TY - JOUR A1 - Brehm, Klaus A1 - Koziol, Uriel A1 - Krohne, Georg T1 - Anatomy and development of the larval nervous system in Echinococcus multilocularis JF - Frontiers in Zoology N2 - Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages. KW - Echinococcus KW - Metacestode KW - Protoscolex KW - Nervous system KW - Neuropeptide KW - Serotonin KW - Acetylated tubulin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96504 UR - http://www.frontiersinzoology.com/content/10/1/24 ER - TY - JOUR A1 - Cucher, Marcela A. A1 - Mariconti, Mara A1 - Manciulli, Tommaso A1 - Vola, Ambra A1 - Rosenzvit, Mara C. A1 - Brehm, Klaus A1 - Kamenetzky, Laura A1 - Brunetti, Enrico T1 - Circulating small RNA profiling of patients with alveolar and cystic echinococcosis JF - Biology N2 - Alveolar (AE) and cystic (CE) echinococcosis are two parasitic diseases caused by the tapeworms Echinococcus multilocularis and E. granulosus sensu lato (s. l.), respectively. Currently, AE and CE are mainly diagnosed by means of imaging techniques, serology, and clinical and epidemiological data. However, no viability markers that indicate parasite state during infection are available. Extracellular small RNAs (sRNAs) are short non-coding RNAs that can be secreted by cells through association with extracellular vesicles, proteins, or lipoproteins. Circulating sRNAs can show altered expression in pathological states; hence, they are intensively studied as biomarkers for several diseases. Here, we profiled the sRNA transcriptomes of AE and CE patients to identify novel biomarkers to aid in medical decisions when current diagnostic procedures are inconclusive. For this, endogenous and parasitic sRNAs were analyzed by sRNA sequencing in serum from disease negative, positive, and treated patients and patients harboring a non-parasitic lesion. Consequently, 20 differentially expressed sRNAs associated with AE, CE, and/or non-parasitic lesion were identified. Our results represent an in-depth characterization of the effect E. multilocularis and E. granulosus s. l. exert on the extracellular sRNA landscape in human infections and provide a set of novel candidate biomarkers for both AE and CE detection. KW - echinococcosis KW - small RNA KW - extracellular KW - circulating KW - microRNA KW - serum KW - tapeworm KW - diagnosis KW - marker KW - Echinococcus Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319270 SN - 2079-7737 VL - 12 IS - 5 ER - TY - JOUR A1 - Herz, Michaela A1 - Brehm, Klaus T1 - Evidence for densovirus integrations into tapeworm genomes JF - Parasites & Vectors N2 - Background Tapeworms lack a canonical piRNA-pathway, raising the question of how they can silence existing mobile genetic elements (MGE). Investigation towards the underlying mechanisms requires information on tapeworm transposons which is, however, presently scarce. Methods The presence of densovirus-related sequences in tapeworm genomes was studied by bioinformatic approaches. Available RNA-Seq datasets were mapped against the Echinococcus multilocularis genome to calculate expression levels of densovirus-related genes. Transcription of densovirus loci was further analyzed by sequencing and RT-qPCR. Results We herein provide evidence for the presence of densovirus-related elements in a variety of tapeworm genomes. In the high-quality genome of E. multilocularis we identified more than 20 individual densovirus integration loci which contain the information for non-structural and structural virus proteins. The majority of densovirus loci are present as head-to-tail concatemers in isolated repeat containing regions of the genome. In some cases, unique densovirus loci have integrated close to histone gene clusters. We show that some of the densovirus loci of E. multilocularis are actively transcribed, whereas the majority are transcriptionally silent. RT-qPCR data further indicate that densovirus expression mainly occurs in the E. multilocularis stem cell population, which probably forms the germline of this organism. Sequences similar to the non-structural densovirus genes present in E. multilocularis were also identified in the genomes of E. canadensis, E. granulosus, Hydatigera taeniaeformis, Hymenolepis diminuta, Hymenolepis microstoma, Hymenolepis nana, Taenia asiatica, Taenia multiceps, Taenia saginata and Taenia solium. Conclusions Our data indicate that densovirus integration has occurred in many tapeworm species. This is the first report on widespread integration of DNA viruses into cestode genomes. Since only few densovirus integration sites were transcriptionally active in E. multilocularis, our data are relevant for future studies into gene silencing mechanisms in tapeworms. Furthermore, they indicate that densovirus-based vectors might be suitable tools for genetic manipulation of cestodes. KW - Echinococcus KW - Echinococcosis KW - Densovirus KW - Parvovirus KW - Mobile genetic element KW - Gene silencing KW - Stem cell KW - Epigenetic Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202478 VL - 12 ER - TY - JOUR A1 - Brehm, Klaus A1 - Hemer, Sarah A1 - Konrad, Christian A1 - Spiliotis, Markus A1 - Koziol, Uriel A1 - Schaack, Dominik A1 - Förster, Sabine A1 - Gelmedin, Verena A1 - Stadelmann, Britta A1 - Dandekar, Thomas A1 - Hemphill, Andrew T1 - Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development N2 - Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host’s liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite’s glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs. KW - Cestode KW - Tapeworm KW - Echinococcus KW - Echinococcosis KW - Insulin KW - Receptor kinase KW - Kinase inhibitor KW - Host-parasite interaction Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110357 ER - TY - THES A1 - Nono, Justin T1 - Immunomodulation through Excretory/Secretory Products of the parasitic Helminth Echinococcus multilocularis T1 - Immunmodulation durch Exkretorisch/Sekretorischen Produkten der parasitären Helminthen Echinococcus multilocularis N2 - Die Alveoläre Echinokokkose (AE) ist eine lebensbedrohliche Zoonose, die durch das Metazestoden-Larvenstadium des Fuchsbandwurms Echinococcus multilocularis ausgelöst wird. Nach Eintritt des Parasiten in den Zwischenwirt wird zunächst eine potentiell anti-parasitische, Th1-dominierte Immunantwort ausgelöst, welche anschließend in der chronischen Phase graduell durch eine permissive, Th2-dominierte Antwort ersetzt wird. Als Ergebnis einer zugrunde liegenden Immunmodulation durch den Parasiten können Echinococcus-Larven für Jahre bis Jahrzehnte im Wirt persistieren und verhalten sich ähnlich einem perfekt transplantierten Organ. Über die molekulare Basis der Immunmodulation durch den Parasiten ist derzeit wenig bekannt. In dieser Arbeit wurden geeignete Kultursysteme für verschiedene E. multilocularis Larvenstadien verwendet, um den Einfluss exkretorisch/sekretorischer Metaboliten (E/S-Produkte) auf Wirts-Immuneffektor-Zellen zu studieren. E/S-Produkte kultivierter Larven, die die frühe (Primärzellen) und chronische (Metazestode) Phase der Infektion repräsentieren induzierten Apoptose und tolerogene Eigenschaften in Dendritischen Zellen (DC) des Wirts, während solche von Kontroll-Larven (Protoskolizes) keine derartigen Effekte zeigten. Dies zeigt, dass die frühen infektiösen Stadien von E. multilocularis in DC ein tolerierendes Milieu erzeugen, welches sehr wahrscheinlich die initiale Etablierung des Parasiten in einer Phase begünstigt, in der er höchst sensitiv gegenüber Wirtsangriffen ist. Interessanterweise förderten E/S-Produkte des Metazestoden in vitro die Konversion von CD4+ T-Zellen in Foxp3+, regulatorische T-Zellen (Treg) während E/S-Produkte von Primärzellen oder Protoskolizes dies nicht vermochten. Da Foxp3+ Tregs generell als immunosuppressorisch bekannt sind, deuten diese Daten an, dass der Metazestode aktiv eine Induktion von Tregs herbeiführt, um eine permissive Immunsuppression während einer Infektion zu erreichen. Eine substantielle Zunahme von Anzahl und Frequenz Foxp3+ Tregs konnte zudem in Peritoneal-Exsudaten von Mäuuen nach intraperitonealer Injektion von Parasitengewebe gemessen werden, was anzeigt, dass eine Expansion von Foxp3+ Tregs auch während der in vivo Infektion von Bedeutung ist. Interessanterweise konnte in dieser Arbeit ein Activin-Orthologes des Parasiten, EmACT, identifiziert werden, weleches vom Metazestoden sekretiert wird und ähnlich wie humanes Activin in der Lage ist, eine TGF-β-abhängige Expansion von Tregs in vitro zu induzieren. Dies zeigt an, dass E. multilocularis evolutionsgeschichtlich konservierte Zytokine nutzt, um aktiv die Wirts-Immunantwort zu beeinflussen. Zusammenfassend deuten die gewonnenen Daten auf eine wichtige Rolle Foxp3+ Tregs, welche u.a. durch EmACT induziert werden, im immunologischen geschehen der AE hin. Ein weiterer Parasiten-Faktor, EmTIP, mit signifikanten Homologien zum T-cell Immunomodulatory Protein (TIP) des Menschen wurde in dieser Arbeit näher charakterisiert. EmTIP konnte in der E/S-Fraktion von Primärzellen nachgewiesen werden und induzierte die Freisetzung von IFN-γ in CD4+ T-Helferzellen. Durch Zugabe von anti-EmTIP-Antikörpern konnte zudem die Entwicklung des Parasiten zum Metazestoden in vitro gehemmt werden. EmTIP dürfte daher einerseits bei der frühen Parasiten-Entwicklung im Zwischenwirt eine Rolle spielen und könnte im Zuge dessen auch die Ausprägung der frühen, Th-1-dominierten Immunantwort während der AE begünstigen. Zusammenfassend wurden in dieser Arbeit zwei E. multilocularis E/S-Faktoren identifiziert, EmACT und EmTIP, die ein hohes immunmodulatorisches Potential besitzen. Die hier vorgestellten Daten liefern neue, fundamentale Einsichten in die molekularen Mechanismen der Parasiten-induzierten Immunmodulation bei der AE und sind hoch relevant für die Entwicklung anti-parasitischer Immuntherapien. N2 - Alveolar echinococcosis (AE) is a severe and life-threatening disease caused by the metacestode larva of the fox-tapeworm Echinococcus multilocularis. Parasite entry into the host evokes an early and potentially parasiticidal Th1 immune response that is gradually replaced by a permissive Th2 response. An immunoregulatory environment has also been reported in the host as the disease progresses. As a result of immunomodulation, E. multilocularis larvae persist in the host for decades without being expelled, and thus almost act like a perfect transplant. Very little is currently known on the molecular basis of the host immunomodulation by E. multilocularis. In this work, in vitro cultivation systems were used to assess the influence of metabolites released by the parasite larvae (E/S products) on host immune effector cells. E/S products of cultivated larvae that respresent the early (primary cells) and chronic (metacestode vesicles) phase of AE induced apoptosis and tolerogenic properties (poor responsiveness to LPS stimulation) in host dendritic cells (DC) whereas those of control larvae (protoscoleces) failed to do so. These findings show that the early infective stage of E. multilocularis induces tolerogenicity in host DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. Interestingly, metacestode E/S products promoted the conversion of naïve CD4+ T-cells into Foxp3+ regulatory T-cells in vitro, whereas primary cell and protoscolex E/S products failed to do it. Since Foxp3+ regulatory T-cells are generally known to mediate immunosuppression, the present finding indicates that Foxp3+ regulatory T-cells, expanded by E/S products of the metacestode larva, could play a role in the parasite-driven immunomodulation of the host observed during AE. Furthermore, a substantial increase in number and frequency of suppressive Foxp3+ regulatory T-cells could be observed within peritoneal exudates of mice following intraperitoneal injection of E. multilocularis metacestodes, indicating that Foxp3+ regulatory T-cells could also play an important role in E. multilocularis-driven immunomodulation in vivo. Interestingly, a parasite activin ortholog, EmACT, secreted by metacestodes, was shown to expand host regulatory T-cells in a TGF-β-dependent manner, similarly to mammalian activin A. This observation indicated that E. multilocularis utilizes evolutionarily conserved TGF-β superfamily ligands, like EmACT, to expand host regulatory T-cells. Taken together, the present findings suggest EmACT, a parasite activin secreted by the metacestode and capable of expanding host regulatory T-cells, as an important player in the host immunomodulation by E. multilocularis larvae. Another parasite factor EmTIP, homologous to mammalian T-cell immunomodulatory protein (TIP) was characterized in this work. EmTIP could be detected in the secretions of the parasite primary cells and localized to the intercellular space within the parasite larvae. EmTIP blockade inhibited the proliferation of E. multilocularis primary cells and the formation of metacestode vesicles indicating a major role for parasite development. Furthermore, EmTIP evoked a strong release of IFN-γ by CD4+ T-cells hence suggesting that the secretion of this factor as a result of its role in parasite development could “secondarily” induce a potentially protective Th1 response. In conclusion, this work identified two molecules, EmACT and EmTIP, with high immunomodulatory potential that are released by E. multilocularis larvae. The data presented do provide insights into the mechanisms of parasite-driven host immunomodulation during AE that are highly relevant for the development of anti-parasitic immune therapies. KW - Immunmodulation KW - Fuchsbandwurm KW - Regulatorischer T-Lymphozyt KW - Dendritische Zelle KW - Immunomodulation KW - Helminths KW - Tapeworm KW - Echinococcus KW - Regulatory T-cell KW - Dendritic cell KW - Würmer Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85449 ER - TY - THES A1 - Zavala Góngora, Ricardo T1 - Isolierung, Charakterisierung und Funktionsanalyse von TGF-Beta-Signaltransduktionskomponenten des Fuchsbandwurms Echinococcus multilocularis T1 - Structural and functional characterization of TGFß signaling systems in Echinococcus multilocularis N2 - Die molekularen Mechanismen der Wirt-Parasit-Interaktion bei der durch den Zestoden Echinococcus multilocularis ausgelösten Erkrankung der alveolären Echinokokkose sind bislang ungeklärt. Zudem liegen keine Daten über Entwicklungs- und Differenzierungsmechanismen dieses Parasiten vor, die für die Entwicklung neuer Antiparasitika genutzt werden könnten. Ein bei der Evolution der Metazoen bereits frühzeitig entstandener Signaltransduktionsmechanismus zur Steuerung von Entwicklungsvorgängen ist das TGFβ/BMP-System, das aus strukturell verwandten Zytokinen der TGFβ (transforming growth factor β) bzw. BMP (bone morphogenetic protein)-Familie, oberflächenständigen Rezeptoren der TGFβ-Rezeptorfamilie (Typ I und Typ II) und intrazellulären Signaltransduktoren der Smad-Familie besteht. Außer an Entwicklungsvorgängen tierischer Organismen könnte diesem System eine wichtige Rolle bei der Wirt-Helminth-Kommunikation während Infektionsprozessen zukommen, wie in vorherigen Studien am Nematoden Brugia malayi und am Trematoden Schistosoma mansoni gezeigt werden konnte. Erste, wichtige Schritte zur Charakterisierung von TGFβ und BMP-Signalsystemen in Zestoden wurden in der vorliegenden Arbeit getan. Aufbauend auf einem vorherigen Bericht zu einem Transmembranrezeptor (EmRSK1) und einem Smad-Homologen (EmSmadA) aus Echinococcus multilocularis wurde die Liste der TGFβ/BMP Signaltransduktionsfaktoren in E. multilocularis in dieser Arbeit deutlich erweitert und erstmals umfangreiche funktionelle Studien durchgeführt. Die hier charakterisierten Faktoren umfassen zwei weitere Serin/Threonin-Kinasen der TGFβ/BMP-Rezeptorfamilie (EmRSK2, EmRSK3) sowie intrazelluläre Transduktoren der R-Smad-Subfamilie (EmSmadB, EmSmadC) und ein Homologes zur MAP-kinase-kinase-kinase TAK1 (TGFβ activated kinase 1), genannt EmTAK1. Zudem konnte erstmals für einen parasitären Helminthen ein Zytokin der BMP-Subfamilie, EmBMP, auf molekularer Ebene charakterisiert werden. Strukturelle und funktionelle Untersuchungen legen nahe, dass E. multilocularis sowohl ein TGFβ wie auch ein BMP-Signalsystem exprimiert. Ersteres wird sehr wahrscheinlich durch die Kinase EmRSK2 und den Smad-Faktor EmSmadC gebildet, letzteres durch EmRSK1 und EmSmadB. EmSmadA nimmt eine Sonderstellung ein, da es sowohl durch TGFβ- wie auch durch BMP-Rezeptoren aktiviert werden kann. Die genaue Rolle von EmRSK1 und EmTAK1 wäre durch weitere Untersuchungen zu klären. Signifikante funktionelle Homologien zwischen den TGFβ/BMP-Signalsystemen des Parasiten und Säugern konnten nachgewiesen werden, die sich u.a. darin äußern, dass die Echinococcus Smad-Proteine durch entsprechende Rezeptoren des Menschen aktiviert werden können. Darüber hinaus konnten jedoch auch einige deutliche Unterschiede zwischen den Systemen aus Parasit und Wirt nachgewiesen werden, die sich als Angriffspunkte zur Entwicklung von Chemotherapeutika eignen könnten. So fehlt den Smad-Faktoren EmSmadA und EmSmadC eine MH1-Domäne, die sonst unter allen R-Smads hoch konserviert ist. Zudem sind einige bislang noch nie beschriebene, strukturelle Besonderheiten der Echinococcus TGFβ/BMP-Rezeptoren zu verzeichnen. Auch die Regulation dieser Faktoren und die Kreuz-Interaktion mit weiteren intrazellulären Signalwegen (z.B. der MAP Kinase Kaskade) scheint in E. multilocularis anders zu verlaufen als bislang für Vertebraten, Insekten oder Nematoden beschrieben. Schließlich konnte, als sehr wichtiger Befund, auch nachgewiesen werden dass mindestens ein Rezeptor des Parasiten, EmRSK1, mit einem Zytokin des Wirts (BMP2) in vitro funktionell interagiert. Da BMP2 in Zellkultursystemen, die das Wachstum des Parasiten am befallenen Wirtsorgan nachstellen, einen deutlichen Effekt auf E. multilocularis ausübt, könnte die hier beschriebene EmRSK1/BMP2 – Interaktion von entscheidender Bedeutung für die Wirt-Parasit-Interaktion bei der alveolären Echinokokkose sein. N2 - Up to now, the molecular mechanisms of the interactions between host and parasite in the disease of alveolar echinococcosis, caused by the cestode Echinococcus multilocularis, are not understood. Furthermore there are not data available about the mechanisms of development and differentiation in this parasite that could be used for the design of novel antiinfectives. One of the signaling systems which emerged very early in metazoan evolution and which presumably controls developmental processes in all animals is the TGFβ signal transduction system. This system consists of various factors: structurally related cytokines of the TGFβ (transforming growth factor β) and the BMP (bone morphogenetic protein) family, surface associated receptors of the TGFβ receptor family (type I and type II) and intracellular signal transduction factors of the Smad family. In addition to their crucial role in animal development, TGFβ/BMP systems could also play an important role in the communication between host and helminths during an infection, as has been shown previous studies on the nematode Brugia malayi and the trematode Schistosoma mansoni. In this study, the initial steps towards a characterization of TGFβ/BMP signaling in the third large group of parasitic helminths, the cestodes, have been made. Adding to a previous report on a transmembrane receptor (EmRSK1) and a Smad homologue (EmSmadA) from E. multilocularis, this work significantly extends the list of known TGFβ/BMP signaling factors from Echinococcus and provides, for the first time, functional studies on these systems. The newly characterized factors comprise two further serin/threonin kinases of the TGFβ/BMP receptor family (EmRSK2, EmRSK3), two further intracellular transducing factors belonging to the subfamiliy of R-smads (EmSmadB, EmSmadC) and one homologue of the MAP-kinase-kinase-kinase TAK1 (TGFβ activated kinase 1), which was designated EmTAK1. Furthermore, and for the first time in a parasitic helminth, a cytokine of the BMP subfamily was characterized on the molecular level. Structural and functional studies suggested that E. multilocularis expresses both a TGFβ and a BMP signaling system. The kinase EmRSK2 and the Smad factor EmSmadC are most probably components of the first, EmRSK1 and EmSmadB parts of the latter system. Surprisingly, EmSmadA seems to constitute an unusual Smad since it can be activated by both TGFβ and the BMP receptors upon expression in mammalian cells. The precise roles of EmRSK3 and EmTAK1 have to be determined in future studies. In the present work, significant structural and functional homologies between the TGFβ/BMP systems of E. multilocularis and its mammalian hosts have been detected. Upon expression in human cells, the Echinococcus Smad proteins were, for example, able to functionally interact with the corresponding receptors from Homo sapiens. On the other hand, the E. multilocularis TGFβ/BMP signaling factors also displayed several biochemical differences to those of the host, which could be exploited for the development of antiparasitic drugs. One of these differences is the lack of a usually conserved MH1 domain in EmSmadA and EmSmadC. Moreover, the Echinococcus TGFβ/BMP receptors display several structural features which have not yet been detected in other members of the protein superfamily. Likewise, the regulation of TGFβ/BMP pathways in Echinococcus as well as their cross-interaction with other signaling pathways (e.g. the MAP kinase cascade) seems to differ from the situation in vertebrates, insects and nematodes. Finally, this work also provides evidence that at least one host cytokine, BMP-2, can functionally interact with a receptor of the parasite, EmRSK1. This interaction could be highly relevant for host-parasite interaction mechanisms in alveolar echinococcosis since BMP-2 also exerts clear effects on Echinococcus growth and differentiation in an in vitro cultivation system that mimicks the situation at the affected organ during an infection. KW - Fuchsbandwurm KW - Ontogenie KW - Signaltransduktion KW - Echinococcus KW - TGFß KW - BMP KW - Smad KW - Zestode KW - Echinococcus KW - TGFß KW - BMP KW - Smad KW - cestode Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17755 ER - TY - THES A1 - Konrad, Christian T1 - Molecular analysis of insulin signaling mechanisms in Echinococcus multilocularis and their role in the host-parasite interaction in the alveolar echinococcosis T1 - Molekulare Analyse der Insulin-Signalmechanismen in Echinococcus multilocularis und ihre Rolle in der Wirt-Parasiten-Interaktion in der Alveolären Echinokokkose N2 - The insulin receptor ortholog EmIR of the fox-tapeworm Echinococcus multilocularis displays significant structural homology to the human insulin receptor (HIR) and has been suggested to be involved in insulin sensing mechanisms of the parasite’s metacestode larval stage. In the present work, the effects of host insulin on Echinococcus metacestode vesicles and the proposed interaction between EmIR and mammalian insulin have been studied using biochemical and cell-biological approaches. Human insulin, exogenously added to in vitro cultivated parasite larvae, (i) significantly stimulated parasite survival and growth, (ii) induced DNA de novo synthesis in Echinococcus, (iii) affected overall protein phosphorylation in the parasite, and (iv) specifically induced the phosphorylation of the parasite’s Erk-like MAP kinase orthologue EmMPK1. These results clearly indicated that Echinococcus metacestode vesicles are able to sense exogenous host insulin which induces a mitogenic response. To investigate whether EmIR mediates these effects, anti-EmIR antibodies were produced and utilized in biochemical assays and immunohistochemical analyses. EmIR was shown to be expressed in the germinal layer of the parasite both on the surface of glycogen storing cells and undifferentiated germinal cells. Upon addition of exogenous insulin to metacestode vesicles, the phosphorylation of EmIR was significantly induced, an effect which was suppressed in the presence of specific inhibitors of insulin receptor-like tyrosine kinases. Furthermore, upon expression of EmIR/HIR receptor chimera containing the extracellular ligand binding domain of EmIR in HEK 293 cells, a specific autophosphorylation of the chimera could be induced through the addition of exogenous insulin. These results indicated the capability of EmIR to sense and to transmit host insulin signals to the Echinococcus signaling machinery. The importance of insulin signaling mechanisms for parasite survival and growth were underscored by in vitro cultivation experiments in which the addition of an inhibitor of insulin receptor tyrosine kinases led to vesicle degradation and death. Based on the above outlined molecular data on the interaction between EmIR and mammalian insulin, the parasite’s insulin receptor orthologue most probably mediates the insulin effects on parasite growth and is, therefore, a potential candidate factor for host-parasite communication via evolutionary conserved pathways. In a final set of experiments, signaling mechanisms that act downstream of EmIR have been analyzed. These studies revealed significant differences between insulin signaling in Echinococcus and the related cestode parasite Taenia solium. These differences could be associated with differences in the organo-tropism of both species. N2 - Der orthologe Insulinrezeptor EmIR des Fuchsbandwurmes Echinococcus multilocularis weist signifikante strukturelle Homologie zum humanen Insulinrezeptor (HIR) auf. Es wurde schon seit geraumer Zeit vermutet, dass EmIR an den Mechanismen beteiligt sein könnte, die es dem Metacestoden Larvenstadium des Parasiten erlauben Insulin zu detektieren. In dieser Arbeit wurden die Effekte von Wirtsinsulin auf Echinococcus Metacestoden-Vesikel und die vermutete Interaktion zwischen EmIR und Insulin von Säugern mittels biochemischer und zellbiologischer experimenteller Ansätze untersucht. Die exogene Zugabe von humanem Insulin zu in vitro kultivierten Parasitenlarven hatte folgende Effekte: (i) das Überleben und das Wachstum des Parasiten wurde signifikant stimuliert; (ii) die DNA de novo Synthese in Echinococcus wurde induziert; (iii) die generelle Proteinphosphorylierung des Parasiten wurde beeinflusst; (iv) die Phosphorylierung der orthologen Erk-like MAP Kinase, EmMPK1, des Parasiten wurde spezifisch induziert. Diese Beobachtungen zeigen deutlich, dass Echinococcus Metacestoden-Vesikel exogenes Insulin des Wirtes detektieren können und dass dieses Insulin einen mitogenischen Effekt auf den Parasiten hat. Um zu untersuchen, ob diese Effekte durch EmIR vermittelt werden, wurden anti-EmIR Antikörper hergestellt und in biochemischen experimentellen Ansätzen und immunohistochemischen Analysen eingesetzt. Es konnte gezeigt werden, dass EmIR in der Germinalschicht des Parasiten expremiert wird, sowohl an der Oberfläche von Glykogen-Speicherzellen als auch von undifferenzierten Germinalzellen. Nach der Zugabe von exogenem Insulin konnte eine signifikante Zunahme der Phosphorylierung von EmIR festgestellt werden. Diese Stimulierung konnte durch die Zugabe eines spezifischen Inhibitors für Insulinrezeptor-ähnliche Tyrosinkinasen unterdrückt werden. Desweiteren konnte mittels der Expression eines chimären EmIR/HIR-Rezeptors, der die extrazelluläre Ligandenbindungsdomäne von EmIR enthielt, in HEK293 Zellen gezeigt werden, dass die Zugabe von exogenem Insulin eine spezifische Autophosphorylierung der Chimäre induziert. Diese Ergebnisse bezeugen die Fähigkeit von EmIR Insulin-abhängige Signale des Wirtes einerseits zu detektieren und andererseits an die Echinococcus Signalwege weiter zu leiten. Die Bedeutung von Insulin-Signalmechanismen für das Überleben und das Wachstum des Parasiten konnte durch in vitro Kultivierungsexperimente aufgezeigt werden. Die Zugabe eines Inhibitors spezifisch für Insulinrezeptor Tyrosinkinasen verursachte die Degradation und den Tod der Metacestoden-Vesikel. Basierend auf den dargelegten molekularen Daten bezüglich der Interaktion zwischen EmIR und Insulin von Säugern erscheint es sehr wahrscheinlich, dass der orthologe Insulinrezeptor des Parasiten die Effekte von Insulin auf das Wachstum des Parasiten vermittelt. Aus diesem Grund ist EmIR ein potentieller Kandidat für die Kommunikation zwischen Wirt und Parasiten mittels evolutionär konservierten Signalwegen. Die Signalmechanismen unterhalb von EmIR wurden in abschließenden Experimenten untersucht. Diese offenbarten deutliche Unterschiede in der Weiterleitung von Insulin induzierten Signalen zwischen Echinococcus und dem verwandten parasitären Zestoden Taenia solium. Diese Unterschiede könnten mit dem unterschiedlichen Organtropismus beider Arten in Verbindung stehen. KW - Fuchsbandwurm KW - Insulin KW - Echinokokkus KW - Insulin KW - Helminth KW - EmERK KW - Echinococcus KW - insulin KW - helminth KW - EmERK Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22636 ER - TY - THES A1 - Hemer, Sarah T1 - Molecular characterization of evolutionarily conserved signaling systems of Echinococcus multilocularis and their utilization for the development of novel drugs against Echinococosis T1 - Molekulare Charakterisierung evolutionsgeschichtlich konservierter Signalsysteme und deren Nutzung für die Entwicklung neuer Medikamente gegen Echinococcose N2 - Alveolar echinococcosis (AE), a severe and life-threatening disease is caused by the small fox tapeworm Echinococcus multilocularis. Currently, the options of chemotherapeutic treatment are very limited and are based on benzimidazole compounds, which act merely parasitostatic in vivo and often display strong side effects. Therefore, new therapeutic drugs and targets are urgently needed. In the present work the role of two evolutionarily conserved signalling pathways in E. multilocularis, namely the insulin signalling cascade and Abl kinases, has been studied in regard to host-parasite interaction and the possible use in anti-AE chemotherapy. N2 - Die alveoläre Echinokokkose ist eine ernste und lebensgefährliche Erkrankung, die durch den kleinen Fuchsbandwurm ausgelo ̈st wird. Die gegenwärtigen chemotherapeutischen Behandlungsmöglichkeiten beschränken sich auf die Behandlung mit Benzimidazolen, die in vivo nur parasitostatische Wirkung besitzen und häufig sehr starke Nebenwirkungen aufweisen. Aus diesem Grund besteht ein dringendes Bedürfnis nach neuen Medikamenten und Angriffszielen für diese. In der vorliegenden Arbeit wurde die Rolle zweier evolutionsgeschichtlich konservierter Signalsysteme, der Insulin Signalweg und die Abl Kinasen in E. multilocularis in Hinblick auf die Wirt-Parasiten Interaktion und dem mo ̈glichen Nutzen in der AE Chemotherapie untersucht. KW - Fuchsbandwurm KW - Insulin KW - Chemotherapie KW - Echinococcus KW - Insulin KW - Chemotherapie KW - Imatinib KW - Abl KW - Echinococcus KW - Insulin KW - Chemotherapy KW - Abl KW - Imatinib Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74007 ER - TY - THES A1 - Herz, Michaela T1 - Molecular characterization of the serotonin and cAMP-signalling pathways in Echinococcus T1 - Molekulare Charakterisierung der Serotonin- und cAMP-Signalwege in Echinococcus N2 - Alveolar and cystic echinococcosis, caused by Echinococcus multilocularis and Echinococcus granulosus respectively, are severe zoonotic diseases with limited treatment options. The sole curative treatment is the surgical removal of the complete parasite material. Due to late diagnosis, chemotherapeutic treatment often is the only treatment option. Treatment is based on benzimidazoles, which merely act parasitostatic and often display strong side effects. Therefore, new therapeutic drugs are urgently needed. Evolutionarily conserved signalling pathways are known to be involved in hostparasite cross-communication, parasite development and survival. Moreover, they represent potential targets for chemotherapeutic drugs. In this context the roles of the serotonin- and cAMP-signalling pathways in Echinococcus were studied. Genes encoding serotonin receptors, a serotonin transporter and enzymes involved in serotonin biosynthesis could be identified in the E. multilocularis and E. granulosus genomes indicating that these parasites are capable of synthesizing and perceiving serotonin signals. Also the influence of exogenous serotonin on parasite development was studied. Serotonin significantly increased metacestode vesicle formation from primary cells and re-differentiation of protoscoleces. Inhibition of serotonin transport with citalopram significantly reduced metacestode vesicle formation from primary cells and caused death of protoscoleces and metacestodes. Furthermore, it could be shown that serotonin increased phosphorylation of protein kinase A substrates. Taken together, these results show that serotonin and serotonin transport are essential for Echinococcus development and survival. Consequently, components of the serotonin pathway represent potential drug targets. In this work the cAMP-signalling pathway was researched with focus on G-protein coupled receptors and adenylate cyclases. 76 G-protein coupled receptors, including members of all major families were identified in the E. multilocularis genome. Four genes homologous to adenylate cyclase IX were identified in the E. multilocularis genome and three in the E. granulosus genome. While glucagon caused no significant effects, the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor 2’, 5’ didesoxyadenosine influenced metacestode vesicle formation from primary cells, re-differentiation of protoscoleces and survival of metacestodes. It was further shown that forskolin increases phosphorylation of protein kinase A substrates, indicating that forskolin activates the cAMP-pathway also in cestodes. These results indicate that the cAMP signalling pathway plays an important role in Echinococcus development and survival. To complement this work, the influence of different media and additives on E. granulosus protoscoleces was investigated. Anaerobic conditions and the presence of FBS prolonged protoscolex survival while different media influenced protoscolex activation and development. Taken together, this work provided important insights into developmental processes in Echinococcus and potential drug targets for echinococcosis chemotherapy. N2 - Alveoläre und zystische Echinokokkose, hervorgerufen durch Echinococcus multilocularis und Echinococcus granulosus, sind schwere zoonotische Erkrankungen mit eingeschränkten Behandlungsmöglichkeiten. Die einzig kurative Therapie besteht in der chirurgischen Entfernung des gesammten Parasitenmaterials. Aufgrund später Diagnosestellung stellt Chemotherapie oft die einzige Behandlungsmöglichkeit dar. Die derzeitige Therapie basiert auf Benzimidazolen, welche nur parasitostatisch wirken und oft schwere Nebenwirkungen hervorrufen. Neue Medikamente werden daher dringend benötigt. Evolutionär konservierte Signalwege sind bekanntermaßen an Wirt-Parasit Kreuzkommunikation, Parasitenentwicklung und deren Überleben beteiligt. Darüber hinaus stellen sie auch mögliche Angriffspunkte für Chemotherapeutika dar. In diesem Zusammenhang wurden die Rollen des Serotonin- und des cAMP-Signalwegs in Echinococcus untersucht. Gene für Serotoninrezeptoren, einen Serotonintransporter und für Enzyme, die in der Serotoninsynthese involviert sind, konnten in den E. multilocularis und E. granulosus Genomen identifiziert werden, was darauf schließen lässt, dass diese Parasiten in der Lage sind, Serotonin selbst herzustellen und zu sensieren. Des Weiteren wurde der Einfluss von exogenem Serotonin auf die Parasitenentwicklung untersucht. Serotonin förderte die Bildung von Metazestodenvesikeln aus Primärzellen und die Rückdifferenzierung von Protoskolizes signifikant. Die Hemmung des Serotonintransports mit Citalopram reduzierte die Bildung von Metazestodenvesikeln aus Primärzellen signifikant und führte zum Absterben von Protoskolizes undMetazestoden. Des Weiteren konnte gezeigt werden, dass Serotonin die Posphorylierung von Proteinkinase A Substraten erhöht. Zusammengefasst zeigen diese Ergebnisse, dass Serotonin und Serotonintransport essentiell f¨ur die Entwicklung und das Überleben von Echinococcus sind. Folglich stellen Komponenten des Serotoninsignalwegs potentielle Angriffspunkte für Medikamente dar. In dieser Arbeit wurde der cAMP-Signalweg mit Schwerpunkt auf G-Protein gekoppelte Rezeptoren und Adenylatzyklasen untersucht. 76 G-Protein gekoppelte Rezeptoren, inclusive Mitglieder aller Hauptfamilien, wurden im E. multilocularis-Genom identifiziert. Vier Homologe zur Adenylatzyklase IX wurden im E. multilocularis- Genom und drei im E. granulosus-Genom identifiziert. Während Glukagon keine signifikanten Effekte hervorrief, beeinflussten der Adenylatzyklase-Aktivator Forskolin und der Adenylatzyklase-Inhibitor 2’, 5’-Didesoxyadenosin die Bildung von Metazestodenvesikeln aus Primärzellen, die Rückdifferenzierung von Protoskolizes und das Überleben vonMetazestoden. Zudem wurde gezeigt, dass Forskolin die Phosphorylierung von Proteinkinase A-Substraten erhöht. Dies bestätigt, dass Forskolin den cAMP-Signalweg aktiviert. Diese Ergebnisse legen nahe, dass der cAMP-Signalweg eine wichtige Rolle in der Entwicklung und dem Überleben von Echinococcus spielt. Um diese Arbeit zu vervollständigen, wurde der Einfluss von verschiedenen Medien und Zusätzen auf E. granulosus Protoskolizes untersucht. Anaerobe Bedingungen und die Anwesenheit von FBS verlängerten das Überleben von Protoskolizes, während verschiedene Medien die Aktivierung und die Entwicklung von Protoskolizes beeinflussten. Insgesamt gibt diese Arbeit wichtige Einblicke in Entwicklungsprozesse von Echinococcus und zeigt potentielle Angriffspunkte für Medikamente auf. KW - Serotonin KW - Cyclo-AMP KW - Fuchsbandwurm KW - cAMP KW - Echinococcus Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139249 ER - TY - THES A1 - Herrmann, Ruth Magdalena T1 - Molekular- und zellbiologische Untersuchung zur Rolle des kanonischen Wnt-Signalwegs bei der Entwicklung von \(Echinococcus\) \(multilocularis\) T1 - Molecular and cell biological investigations on the role of canonical Wnt signaling in \(E.\) \(multilocularis\) development N2 - Die alveoläre Echinokokkose (AE) ist eine lebensbedrohliche Erkrankung des Menschen, welche durch das infiltrative Wachstum des Metazestoden-Larvenstadiums des Fuchsbandwurms (Echinococcus multilocularis) in der Leber verursacht wird. Das tumorartige Wachstum des Metazestoden beruht auf einer Echinococcus-spezifischen Modifikation der anterior-posterioren-Körperachse (AP Achse). Es wird vermutet, dass dabei der anteriore Pol der invadierenden Oncospären-Larve zunächst abgeschaltet wird und sich der Metazestode anschließend asexuell als vesikuläres, posteriorisiertes Gewebes im Wirt vermehrt. Nach massiver Proliferation wird der anteriore Pol reetabliert und führt zur Bildung zahlreicher Bandwurm-Kopfanlagen (Protoskolizes). Da die Ausbildung der AP Körperachse evolutionsgeschichtlich konserviert über den wingless-related (Wnt)-Signalweg gesteuert wird, wurde in dieser Arbeit die Rolle von Wnt-Signaling bei der Musterbildung von E. multilocularis über molekular- und zellbiologische Studien näher beleuchtet. Zentraler methodischer Ansatz der vorliegenden Arbeit war ein E. multilocularis Stammzell-Kultursystem, das Primärzellsystem, welches die in vitro-Generierung von Metazestoden-Vesikeln durch Proliferation und Differenzierung von germinativen Zellen (Stammzellen) erlaubt. Über RNA-Sequenzierung wurde zunächst gezeigt, dass in Primärzellkulturen sowohl Markergene für posteriore Entwicklung in Richtung Metazestode wie auch für Anterior-und Protoskolexmarker exprimiert werden. Unter Verwendung von RNA-Interferenz (RNAi) wurde anschließend ein erfolgreicher Knockdown des vermuteten Hauptregulators des kanonischen Wnt-Signalwegs, β Catenin (em-bcat1), erreicht und führte zu einem charakteristischen, sogenannten ‚red dot‘ Phänotyp, dem ersten jemals beschriebenen RNAi Phänotyp für E. multilocularis-Primärzellen. Primärzellkulturen nach em-bcat1 RNAi zeigten eine stark verminderte Fähigkeit, Metazestoden-Vesikel zu bilden sowie eine Überproliferation von germinativen Zellen. Zusätzliche RNA-Seq-Analysen des Transkriptoms von RNAi(em-bcat1)-Kulturen zeigten eine signifikant verringerte Expression von Posterior- und Metazestodenmarkern, während Anterior- und Protoskolexmarker deutlich überexprimiert wurden. Durch umfangreiche Whole-mount-in-situ-Hybridisierung (WMISH)-Experimente wurden diese Daten für eine Reihe ausgewählter Markergene für posteriore (Metazestode; em-wnt1, em-wnt11b, em-muc1) und für anteriore Entwicklung (Protoskolex; em sfrp, em-nou-darake, em npp36, em-frizzled10) verifiziert. In allen genannten Fällen zeigte sich durch Änderung der Polarität eine verminderte Genexpression von Posteriormarkern, während Anteriormarker deutlich erhöht exprimiert wurden. Ähnlich wie bei den verwandten, freilebenden Planarien, führt demnach ein Knockdown des zentralen Wnt-Regulators β-Catenin bei E. multilocularis zu einer anteriorisierten, Anterior- und Protoskolexmarker dominierte Genexpression, welche der posteriorisierten Entwicklung zum Metazestoden entgegenwirkt. Neben Markergenen für die Ausbildung der AP-Achse wurden in dieser Arbeit auch solche für die medio-laterale (ML)-Körperachse bei Zestoden erstmals beschrieben. So zeigte sich, dass ein Slit-Ortholog (em slit) im E. multilocularis Protoskolex im Bereich der Körper-Mittellinie exprimiert wird und lieferte Hinweise darauf, dass, ähnlich zur Situation bei Planarien, die ML Achse von E. multilocularis durch Morphogengradienten aus slit (Mittellinie) und wnt5 (lateral) definiert wird. Im Metazestoden wird hingegen nur em-slit exprimiert. Der Metazestode besitzt damit als posterior-medianisiertes Gewebe Anlagen zur Polarität zur AP- und ML-Achse, welche erst mit Bildung von Protoskolizes vollständig etabliert werden. Schließlich deuten die Ergebnisse dieser Arbeit darauf hin, dass bei der Wiederherstellung der Körperachsen während der Entwicklung von Protoskolizes Hedgehog (Hh)-Signale entscheidend mitwirken. Zusammenfassend wurde in dieser Arbeit der zentrale Faktor des kanonischen Wnt Signalwegs, β-Catenin, als Hauptregulator der Entwicklung des tumorartig wachsenden E. multilocularis-Metazestoden identifiziert. Zudem wurde gezeigt, dass zur Metazestodenbildung neben einer Echinococcus-spezifischen Modifikation der AP Körperachse auch eine solche der ML Achse beiträgt. In humanen malignen Tumoren sind der Wnt-, Slit-Robo- und Hh-Signalweg gut erforschte Wirkstofftargets und könnten in Zukunft in ähnlicher Weise für eine zielgerichtete Therapie von AE dienen. N2 - Alveolar echinococcosis (AE) is a life-threatening human disease caused by the infiltrative growth of the metacestode larval stage of the fox tapeworm (Echinococcus multilocularis) within the host liver. According to previous research, the tumor-like growth of the metacestode is due to an Echinococcus-specific modification of the anterior-posterior (AP)-body axis formation. It is thus assumed that the invading oncosphere larva transiently represses the anterior pole, giving rise to metacestode vesicles which proliferate within the host as posteriorized tissue. Upon massive proliferation, the anterior pole is re-established at numerous sites within the metacestode tissue, yielding large numbers of tapeworm heads (protoscoleces). Since the formation of the AP-body axis is evolutionarily conserved and regulated by canonical wingless-related (Wnt) signaling, the present work investigated in detail the role of the Wnt-pathway in Echinococcus metacestode formation via molecular and cell biological studies. Methodologically, this work focussed on an Echinococcus stem cell cultivation system, called the primary cell system, which allows the in-vitro generation of mature metacestode vesicles through proliferation and differentiation of germinative cells (stem cells). By genome-wide RNA-Seq transcriptomics it is shown that primary cell cultures express marker genes for both posterior development towards the metacestode as well as anterior development of head organizers. By RNA interference (RNAi), successful knockdown of the presumed central regulator of canonical Wnt-signaling, β-catenin (em-bcat1), was achieved, yielding a striking phenotype ('red dot'), the first RNAi phenotype described for E. multilocularis primary cells. Primary cell cultures after em-bcat1 RNAi showed a greatly reduced ability to form metacestode vesicles as well as an overproliferation of germinative cells. Additional RNA-Seq analysis of the transcriptome of RNAi(em-bcat1) cultures indicated significantly decreased expression of posterior and metacestode markers whereas anterior and protoscolex markers were markedly overexpressed. These data were verified using whole-mount-in-situ-hybridization (WMISH) for several selected marker genes for posterior (metazestode; em-wnt1, em-wnt11b, em-muc1) and for anterior development (protoscolex; em-sfrp, em-nou-darake, em npp36, em frizzled10). In all cases, a change in polarity showed decreased gene expression of posterior markers whereas anterior markers were significantly increased in expression. Similar to the situation in related planarians, knockdown of β Catenin in E. multilocularis lead in anteriorized, anterior- and protoscolex marker-dominated gene expression and antagonized the formation of the posteriorized metacestode. In addition to marker genes for AP-axis formation, this work also established marker genes for the medio-lateral (ML)-body axis in cestodes for the first time. In particular, a slit orthologue (em slit) was shown to be expressed in the E. multilocularis protoscolex at the body midline and provided evidence that, similar to the situation in planarians, the ML-axis of E. multilocularis is defined by morphogen gradients consisting of slit (midline) and wnt5 (lateral). In contrast, only em-slit is expressed in the metacestode. Thus, the metacestode tissue is indeed posterior-medianized and the AP- and ML-axes are established only with formation of protoscoleces. Finally, the results of this work suggest that Hedgehog (Hh) signaling plays a critical role in the reestablishment of body axes during protoscoleces development. In conclusion, this work identified the central regulator of the canonical Wnt-signaling pathway, β-catenin, as a master regulator of E. multilocularis metacestode development. Furthermore, it is herein established that metacestode formation not only involves Echinococcus-specific modification of the AP-axis but also of the ML-axis. In human malignant tumors, the Wnt, Slit-Robo, and Hh-pathway are well-studied drug targets and may similarly serve for AE targeted therapy in the future. KW - Fuchsbandwurm KW - Transkriptomanalyse KW - foxtapeworm KW - Echinococcus KW - Wnt-Signalweg KW - Körperachsen KW - Germinative Zellen KW - beta-Catenin KW - Wnt-pathway KW - body axis KW - Stammzelle Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271937 ER - TY - JOUR A1 - Schubert, Andreas A1 - Koziol, Uriel A1 - Cailliau, Katia A1 - Vanderstraete, Mathieu A1 - Dissous, Colette A1 - Brehm, Klaus T1 - Targeting Echinococcus multilocularis Stem Cells by Inhibition of the Polo-Like Kinase EmPlk1 N2 - Background Alveolar echinococcosis (AE) is a life-threatening disease caused by larvae of the fox-tapeworm Echinococcus multilocularis. Crucial to AE pathology is continuous infiltrative growth of the parasite's metacestode stage, which is driven by a population of somatic stem cells, called germinative cells. Current anti-AE chemotherapy using benzimidazoles is ineffective in eliminating the germinative cell population, thus leading to remission of parasite growth upon therapy discontinuation. Methodology/Principal findings We herein describe the characterization of EmPlk1, encoded by the gene emplk1, which displays significant homologies to members of the Plk1 sub-family of Polo-like kinases that regulate mitosis in eukaryotic cells. We demonstrate germinative cell-specific expression of emplk1 by RT-PCR, transcriptomics, and in situ hybridization. We also show that EmPlk1 can induce germinal vesicle breakdown when heterologously expressed in Xenopus oocytes, indicating that it is an active kinase. This activity was significantly suppressed in presence of BI 2536, a Plk1 inhibitor that has been tested in clinical trials against cancer. Addition of BI 2536 at concentrations as low as 20 nM significantly blocked the formation of metacestode vesicles from cultivated Echinococcus germinative cells. Furthermore, low concentrations of BI 2536 eliminated the germinative cell population from mature metacestode vesicles in vitro, yielding parasite tissue that was no longer capable of proliferation. Conclusions/Significance We conclude that BI 2536 effectively inactivates E. multilocularis germinative cells in parasite larvae in vitro by direct inhibition of EmPlk1, thus inducing mitotic arrest and germinative cell killing. Since germinative cells are decisive for parasite proliferation and metastasis formation within the host, BI 2536 and related compounds are very promising compounds to complement benzimidazoles in AE chemotherapy. Author Summary The lethal disease AE is characterized by continuous and infiltrative growth of the metacestode larva of the tapeworm E. multilocularis within host organs. This cancer-like progression is exclusively driven by a population of parasite stem cells (germinative cells) that have to be eliminated for an effective cure of the disease. Current treatment options, using benzimidazoles, are parasitostatic only, and thus obviously not effective in germinative cell killing. We herein describe a novel, druggable parasite enzyme, EmPlk1, that specifically regulates germinative cell proliferation. We show that a compound, BI 2536, originally designed to inhibit the human ortholog of EmPlk1, can also inhibit the parasite protein at low doses. Furthermore, low doses of BI 2536 eliminated germinative cells from Echinococcus larvae in vitro and prevented parasite growth and development. We propose that BI 2536 and related compounds are promising drugs to complement current benzimidazole treatment for achieving parasite killing. KW - Vesicles KW - Sequence motif analysis KW - Xenopus oocytes KW - Echinococcus KW - Benzimidazoles KW - Host-pathogen interactions KW - Larvae KW - Cancer treatment Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112806 ER - TY - JOUR A1 - Brehm, Klaus A1 - Koziol, Uriel A1 - Rauschendorfer, Theresa A1 - Rodríguez, Luis Zanon A1 - Krohne, Georg T1 - The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis N2 - Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae. KW - Cestoda KW - Echinococcus KW - Neoblast KW - Germinative cell KW - Stem cell KW - Nanos KW - Argonaute KW - Mucin KW - Alkaline phosphatase Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110315 ER - TY - THES A1 - Jensen, Katharina T1 - Untersuchungen zum mRNA Trans-Spleißen bei den humanparasitischen Cestoden Echinococcus multilocularis und Echinococcus granulosus T1 - mRNA trans-splicing in the human parasitic cestode Echinococcus multilocularis and Echinococcus granulosus N2 - SL-Trans-Spleißen ist ein Mechanismus zur Transkriptprozessierung, welcher bisher bei kinetoplastiden Protozoen, Trematoden und Nematoden beschrieben wurde. Im Rahmen der vorliegenden Arbeit wurde erstmals das Gen für einen Spliced Leader (SL) aus den Cestoden E. multilocularis und E. granulosus charakterisiert. Ausgangspunkt waren Studien zur Genregulation des E. multilocularis Gens elp, welches für einen Faktor der ERM-Familie kodiert. Es konnte gezeigt werden, daß elp über mindestens zwei unterschiedliche Transkripte kodiert wird. Für eines dieser Transkripte konnte gezeigt werden, daß ein 32 Nukleotide langes, nicht-proteinkodierendes Exon über konservatives Spleißen mit dem startmethionin-kodierenden Exon II der elp-mRNA fusioniert wird. Der entsprechende Transkriptionsstartpunkt und zugehörige Promotorstrukturen konnten auf dem E. multilocularis Chromosom identifiziert werden. Ein zweites Transkript enthielt anstelle des 32 nt Exon I von elp ein alternatives 36 nt langes Exon am 5‘-Ende, welches nicht Teil des genomischen elp Lokus ist. Im Rahmen der vorliegenden Arbeit wurde gezeigt, daß dieses 36 nt lange Exon einen Spliced Leader (SL) von E. multilocularis darstellt. Eine Analyse von E. multilocularis cDNA-Bibliotheken ergab, daß sich das 36 nt Exon nicht nur am 5‘-Ende der elp-mRNA befindet, sondern in identischer Form auch am 5‘-Ende von mindestens elf anderen mRNAs von E. multilocularis. Das zugehörige SL-RNA-Gen konnte isoliert und vollständig charakterisiert werden. Es befand sich auf einem 1513 bp langen Fragment, welches auf dem E. multilocularis Genom als mehrfacher Repeat angeordnet ist. Auf DNA-Sequenzebene konnte gezeigt werden, daß dieses Gen signifikante Homologien zu bereits bekannten SL-RNA-Sequenzen von Trematoden und Turbellaria nicht jedoch zu solchen von Nematoden und kinetoplastiden Protozoen aufweist. Die Sekundärstruktur der kodierten SL-RNA besitzt zudem strukturelle Charakteristika, die für SL-RNAs anderer Organismen bereits bekannt sind. Zusammengenommen lassen diese Daten den Schluß zu, daß es sich bei dem 36 nt langen Exon in der Tat um einen SL von E. multilocularis handelt. Die für E. multilocularis identifizierten trans-gespleißten mRNAs kodieren für Faktoren, welche an einer Reihe unterschiedlicher Prozesse in der Zelle beteiligt sind. Signifikante Unterschiede in den Spektren der trans-gespleißten Faktoren bei Echinococcus und anderen Plathelminthen können als Hinweis gewertet werden, daß keine generelle Korrelation besteht zwischen Trans-Spleißen einer bestimmten mRNA und der biologischen Funktion des Faktors. Ein zum SL-Gen von E. multilocularis hoch homologes Gen konnte zudem auf chromosomaler DNA des Hundebandwurms E. granulosus identifiziert werden. Trans-Spleißen wird demnach nicht nur vom Fuchsbandwurm, sondern auch vom Hundebandwurm zur Genexpression genutzt. Im Falle von elp besteht die ungewöhnliche Situation, daß ein identisches Protein zwei verschiedene Transkripte kodiert von denen eines konventionell und das andere trans-gespleißt wird. Der Regulationsmechanismus dieses alternativen Cis/Trans-Spleißens wurde in dieser Arbeit untersucht. Hierbei konnte gezeigt werden, daß den zwei elp Transkripten auch zwei unterschiedliche Primärtranskripte zugrunde liegen. Die dabei erlangten Daten stehen in Einklang mit dem gegenwärtigen Modell, daß alternatives Cis/Trans-Spleißen an einer Splice Akzeptorstelle ausschließlich vom Vorhandensein einer stromaufwärts gelegenen Splice Donorstelle abhängt. Weitere Studien haben gezeigt, daß die Expression der trans-oder cis-gespleißten elp-mRNA weder stadien- noch isolat-oder zytospezifische ist. Zusammenfassend konnten in dieser Arbeit erstmals umfassende Daten zum Mechanismus des Trans-Spleißens bei einem Cestoden erlangt werden, was sich für weitere molekularbiologische Untersuchungen an diesem Organismus hervorragend ausnutzen läßt. In einer abschließenden Studie wurde versucht einen weiteren ERM-homologen Faktor, der eventuell auch über alternatives Cis/Trans-Spleißen exprimiert wird, über PCR mit degenerativen Primern zu identifizieren. Es konnte jedoch neben elp kein anderer homologer Faktor bestimmt werden. Dieses Ergebnis entspricht den bereits bei anderen niederen Eukaryonten durchgeführten Untersuchungen. N2 - For information in english regarding this dissertation please have a look at the following references: Brehm K, Jensen K, Frosch M (1999) Characterization of the genomic locus expressing the ERM-like protein of Echinococcus multilocularis. Mol Biochem Parasitol. 15, 147-152 Brehm K, Jensen K, Frosch M (2000) mRNA trans-splicing in the human parasitic cestode Echinococcus multilocularis. J Biol Chem. 275, 38311-38318 KW - Trans-Spleißen KW - Spleißen KW - Cestoden KW - Echinococcus KW - mRNA KW - splicing KW - echinococcus KW - cestode KW - trans-splicing KW - mRNA Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5842 ER - TY - THES A1 - Spiliotis, Markus T1 - Untersuchungen zur in vitro Kultivierung und Charakterisierung von MAP-Kinase-Kaskade-Komponenten des Fuchsbandwurmes Echinococcus multilocularis T1 - Echinococcus multilocularis: in vitro cultivation and characterisation of MAP kinase cascade components N2 - Es wird angenommen, dass die invasiven Stadien parasitärer Helminthen zur Organfindung und zur Weiterentwicklung auf die Sensierung spezifischer Wirts-Signale angewiesen sind, wobei die molekulare Natur dieser Signale bislang weitgehend ungeklärt ist. Vorangegangene Untersuchungen am Fuchsbandwurm Echinococcus multilocularis, dem Erreger der alveolären Echinokokkose, hatten bereits ergeben, dass dessen Metacestoden-Larvenstadium zur Weiterentwicklung kleine, lösliche Wirtsmoleküle benötigt. In der vorliegenden Arbeit wurde erstmals ein axenisches (Wirtszell-freies) Kultursystem für das Metacestoden-Stadium entwickelt, mittels dessen sich diese Fragestellungen in vitro angehen lassen. Mit Hilfe dieses Kultursystems konnte in der vorliegenden Arbeit gezeigt werden, dass die drei Wirts-Hormone/Zytokine, Insulin, epidermal growth factor (EGF) und bone morphogeneic protein 2 (BMP2), einen Einfluss auf die Proliferation und die Differenzierung von E. multilocularis haben. Während für Insulin und EGF Wachstums-stimulierende Effekte gezeigt werden konnten, förderte BMP2 die Differenzierung des Metacestoden zum nächsten Larvenstadium, dem Protoscolex. In Modellorganismen wie Säugern, Drosophila und Caenorhabditis elegans verlaufen die durch Insulin- und EGF-ähnlichen Zytokine induzierten Signalmechanismen über die sogenannte mitogen activated protein (MAP)-Kinase-Kaskade. Um zu untersuchen, ob die externe Zugabe von Wirts-Insulin bzw. -EGF in einer Stimulierung der MAPK-Kaskade des Parasiten führt, wurden in dieser Arbeit zunächst die Komponenten dieses Signalweges bei E. multilocularis auf molekulargenetischer und biochemischer Ebene charakterisiert. Die Arbeiten umfassten Studien zu kleinen GTPasen des Parasiten (EmRas, EmRap1, EmRap2, EmRal), zu einem Orthologen der Kinase Raf (EmRaf), sowie Orthologen der Kinasen MEK (EmMKK) und ERK (EmERK). Es konnte gezeigt werden, dass diese Faktoren in E. multilocularis Teil einer MAP-Kinase-Kaskade sind. Zudem wurde nachgewiesen, dass diese Faktoren stromabwärts eines EGF-Rezeptor-Orthologen (EmER) des Parasiten fungieren, welches ebenfalls in der vorliegenden Arbeit analysiert wurde. Damit wurden die Voraussetzungen geschaffen, den Einfluss exogen zugegebenen Insulins bzw. EGFs auf die Aktivierung der MAP-Kinase-Kaskade im Parasiten zu untersuchen. Erste Analysen zeigten bereits, dass die zentrale Komponente dieser Kaskade, EmERK, durch die genannten Wirts-Zytokine aktiviert wird. Dies legt nahe, dass Wirt-Parasit-Kommunikationsmechanismen über evolutionsgeschichtlich konservierte Signalsysteme eine wichtige Rolle im Infektionsgeschehen der alveolären Echinokokkose spielen. Aufbauend auf dem axenischen Kultursystem ist es in dieser Arbeit auch erstmals gelungen, Primärzellkulturen für E. multilocularis anzulegen und die Parasitenzellen zur in vitro Neubildung von Metacestoden-Vesikeln anzuregen. Erste Experimente zur genetischen Manipulation dieser Primärzellen konnten erfolgreich durchgeführt werden. Aufbauend auf der hier vorgestellten Methodik sollte es in künftigen Untersuchungen möglich sein, stabil transfizierte Echinococcus-Zellen zu generieren und diese zur Herstellung vollständig transgener Parasiten-Stadien zu nutzen. Dies würde die zur Untersuchung der E. multilocularis-Entwicklung und der Wirt-Parasit-Interaktionsmechanismen bei einer Infektion zur Verfügung stehenden Methoden entscheidend erweitern und könnte u.a. zur weiteren biochemischen Analyse der in dieser Arbeit dargestellten Signalmechanismen des Parasiten herangezogen werden. N2 - It is assumed that the invasive stages of parasitary helminths are reliant on the sensing of specific host signals for organ targeting and development. The molecular nature of these signals is still mostly unsettled. Previous studies on the fox tapeworm Echinococcus multilocularis, the causative organism of alveolar echinococcosis showed that the metacestode larval stage requires small, soluble host molecules to develop further. For the first time, in this study an axenic (without host cells) culture system for the metacestode stage was developed which allows to address these questions in vitro. Using this culture system it could be shown that the three host hormomes/zytokines, insulin, epidermal growth factor (EGF) and bone morphogeneic protein 2 (BMP2) have influence on proliferation and differentiation of E. multilocularis. While insulin and EGF had growth-stimulating effects, BMP2 results in metacestode differentiation to the next larval stage, the protoscolex. In model organisms such as mammals, Drosophila und Caenorhabditis elegans the signals induced by insulin and EGF-related zytokines are transferred by the so-called mitogen activated protein (MAP) kinase cascade. In order to determine whether external addition of host insuline or host EGF leads to a stimulation of the MAPK cascade of the parasite, initially the components of the signal path of E. multilocularis were characterized on the moleculargenetic and biochemical level. The research comprised studies on small GTPases of the parasite (EmRas, EmRap1, EmRap2, EmRal) and an orthologue of the Raf Kinase (EmRaf) as well as orthologues of the MEK kinase (EmMKK) and ERK kinase (EmERK). It could be shown that the mentioned factors are part of a MAP kinase cascade in E. multilocularis. Furthermore it could be demonstrated that these factors act downstream of an EGF-receptor orthologue (EmER) of the parasite, which was also analysed in this study. Thereby a base was provided to investigate the influence of exogenic added insulin or EGF on the activation of the MAP kinase cascade in the parasite.First analyses showed that the mentioned host cytokines activate EmERK, the central component of this cascade. This suggests that host-parasite communication via evolutionary conserved signal systems play an important role in the infection scenario of the alveolar echinococcosis. Based on the axenic culture system, for the first time primary cells for E. multilocularis could be cultured and in vitro regeneration of metacestode vesicles could be excited in the parasite cells. First experiments on genetic manipulation on the primary cells were effected successfully. On this basis it should be possible to generate stable transfected Echinococcus cells and use these to generate completely transgenic parasite stages in future studies. This would be a critical extension of the set of methods available for research of the development of E. multilocularis and the host-parasite interaction mechanisms in an infection and could be drawn on for further biochemical analyses of the signal mechanisms of the parasites presented in this study. KW - Fuchsbandwurm KW - MAP-Kinase KW - Echinococcus KW - Fuchsbandwurm KW - in vitro Kultivierung KW - MAP-Kinase KW - EGF KW - Echinococcus KW - tapeworm KW - in vitro cultivation KW - Map kinase KW - signaling Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19385 ER -