Gerät bei 30mT sehr lange benötigt, diente als Motivation für ein integriertes TWMPIMRI- Hybridsystem, bei dem das dynamische lineare Gradientenarray (dLGA) eines TWMPI-Scanners intrinsisch das B0-Feld für ein MRI-Gerät erzeugen sollte. Das Ziel dieser Arbeit war es, die Grundlagen für einen integrierten TWMPI-MRIHybridscanner zu schaffen. Die Geometrie des dLGAs sollte dabei nicht verändert werden, damit TWMPI-Messungen weiterhin ohne Einschränkungen möglich sind. Zusammenfassend werden hier noch mal die wichtigsten Schritte und Ergebnisse dieser Arbeit aufgezeigt. Zu Beginn dieser Arbeit wurde mittels Magnetfeldsimulationen nach einer geeigneten Stromverteilung gesucht, um allein mit dem dLGA ein ausreichend homogenes Magnetfeld erzeugen zu können. Die Ergebnisse der Simulationen zeigten, dass bereits zwei unterschiedliche Ströme in 14 der 20 Einzelspulen des dLGAs genügten, um ein Field of View (FOV) mit der Größe 36mm x 12mm mit ausreichender Homogenität zu erreichen. Die Homogenität innerhalb des FOVs betrug dabei 3000 ppm. Für die angestrebte Feldstärke von 235mT waren Stromstärken von 129A und 124A nötig. Die hohen Ströme des dLGAs erforderten die Entwicklung eines dafür angepassten Verstärkers. Das ursprüngliche Konzept, welches auf einem linear angesteuerten Leistungstransistors aufbaute, wurde in zahlreichen Schritten so weit verbessert, dass die nötigen Stromstärken stabil an- und ausgeschaltet werden konnten. Mithilfe eines Ganzkörper-MRIs konnte erstmals das B0-Feld des dLGAs, welches durch den selbstgebauten Verstärker erzeugt wurde, gemessen und mit der Simulation verglichen werden. Zwischen den beiden Verläufen zeigte sich eine qualitativ gute Übereinstimmung. Das Finden des NMR-Signals stellte wegen des selbstgebauten Verstärkers eine Herausforderung dar, da zu diesem Zeitpunkt die nötige Präzision noch nicht erreicht wurde und der wichtigste Parameter, die Magnetfeldstärke im dLGA, nicht gemessen werden konnte. Dagegen konnte die Länge der Pulse für die Spin-Echo- Sequenz sehr gut gemessen werden, jedoch war der optimale Wert noch nicht bekannt. Durch iterative Messungen wurden die richtigen Einstellungen gefunden, die nach Änderungen an der Hardware jeweils angepasst wurden. Die Performanz des Verstärkers konnte anhand wiederholter Messungen des NMRSignals genauer untersucht werden. Es zeigte sich, dass die Präzision weiter verbessert werden musste, um reproduzierbare Ergebnisse zu erhalten. Mithilfe des NMR-Signals konnten auch das B0-Feld ausgemessen werden. Es zeigte eine gute Übereinstimmung zur Simulation. Mithilfe von vier Segmentspulen des dLGAs war es möglich einen linearen Gradienten entlang der z-Achse zu erzeugen. Ein Gradient wurde zusätzlich zum B0-Feld geschaltet und ebenfalls ausgemessen. Auch dieser Verlauf zeigte eine gute Übereinstimmung zur Simulation. Mithilfe des Gradienten wurde erfolgreich die Frequenzkodierung und die Phasenkodierung implementiert, durch die bei beiden Messungen zwei Proben anhand des Ortes unterschieden werden konnten. Damit war die Entwicklung des MRIScanners abgeschlossen. Der Aufbau des TWMPI-Scanners benötigte neben dem Bau des dLGAs die Anfertigung von Sattelspulen. Für die MPI-Messungen konnte der fehlende Teil der Sendekette sowie die gesamte Empfangskette von einer früheren Version benutzt werden. Auch für das MPI wurde die Funktionalität mithilfe einer Punktprobe und eines Phantoms überprüft, allerdings hier in zwei Dimensionen. Die Erweiterung zu einem Hybridscanner erforderte weitere Modifikationen gegenüber einem reinen TWMPI- bzw. MRI-Scanner. Es musste ein Weg gefunden werden, die Beschaltung des dLGAs für die jeweilige Modalität zügig anzupassen. Dafür wurde ein Steckbrett gebaut, das es erlaubt, die Verkabelung des dLGAs in kurzer Zeit zu ändern. Außerdem mussten innerhalb des dLGAs die Sattelspulen und die Empfangsspule des TWMPIs sowie die Empfangsspule des MRIs untergebracht werden. Ein modulares System erlaubte die gleichzeitige Anordnung aller Komponenten innerhalb des dLGAs. Das messbare FOV des MRIs ist der Homogenität des B0-Feldes angepasst, das FOV des TWMPI ist ausgedehnter. Zum Ende dieser Arbeit wurde erfolgreich eine Hybridmessung durchgeführt. Das Phantom bestand aus je zwei Kugeln gefüllt mit Öl und mit einem MPI-Tracer (Resovist). Mit TWMPI war die räumliche Abbildung der Resovistkugeln möglich, während mit MRI die der Ölkugeln möglich war. Diese in situ Messung zeigte die erfolgreiche Umsetzung des Konzeptes für den TWMPI-MRI-Hybridscanner. Zusammenfassend wurden in dieser Arbeit die Grundlagen für einen TWMPIMRI- Hybridscanner gelegt. Die größte Schwierigkeit bestand darin, ein ausreichend homogenes B0-Feld für das MRI zu erzeugen, mit dem man ein gutes NMRSignal aufnehmen konnte. Mit einer einfachen Stromverteilung, bestehend aus zwei unterschiedlichen Strömen, konnte ein ausreichend homogenes B0-Feld erzeugt werden. Durch komplexere Stromverteilungen lässt sich die Homogenität noch verbessern und somit das FOV vergrößern. Die MRI-Bildgebung wurde in dieser Arbeit für eine Dimension implementiert und soll in fortführenden Arbeiten auf 2D und 3D ausgedehnt werden. Letztendlich soll anhand eines MRI-Bildes die Partikelverteilung des MPI-Tracers in Lebewesen deren Anatomie zugeordnet werden. In [76][77][78] sind die ersten präklinischen Anwendungen mit dem TWMPI-Scanner durchgeführt worden. Diese Anwendungen erlangen eine höhere Aussagekraft durch die zusätzlichen Informationen eines TWMPI-MRI-Hybridscanners. In weiteren Arbeiten sollte zusätzlich die Größe des FOVs für das MRI erweitert werden. Außerdem macht es Sinn, einen elektronischen Schalter zum Umschalten des dLGAs zwischen MRI und MPI zu realisieren. Die nächste Version des Hybridscanners könnte beispielsweise ein komplett neu gestaltetes dLGA enthalten, in dem jede Segmentspule in radialer Richtung einmal geteilt wird und dadurch in eine innere und eine äußere Spule zerlegt wird. Für das MRI werden die beiden Spulenteile gegen geschaltet, um ein homogenes Feld in radialer Richtung zu erhalten. Für das TWMPI werden die Spulenteile gleichgeschaltet, um einen möglichst starken Feldgradienten zu erreichen. In dieser Arbeit wurde für die nächste Version eines TWMPI-MRI-Hybridscanners viel Wissen generiert, das äußerst hilfreich für das neue Design sein wird. Anhand der Vermessung des B0-Feldes hat sich gezeigt, dass die simulierten Magnetfelder gut mit den gemessenen Magnetfeldern übereinstimmen. Außerdem wurde viel gelernt über die Kombination von TWMPI mit MRI. N2 - Magnetic Particle Imaging (MPI) is a novel tomographic imaging technique, which can detect the distribution of superparamagnetic iron oxides in three dimensions. MPI is a fast and sensitive technique due to its immediate tracer detection [12] but needs another imaging modality like magnetic resonance imaging (MRI) or computed tomography for tracer classification (e.g. to tissue). The classification is often done with the fusion imaging technology where the sample is measured in different systems and the data are correlated afterwards [75][76]. In a first experiment a traveling-wave-MPI-scanner (TWMPI) [17] was combined with a low-field-MRIscanner and first hybrid measurements were acquired [15]. The motivation for an integrated TWMPI-MRI-hybrid system, in which the dynamic linear gradient array (dLGA) generates the main magnetic field B0 intrinsically, was such that an MRI-system at 30mT needs a long time for data acquisition as well as the higher technical effort for assembling two separate systems. The aim of this work was to establish the basic principles of an integrated TWMPIMRI- hybrid scanner. The geometry of the dLGA should not be altered in this process so that TWMPI-measurements are still possible without limitations. All important steps and measurements of this work are presented here in summary. At the beginning of this work it was necessary to find a suitable current configuration by the use of magnetic field simulations. The aim was to generate a magnetic field that is homogenous enough for NMR measurements only with the dLGA coils. The results of the simulations showed that only two different currents in 14 of the 20 dLGA coils are necessary to obtain a field of view (FOV) with a sufficiently homogeneity of 3000ppm and a size of 36mm x 12 mm. For the target field strength of 235mT currents of 129A and 124A are required. The high currents in the dLGA made it necessary to develop a custom amplifier. The original concept, which is based on a linear controlled power transistor, was improved in numerous steps so that the high currents could be turned on and off in a stable way. The magnetic field B0 of the dLGA, which was generated by the custom amplifier, could firstly be measured with the aid of a full-body MRI. Its comparison to the simulation showed a qualitative good agreement. A challenge was to find the NMR-signal because of the custom amplifier which did not have the necessary precision at this particular time and also the most important parameter, the magnetic field strength inside the dLGA, could not be measured. In contrast the length of the pulses for the spin-echo-sequence could be measured accurately, but the ideal value was not known. Iterative measurements were used to find the right adjustments, which had to be adapted after each change in the hardware. The amplifier performance could be analyzed more in detail by repeated measurements of the NMR-signal. They indicated that the precision had to be improved further to achieve reproducible results. The B0-field could be measured by means of the NMR-signal. It showed good agreement to the simulation. By means of four segment coils of the dLGA it was possible to create a linear gradient along the z-axis. as well as the gradient along the z-axis By means of the gradient frequency encoding and phase encoding were successfully implemented. Two samples could be differentiated by its location for both encoding methods. That completes the development of the MRI-scanner. The design of the TWMPI-scanner required the construction of the saddle coils besides the production of the dLGA. The missing parts of the transmit chain and the whole receive chain could be used from an earlier version for MPI-measurements. The functionality of the MPI was tested with a point sample and a phantom, but this time in two dimensions. The extension to a hybrid scanner required additional modifications compared to a pure TWMPI- or MRI-scanner. An efficient way had to be found to change the connections of the dLGA for the particular modality. A pinboard was built which made a rapid change of the connections of the dLGA possible. Furthermore the saddle coils and the receive coil of the TWMPI-system as well as the receive coil of the MRI had to be placed inside the dLGA. This problem was solved with a modular system which made it possible to simultaneously place all components inside the dLGA. The measurable FOV of the MRI is adapted to the homogeneity of the B0-field, the FOV of the TWMPI is larger. At the end of this work a hybrid measurement was successfully performed. The phantom consisted of two spheres filled with oil and another two spheres filled with an MPI-tracer (Resovist). With TWMPI the spatial resolution of the Resovist spheres was possible, while with MRI it was possible for the oil spheres. This in situ measurement showed the successful implementation of the TWMPI-MRIhybrid scanner concept. In summary the basic principles for a TWMPI-MRI-hybrid scanner were established in this work. The highest obstacle was the generation of a homogenous magnetic field B0 for MRI, which lead to a good NMR-signal. A simple current configuration, consisting of two different currents, generated a sufficient homogenous magnetic field. With more complex current configurations a more homogenous field and thereby a larger FOV is possible. MRI-imaging was implemented in this work in one dimension and should be extended to 2D and 3D in further projects. Eventually an MRI-image should be used to display a relation between particle distribution of the MPI-tracer in living creatures and their anatomy. The first preclinical applications were implemented with the TWMPI-scanner [76][77][78]. These applications would reach a higher information value with the use of a TWMPI-MRI-hybrid scanner. The size of the FOV for the MRI should be extended in further projects. Furthermore it is reasonable to realize an electric switch for changing the connections of the dLGA between MRI and MPI. The next version of the hybrid scanner could contain for example a completely newly designed dLGA in which every segment coil is divided radially. The segment coils would consist of an inner and an outer part. For MRI-measurements both magnetic fields work against each other to create a radially homogenous magnetic field. For TWMPI both magnetic fields work together to create a high magnetic field gradient. For the next version of a TWMPI-MRI-hybrid scanner a lot of know-how was created which will be helpful for the new design. By means of the B0 measurements it was shown that the simulated magnetic fields fit well to the measured ones. Furthermore plenty was learned for the combination of TWMPI and MRI. KW - Magnetpartikelbildgebung KW - Magnetic Particle Imaging KW - Hybridscanner KW - Magnetic Resonance Imaging KW - Traveling Wave Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161314 ER -