TY - JOUR A1 - Zhang, Yi A1 - Lee, Chil-Woo A1 - Wehner, Nora A1 - Imdahl, Fabian A1 - Svetlana, Veselova A1 - Weiste, Christoph A1 - Dröge-Laser, Wolfgang A1 - Deeken, Rosalia T1 - Regulation of Oncogene Expression in T-DNA-Transformed Host Plant Cells JF - PLoS Pathogens N2 - Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance cytokinin and auxin levels for further cell proliferation. KW - luminescence KW - oncogenes KW - agrobacterium tumefaciens KW - transcription factors KW - auxins KW - gene expression KW - cytokinins KW - plant cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125256 VL - 11 IS - 1 ER - TY - JOUR A1 - Wehner, Nora A1 - Weiste, Christoph A1 - Dröge-Laser, Wolfgang T1 - Molecular screening tools to study Arabidopsis transcription factors N2 - In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY®-compatible ORF collections. (1) The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast trans activation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta. KW - Biologie KW - Arabidopsis thaliana KW - transcription factor function KW - screening tools Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69226 ER -