TY - JOUR A1 - Pascoalino, Bruno A1 - Dindar, Gülcin A1 - Vieira-da-Rocha, João P. A1 - Machado, Carlos Renato A1 - Janzen, Christian J. A1 - Schenkman, Sergio T1 - Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei JF - Nucleic Acids Research N2 - The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes. KW - chromatin assembly factors KW - DNA-damage checkpoint KW - tousled-like kinases KW - saccharomyes cerevisiae KW - gene expression KW - acetyltransferase RTT109 KW - african trypanosomes KW - antigenetic variation KW - cycle regulation KW - nuclear import Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117220 SN - 1362-4962 VL - 42 IS - 5 ER - TY - THES A1 - Dindar, Gülcin T1 - Molecular basis for product-specificity of DOT1 methyltransferases in Trypanosoma brucei T1 - Die molekularen Grundlagen der Produktspezifität von DOT1 Methyltransferasen in Trypanosoma brucei N2 - Post-translational histone modifications (PTMs) such as methylation of lysine residues influence chromatin structure and function. PTMs are involved in different cellular processes such as DNA replication, transcription and cell differentiation. Deregulations of PTM patterns are responsible for a variety of human diseases including acute leukemia. DOT1 enzymes are highly conserved histone methyltransferases that are responsible for methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one single DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, which methylate H3K76 (H3K76 is homologous to H3K79 in other organisms). DOT1A is essential and mediates mono- and di-methylations, whereas DOT1B additionally catalyzes tri-methylation of H3K76. However, a mechanistic understanding how these different enzymatic activities are achieved is lacking. This thesis exploits the fact that trypanosomes possess two DOT1 enzymes with different catalytic properties to understand the molecular basis for the differential product-specificity of DOT1 enzymes. A trypanosomal nucleosome reconstitution system was established to analyze methyltransferase activity under defined in vitro conditions. Homology modeling allowed the identification of critical residues within and outside the catalytic center that modulate product-specificity. Exchange of these residues transferred the product-specificity from one enzyme to the other and revealed regulatory domains adjacent to the catalytic center. This work provides the first evidence that few specific residues in DOT1 enzymes are crucial to catalyze methyl-state-specific reactions. These results have also consequences for the functional understanding of homologous enzymes in other eukaryotes. N2 - Posttranslationale Histonmodifizierungen (PTMs), wie beispielsweise die Methylierung von Lysinseitenketten, beeinflussen maßgeblich die Struktur und Funktion von Chromatin. PTMs spielen eine wichtige Rolle in verschiedensten zellulären Prozessen, darunter DNA Replikation, Transkription oder Zelldifferenzierung. Darüber hinaus liegt ein verändertes PTM-Muster einer Vielzahl humaner Erkrankungen zugrunde, wie z.B. der akuten myeloischen Leukämie. DOT1-Enzyme sind hochkonservierte Histonmethyltransferasen, die für die Methylierung von Lysin 79 in Histon H3 (H3K79) verantwortlich sind. Im Gegensatz zu den meisten Eukaryoten, die lediglich ein einziges DOT1-Enzym besitzen, finden sich zwei homologe Proteine in afrikanischen Trypanosomen (DOT1A und DOT1B), die Lysin 76 in Histon H3 (H3K76) methylieren (H3K76 ist homolog zu H3K79 in anderen Organismen). DOT1A ist essentiell und katalysiert Mono- und Di-Methylierungen, wohin gegen DOT1B darüber hinaus eine Trimethylierung an H3K76 setzen kann. Derzeit fehlt jegliches mechanistische Verständnis darüber, wie beide Enzyme diese unterschiedliche Produktspezifität erreichen. Die vorliegende Dissertation macht sich den Umstand zunutze, dass Trypanosomen zwei DOT1-Methyltransferasen mit unterschiedlichen katalytischen Eigenschaften besitzen, um Einblicke in die molekulare Grundlage der unterschiedlichen Produktspezifität zu erlangen. Zunächst wurde ein Rekonstitutionssystem für Nukleosomen aus Trypanosomen etabliert, das es ermöglichte die Methyltransferase-Aktivitäten unter definierten in vitro Bedingungen zu analysieren. Homologiemodelle erlaubten die Identifikation von wichtigen Aminosäurepositionen innerhalb und außerhalb des katalytischen Zentrums der Enzyme, die einen Einfluss auf die Produktspezifität haben. Ein Austausch der Aminosäuren an diesen Positionen führte zu einer Umwandlung der Produktspezifität und offenbarte gleichzeitig DOT1A- und DOT1B-spezifische regulatorische Domänen, die an das katalytische Zentrum angrenzen. Diese Arbeit liefert erste Hinweise, dass wenige maßgebliche Aminosäuren in DOT1-Enzymen für den H3K76-Methylierungsgrad während der Katalyse entscheidend sind. Darüber hinaus haben die hier dargestellten Ergebnisse ebenfalls Konsequenzen für das funktionale Verständnis der homologen Enzyme in anderen Eukaryoten. KW - Histon-Methyltransferase KW - Chromatin KW - Trypanosoma brucei KW - DOT1 methyltransferase KW - homology modeling KW - product specificity Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102524 ER - TY - JOUR A1 - Dejung, Mario A1 - Subota, Ines A1 - Bucerius, Ferdinand A1 - Dindar, Gülcin A1 - Freiwald, Anja A1 - Engstler, Markus A1 - Boshart, Michael A1 - Butter, Falk A1 - Janzen, Chistian J. T1 - Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei JF - PLoS Pathogens N2 - Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes. KW - cell differentiation KW - cell cycle and cell division KW - parasitic cell cycles KW - proteomes KW - chromatin KW - parasitic life cycles KW - transcriptome analysis KW - host-pathogen interactions Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146362 VL - 12 IS - 2 ER -