TY - JOUR A1 - Arca, Francesco A1 - Tedde, Sandro F. A1 - Sramek, Maria A1 - Rauh, Julia A1 - Lugli, Paolo A1 - Hayden, Oliver T1 - Interface Trap States in Organic Photodiodes JF - Scientific Reports N2 - Organic semiconductors are attractive for optical sensing applications due to the effortless processing on large active area of several \(cm^2\), which is difficult to achieve with solid-state devices. However, compared to silicon photodiodes, sensitivity and dynamic behavior remain a major challenge with organic sensors. Here, we show that charge trapping phenomena deteriorate the bandwidth of organic photodiodes (OPDs) to a few Hz at low-light levels. We demonstrate that, despite the large OPD capacitances of similar to 10 nF \(cm^{-2}\), a frequency response in the kHz regime can be achieved at light levels as low as 20 nW \(cm^{-2}\) by appropriate interface engineering, which corresponds to a 1000-fold increase compared to state-of-the-art OPDs. Such device characteristics indicate that large active area OPDs are suitable for industrial sensing and even match medical requirements for single X-ray pulse detection in the millisecond range. KW - ultrafast photonics KW - materials for optics KW - electrical and electronic engineering KW - polymers Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131507 VL - 3 ER -