TY - JOUR A1 - Mieczkowski, Mateusz A1 - Steinmetzger, Christian A1 - Bessi, Irene A1 - Lenz, Ann-Kathrin A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Pena, Vladimir A1 - Höbartner, Claudia T1 - Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine JF - Nature Communications N2 - Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer. KW - Fluorogenic RNA Aptamers KW - Synthetic Functional RNAs KW - Chili RNA Aptamer KW - Co-Crystal Structures of Chili RNA KW - RNA KW - Optical Spectroscopy KW - Structural Biology KW - X-ray Crystallography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254527 VL - 12 ER - TY - JOUR A1 - Turkin, Arthur A1 - Holzapfel, Marco A1 - Agarwal, Mohit A1 - Fischermeier, David A1 - Mitric, Roland A1 - Schweins, Ralf A1 - Gröhns, Franziska A1 - Lambert, Christoph T1 - Solvent Induced Helix Folding of Defined Indolenine Squaraine Oligomers JF - Chemistry—A European Journal N2 - A protecting group strategy was employed to synthesise a series of indolenine squaraine dye oligomers up to the nonamer. The longer oligomers show a distinct solvent dependence of the absorption spectra, that is, either a strong blue shift or a strong red shift of the lowest energy bands in the near infrared spectral region. This behaviour is explained by exciton coupling theory as being due to H- or J-type coupling of transition moments. The H-type coupling is a consequence of a helix folding in solvents with a small Hansen dispersity index. DOSY NMR, small angle neutron scattering (SANS), quantum chemical and force field calculations agree upon a helix structure with an unusually large pitch and open voids that are filled with solvent molecules, thereby forming a kind of clathrate. The thermodynamic parameters of the folding process were determined by temperature dependent optical absorption spectra. KW - UV/Vis spectroscopy KW - dye chemistry KW - solvent effects KW - superstructure KW - supramolecular folding Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256869 VL - 27 IS - 32 ER - TY - JOUR A1 - Zhang, Fangyuan A1 - Radacki, Krzysztof A1 - Braunschweig, Holger A1 - Lambert, Christoph A1 - Ravat, Prince T1 - Zinc-[7]helicenocyanine and its discrete π-stacked homochiral Dimer JF - Angewandte Chemie International Edition N2 - In this communication, we demonstrate a novel approach to prepare a discrete dimer of chiral phthalocyanine (Pc) by exploiting the flexible molecular geometry of helicenes, which enables structural interlocking and strong aggregation tendency of Pcs. Synthesized [7]helicene-Pc hybrid molecular structure, zinc-[7]helicenocyanine (Zn-7HPc), exclusively forms a stable dimeric pair consisting of two homochiral molecules. The dimerization constants were estimated to be as high as 8.96×10\(^6\) M\(^{−1}\) and 3.42×107 M\(^{−1}\) in THF and DMSO, respectively, indicating remarkable stability of dimer. In addition, Zn\(^{-7}\)HPc exhibited chiral self-sorting behavior, which resulted in preferential formation of a homochiral dimer also in the racemic sample. Two phthalocyanine subunits in the dimeric form strongly communicate with each other as revealed by a large comproportionation constant and observation of an IV-CT band for the thermodynamically stable mixed-valence state. KW - organic chemistry KW - supramolecular assembly KW - chirality KW - helicenes KW - homochiral dimer KW - phthalocyanines Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256534 VL - 60 ER - TY - JOUR A1 - Mieczkowski, Mateusz A1 - Steinmetzger, Christian A1 - Bessi, Irene A1 - Lenz, Ann-Kathrin A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Pena, Vladimir A1 - Höbartner, Claudia T1 - Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine JF - Nature Communications N2 - Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer. KW - RNA KW - optical spectroscopy KW - structural biology KW - X-ray crystallography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270274 VL - 12 ER -