TY - THES A1 - Groß, Heiko T1 - Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters T1 - Kontrollierte Licht-Materie Wechselwirkung zwischen lokalisierten Oberflächenplasmonen und Quantenemittern N2 - Metal nanostructures have been known for a long time to exhibit optical resonances via localized surface plasmons. The high electric fields in close proximity to the metal surface have prospects to dramatically change the dynamics of electronic transitions, such as an enhanced spontaneous decay rate of a single emitter. However, there have been two major issues which impede advances in the experimental realization of enhanced light-matter interaction. (i) The fabrication of high-quality resonant structures requires state-of-the-art patterning techniques in combination with superior materials. (ii) The tiny extension of the optical near-field requires precise control of the single emitter with respect to the nanostructure. This work demonstrates a solution to these problems by combining scanning probe and optical confocal microscopy. Here, a novel type of scanning probe is introduced which features a tip composed of the edge of a single crystalline gold sheet. The patterning via focused ion beam milling makes it possible to introduce a plasmonic nanoresonator directly at the apex of the tip. Numerical simulations demonstrate that the optical properties of this kind of scanning probe are ideal to analyze light-matter interaction. Detailed experimental studies investigate the coupling mechanism between a localized plasmon and single colloidal quantum dots by dynamically changing coupling strength via their spatial separation. The results have shown that weak interaction affects the shape of the fluorescence spectrum as well as the polarization. For the best probes it has been found that it is possible to reach the strong coupling regime at the single emitter level at room temperature. The resulting analysis of the experimental data and the proposed theoretical models has revealed the differences between the established far-field coupling and near-field coupling. It has been found that the broad bandwidth of plasmonic resonances are able to establish coherent coupling to multiple transitions simultaneously giving rise to an enhanced effective coupling strength. It has also been found that the current model to numerically calculate the effective mode volume is inaccurate in case of mesoscopic emitters and strong coupling. Finally, light-matter interaction is investigated by the means of a quantum-dot-decorated microtubule which is traversing a localized nearfield by gliding on kinesin proteins. This biological transport mechanism allows the parallel probing of a meta-surface with nm-precision. The results that have been put forward throughout this work have shed new light on the understanding of plasmonic light-matter interaction and might trigger ideas on how to more efficiently combine the power of localized electric fields and novel excitonic materials. N2 - Metallische Nanostrukturen sind seit langer Zeit bekannt dafür optische Resonanzen durch lokalisierte Oberflächenplasmonen zu zeigen. Hohe elektrische Felder in direkter Nähe zur Metalloberfläche versprechen dramatische Dynamikänderungen von elektrischen Übergängen wie z.B. die gesteigerte spontane Zerfallsrate eines Einzelemitters. Es gibt jedoch zwei maßgebliche Gründe warum die Fortschritte der experimentellen Realisierung von Licht-Materie Wechselwirkung ausgebremst wird. (i) Die Herstellung von qualitativ hochwertigen resonanten Strukturen benötigt modernste Strukturierungsmethoden sowie die bestmöglichen Materialeigenschaften. (ii) Die winzigen Dimensionen von optischen Nahfeldern erfordern eine präzise Kontrolle des Einzelemitters im Bezug zur Nanostruktur. Diese Arbeit löst diese Probleme durch die Kombination eines Rasterkraftmikroskops mit einem optischen Konfokalmikroskop. Dabei wird eine neuartige Rastersonde vorgestellt welche eine Spitze aufweist die aus der Ecke einer monokristallinen Goldflocke besteht. Die Strukturierung mittels eines fokussierten Ionenstrahls ermöglicht es einen plasmonischen Nanoresonator direkt an der Spitze der Sonde herzustellen. Numerische Simulationen haben gezeigt, dass die optischen Eigenschaften für diese Art von Sonde ideal sind um Licht-Materie Wechselwirkung zu untersuchen. Die hier gezeigten experimentellen Studien haben den Kopplungsmechanismus zwischen lokalisierten Plasmonen und einzelnen kolloidalen Quantenpunkten untersucht indem die Kopplungstärke dynamisch über den Abstand kontrolliert wurde. Die Ergebnisse haben gezeigt, dass schwache Wechselwirkung einen Einfluss auf die Form des Fluoreszenzspektrums als auch auf die Polarisation hat. Die besten Sonden haben gezeigt, dass es möglich ist starke Wechselwirkung mit Einzelemittern bei Raumtemperatur zu erreichen. Die resultierende Analyse der experimentellen Daten und die aufgestellten theoretischen Modelle haben die Unterschiede zwischen der etablierten Fernfeldkopplung und der Nahfeldkopplung aufgezeigt. Dabei wurde beobachtet, dass die große Bandbreite von plasmonischen Resonanzen es möglich macht kohärent mit mehreren Übergängen gleichzeitig zu koppeln und dabei die effektive Kopplungsstärke zu höhen. Es wurde auch festgestellt, dass das aktuelle Model zur numerischen Beschreibung von effektiven Modenvolumen Ungenauigkeiten bei mesoskopischen Emittern und starker Wechselwirkung aufzeigt. Zuletzt wird die Licht-Materie Wechselwirkung mittels Quantenpunkt-bestückten Mikrotubuli untersucht, die auf Kinesin Proteinen durch ein lokalisiertes Nahfeld gleiten. Dieses biologische Transportsystem erlaubt es eine Meta-Oberfläche mit nm-Präzision parallel zu untersuchen. Die Ergebnisse, die diese Arbeit hervorgebracht hat, wirft neues Licht auf das Verständnis von plasmonischer Licht-Materie Wechselwirkung und könnte als Grundlage dienen neue Ideen zu entwickeln um effizienter die Stärke von lokalisierten elektrischen Felder und neuartiger exzitonischer Materialien zu kombinieren. KW - Plasmon KW - Starke Kopplung KW - Quantenpunkt KW - Mikrotubulus KW - Nahfeldoptik KW - light-matter interaction KW - quantum optics KW - optical antenna KW - quantum dot KW - surface plasmon KW - strong coupling Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192097 ER - TY - THES A1 - Maier, Patrick T1 - Memristanz und Memkapazität von Quantenpunkt-Speichertransistoren: Realisierung neuromorpher und arithmetischer Operationen T1 - Memristance and memcapacitance of quantum dot floating gate transistors: realization of neuromorphic and arithmetic operations N2 - In dieser Arbeit werden Quantenpunkt-Speichertransistoren basierend auf modulationsdotierten GaAs/AlGaAs Heterostrukturen mit vorpositionierten InAs Quantenpunkten vorgestellt, welche in Abhängigkeit der Ladung auf den Quantenpunkten unterschiedliche Widerstände und Kapazitäten aufweisen. Diese Ladungsabhängigkeiten führen beim Anlegen von periodischen Spannungen zu charakteristischen, durch den Ursprung gehenden Hysteresen in der Strom-Spannungs- und der Ladungs-Spannungs-Kennlinie. Die ladungsabhängigen Widerstände und Kapazitäten ermöglichen die Realisierung von neuromorphen Operationen durch Nachahmung von synaptischen Funktionalitäten und arithmetischen Operationen durch Integration von Spannungs- und Lichtpulsen. N2 - In this thesis, state-dependent resistances and capacitances in quantum dot floating gate transistors based on modulation doped GaAs/AlGaAs heterostructures with site-controlled InAs quantum dots are presented. The accumulation of electrons in the quantum dots simultaneously increases the resistance and decreases the capacitance, which leads to characteristic pinched hysteresis loops in the current-voltage- and the charge-voltage-characteristics when applying periodic input signals. The concurrent resistance and capacitance switching enables the realization of neuromorphic operations via mimicking of synaptic functionalities and arithmetic operations via the integration of voltage and light pulses. KW - Nichtflüchtiger Speicher KW - Memristor KW - Neuroinformatik KW - Quantenpunkt KW - Transportspektroskopie KW - Künstliche Synapsen KW - Speichertransistor KW - GaAs/AlGaAs Heterostruktur KW - transport spectroscopy KW - artificial synapse KW - floating gate transistor KW - GaAs/AlGaAs heterostructure KW - Elektronengas KW - Halbleiterphysik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164234 ER - TY - THES A1 - Strauß, Micha Johannes T1 - Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen für AlGaAs Mikroresonatoren T1 - Molecular beam epitaxy of GaInAs(N) low dimensional Systems for AlGaAs micro resonators N2 - Die Erforschung von Quantenpunkten mit ihren quantisierten, atomähnlichen Zuständen, bietet eine Vielzahl von Möglichkeiten auf dem Weg zum Quantencomputer und für Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden können. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass Güten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und Türmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor für diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatortürmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der Türmchen. Darüber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatortürmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es möglich sein, ein Resonatortürmchen direkt über dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung für die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der Hälfte des angestrebten Türmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel über den Quantenpunkten, Resonatortürmchen zielgenau auf die Quantenpunkte prozessiert werden können. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. Für ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe möglichst defektfrei überwachsen werden konnte, die Struktur des Lochgitters aber nicht zerstört wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum nächsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung für eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 % der Quantenpunkte innerhalb von 50 nm und 60 % innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte Möglichkeit, diese in Halbleiterresonatoren einbinden zu können, machen sie auch interessant für die Anwendung im Telekommunikationsbereich. Um für Glasfasernetze Anwendung zu finden, muss jedoch die Wellenlänge auf den Bereich von 1300 nm oder 1550 nm übertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenlänge von 1300nm. Eine fu ̈r andere Bauteile sowie für Laserdioden bereits häufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von über 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenlängen größer 1300 nm emittieren. So ist es nun möglich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenlänge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen für 1300nm zu realisieren. N2 - The research of quantum dots with their quantized, atom-like states provides many possibilities for quantum computing and for application in technologies like single photon sources and quantum dot lazers. Previous studies have demonstrated how quantum dots can be integrated with and linked to semiconductor resonator. For this reason, it is necessary to better understand and optimize the epitaxial growth of quantum dots. Within the context of this work, the Bragg-Resonators must be optimized so that Q factors of up to 165.000 can be realized. Extensive studies of these samplings indicate a complex dependency between Q factors and diameter of the micropillar. This is how a quasi-periodic Q factor oscillation looks. One factor for these oscillations is the composition of the side flanks of the resonator micropillars, caused by the various properties of AIAs and GaAs during processing the micropillar. In addition, both optically and electrically pumped single photon sources have been realized on the basis of this structure. Due to the fact that the position of the quantum dot within the resonator micropillar has a significant effect on the efficiency of the coupling between the resonator and the quantum dot, a further goal was to control the position of the quantum dot. With a precise positioning, it should be possible to place a micropillar directly over a quantum dot, thus the quantum dot is located in the center of the pillar mode. A particular challenge in the scope of work was to position the quantum dots with a distance of at least half of the target micropillar diameter,in other words, between 0,5μm and 2μm. The positioning must be done in such a way so that a AIAs/GaAs DBR micropillar can be processed over the quantum dot. Therefore processes were developed to place a lattice of holes on an MBE grown sample via Electron Beam Lithography. The lithographical process was optimized by additional steps of wet chemical cleaning, and cleaning with hydrogen under ultra high vacuum, to avoid defects during MBE overgrowth. InAs quantum dots have positions on a given structure in a distance of several micrometers to each other. It could be proved by processing gold pattern, that 30% of the quantum dots are placed within 50 nm precision and 60% within 100 nm . In the following work quantum dots have been placed in DBR micro pillars and photonic crystals. Because quantum dots have a wide spectral range and because they can be integrated in micropillars, they are also of interest for applications within telecommunication systems. Therefore the spectral range around 1300 nm and 1550 nm has to be re- ached to link them to fiber cable. Former studies have shown results tight under 1300nm. Nitrogen is an additional way to get InAs quantum emitting at 1300nm at 8 K. Until now research for InAs quantum dots containing nitrogen was focused on high density dots for laser application. The Dot- In-A-Well design was transferred, in this work, to this problem by using nitrogen in a well above the quantum dots. With this development, single quantum dots, emitting above 1300nm at 8 K, have been grown for the first time. The next step would be to integrated this InAs Quantum dots with the nitrogen well, within the micro pillar to achieve single photon sources at 1300nm. KW - Quantenpunkt KW - Molekularstrahlepitaxie KW - Mikroresonator KW - Drei-Fünf-Halbleiter KW - Optischer Resonator Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159024 ER - TY - THES A1 - Maier, Sebastian T1 - Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen T1 - Quantum dot based single photon sources and light-matter-interfaces N2 - Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie Lösungen für aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abhörsichere Kommunikationsprotokolle und könnte, mit der Realisierung von Quantenrepeatern, auch über große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) könnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu lösen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik genügen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu können. In halbleiterbasierten Ansätzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten für diese Experimente etabliert. Halbleiterquantenpunkte weisen große Ähnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich überdies als exzellente Emitter für einzelne und ununterscheidbare Photonen aus. Außerdem können mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So können stationäre Quantenbits (Qubits) in Form von Elektronenspinzuständen gespeichert werden und mittels Spin-Photon-Verschränkung weit entfernte stationäre Qubits über fliegende photonische Qubits verschränkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften für Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis für das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie ermöglicht höchste kristalline Qualitäten und bietet die Möglichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erhöht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verstärkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. Für die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind für Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration für Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Kohärenzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavitäten weisen größere Werte für die Spindephasierungszeit auf als Mikro- und Nanotürmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle für einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensität und optische Qualität mit Halbwertsbreiten nahe der natürlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42% für reine Einzelphotonenemission bestimmt und übersteigt damit die, für eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33%) deutlich. Als Grund hierfür konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavitäten einerseits als Nukleationszentren für das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtbündelung verbessern. In weiterführenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschränkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein für halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es möglich, die komplette Tomographie eines verschränkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. Überdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei räumlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein für Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen für optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerstörungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein kürzlich veröffentlichtes theoretisches Konzept könnte hierzu einen eleganten Weg eröffnen: Hierbei wird die spinabhängige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgenützt. So könnte die Spin-Information zerstörungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits über größere Distanzen ermöglicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abhängig von der Güte des Mikroresonators, über mehrere μm ausdehnen kann. Dies und weitere mögliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems wünschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universität Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavität mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualität und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer Nähe zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: Für die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualität ist eine skalierbare technologische Produktionsplattform wünschenswert. Dazu müssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden können. Basierend auf zweidimensionalen, regelmäßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip für die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit geätzten Nanolöchern, welche als Nukleationszentren für das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erhöhte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenlänge erreicht werden. N2 - Quantum information technology is in the focus of worldwide intensive research, because of its promising solutions for current global problems. With tap-proofed communication protocols, the field of quantum key distribution (QKD) could revolutionize the broadcast of sensitive data and would be also available for large distance communication with the realization of quantum repeater systems. Quantum computing could be used to dramatically fasten the solution of difficult and complex mathematical problems. A critical building block of solid state based quantum information processing (QIP) is the allocation of semiconductor samples, which on the one side provide the desired quantum mechanical features and on the other side satisfy the requirements of the complex non-demolition measurement techniques. Semiconductor quantum dots are very promising candidates in solid state based approaches as they act like artificial atoms manifesting in discrete emission lines. They are excellent emitters of single and indistinguishable photons. Moreover they can save quantum information in stationary quantum bits (qubits) as electron spins and emit flying photonic qubits to entangle remote qubits via spin-photon entanglement. The fabrication and characterization of quantum dot based semiconductor samples, which serve as a basic building block for experiments in the field of QIP with pre-defined physical features, are in focus of the present thesis. The basic material system consists of In(Ga)As quantum dots on GaAs substrates. The growth of quantum dot based semiconductor samples via molecular beam epitaxy offers highest crystal quality and the possibility to integrate the quantum emitters in photonic resonators, which improve the light outcoupling efficiency and enhance the emission by light-matter-coupling effects. Against this background this thesis focusses on the preparation and characterization of different In(Ga)As based quantum dot samples. Morphologic properties were characterized via scannnig electron microscopy or atomic force microscopy. The characterization of optical properties was performed by spectroscopy of the reflectance, photoluminescence and resonance fluorescence signal as well as measurements of the second order correlation function. The main part is divided in three chapters which are briefly summarized below. Quasi-planar single photon source with high extraction efficiency: Planar quantum dot based highly efficient single photon sources are of great importance, as quantum dot electron and hole spins turned out to be promising candidates for spin manipulation experiments. To be able to intialize, manipulate and measure single electron spins, the quantum dots have to be charged with a single electron and build up a λ-system in a magnetic field in Voigt geometry. It is important that on the one side the spin configuration is stable, comprising a long spin coherence time and on the other side that the photon outcoupling efficiency is high enough for measurements. Quantum dots in planar microcavities have large spin coherence times but rather weak outcoupling efficiencies compared to micro- or nanopillar resonators. In this chapter a quasi-planar quantum dot based source for single (g(2)(0)=0,023) and indistinguishable photons (g(2)indist (0)=0,17) with a high purity is presented. This planar asymmetric microcavity doesn`t have any open surfaces in close proximity to the active layer, so that the spin dephasing is minimalized. The optical quality of the quantum dots is very high with emission linewidths near the natural linewidth of a quantum dot. Additionally the single photon source shows a high outcoupling efficiency of 42% which exceeds the outcoupling of a regular planar resonator (33%). This high extraction efficiency can be attributed to the coupling of the photon emission to Gallium-induced, Gaussian-shaped nanohill defects. Morphologic investigations and simulations show, that these defect cavity structures serve as nucleation centers during quantum dot growth and increase the outcoupling efficiency by lensing effects. In further experiments on this specific sample, entanglement of an electron spin and a photon was demonstrated, which is a critical building block for semiconductor based quantum repeaters. In this context also the full tomography of a polarization-entangled spin-photon-pair was measured with a surprisingly high fidelity. Moreover two photon interference and indistinguishability of two photons from remote quantum dots of this wafer was measured, which also constitutes a critical building block for quantum repeaters. Coupled quantum well - quantum dot system: Further challenges for optical controlled spin-qubit systems are fast readout of the quantum information with high fidelity and the implementation of a scalable one- and two-qubit gate. Therefore a proposal was adapted which is based on the coupling of an electron spin in a quantum dot to a gas of exciton-polaritons, formed in a quantum well in close proximity of the quantum dot. In cooperation with Yoshihisa Yamamoto's group from the Stanford University, a sample structure was designed and technologically realized as part of this thesis, to study the fundamental physical properties of this coupled system. By systematic epitactical improvement, a coupled quantum well-quantum dot system could successfully be implemented in a microresonator. The exciton-polariton gas was realized in a quantum well which is strongly coupled to a microcavity with a Rabi splitting of VR=2,5 meV. Although the distance to the quantum well is only a few nm, charged quantum dots with high optical quality and clear single photon emission character (g(2)(0)=0,24) could be measured. Site-controlled quantum dots: A scalable technological platform for bright sources of quantum light is highly desirable. Site-controlled quantum dots with high optical quality are very promising candidates to realize such a system. This concept offers the possibility to integrate single quantum dots in devices in a deterministic and scalable way and furthermore provides sample structures with a regular two dimensional array of site-controlled quantum dots to realize concepts for optically controlled two-qubits gates. The method to position the quantum dots used in this thesis is based on etched nanoholes in pre-patterned substrates, which serve as nucleation centers during the quantum dot growth process. An optimized layer structure and an increased light outcoupling efficiency using a dielectric mirror allowed the first measurement of resonance fluorescence on site-controlled quantum dots. In a further optimized design, emission of positioned quantum dots at 1,3 μm telecommunication wavelength was demonstrated for the first time for InGaAs quantum dots on GaAs substrates. KW - Quantenpunkt KW - Drei-Fünf-Halbleiter KW - Molekularstrahlepitaxie KW - Einzelphotonenemission KW - Photolumineszenzspektroskopie KW - InAs/GaAs Quantenpunkte KW - Positionierte Quantenpunkte KW - InAs/GaAs quantum dots KW - site-controlled quantum dots Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152972 ER - TY - THES A1 - Unsleber, Sebastian Philipp T1 - Festkörperbasierte Einzelphotonenquellen als Grundbausteine der Quanteninformationstechnologie T1 - Solid-state single photon sources as building blocks for the quantum information technology N2 - Die vorliegende Arbeit hatte das Ziel basierend auf Halbleiternanostrukturen eine effiziente und skalierbare Quelle einzelner und ununterscheidbarer Photonen zu entwickeln. Dies ist eine Basiskomponente von zukünftigen quantenphysikalischen Anwendungen wie der Quantenkommunikation oder dem Quantencomputer. Diese Konzepte nutzen gezielt quantenmechanische Systeme um einerseits Kommunikation absolut abhörsicher zu machen oder um neuartige Computer zu konstruieren, die bestimmte Aufgaben - wie die Produktzerlegung großer Zahlen - effizienter lösen als heutige Systeme. Ein mögliche Realisierung der Quantenkommunikation ist beispielsweise die Schlüsselverteilung zwischen zwei Parteien durch Verwendung des BB84-Protokolls. Dazu wird eine Lichtquelle benötigt, welche die physikalisch kleinstmögliche Lichtmenge - ein einzelnes Photon - aussendet. Der Kommunikationskanal wird dann über verschiedene Polarisationszustände dieser Photonen gegen ein Abhören nach außen hin abgesichert. Da die maximale Kommunikationsdistanz aufgrund von Verlusten im Quantenkanal beschränkt ist, muss das Signal für größere Distanzen mit Hilfe eines sog. Quantenrepeaters aufbereitet werden. Ein solcher kann ebenfalls unter Verwendung von Einzelphotonenquellen realisiert werden. Das Konzept des Quantenverstärkers stellt aber die zusätzliche Anforderung an die Einzelphotonenquelle, dass die ausgesendeten Lichtteilchen in der Summe ihrer Eigenschaften wie Energie und Polarisation immer gleich und somit ununterscheidbar sein müssen. Auf Basis solcher ununterscheidbarer Photonen gibt es zudem mit dem linear optischen Quantenrechner auch mögliche theoretische Ansätze zur Realisierung eines Quantencomputers. Dabei kann über die Quanteninterferenz von ununterscheidbaren Photonen an optischen Bauteilen wie Strahlteilern ein Quanten-NOT-Gatter zur Berechnung spezieller Algorithmen realisiert werden. Als vielversprechende Kandidaten für eine solche Lichtquelle einzelner Photonen haben sich in den letzten Jahren Halbleiter-Quantenpunkte herauskristallisiert. Dank des festkörperbasierten Ansatzes können diese Strukturen in komplexe photonische Umgebungen zur Erhöhung der Photonen-Extraktionseffizienz und -Emissionsrate eingebettet werden. Ziel dieser Arbeit war somit eine effiziente Quelle einzelner ununterscheidbarer Photonen zu realisieren. Im Hinblick auf die spätere Anwendbarkeit wurde der Fokus zudem auf die skalierbare bzw. deterministische Fabrikation der Quantenpunkt-Strukturen gelegt und zwei technologische Ansätze - die kryogene in-situ-Lithographie und das positionierte Wachstum von Quantenpunkten - untersucht. Im ersten experimentellen Kapitel dieser Arbeit wird ein neuartiges Materialsystem vorgestellt, welches sich zur Generation einzelner Photonen eignet. Es können spektral scharfe Emissionslinien mit Linienbreiten bis knapp über 50 µeV aus Al$_{0,48}$In$_{0,52}$As Volumenmaterial beobachtet werden, wenn diese Schicht auf InP(111) Substraten abgeschieden wird. In Querschnitt-Rastertunnelmikroskopie-Messungen wurden ca. 16 nm große Cluster, welche eine um ungefähr 7 % höhere Indiumkonzentration im Vergleich zur nominellen Zusammensetzung des Volumenmaterials besitzen, gefunden. Über die Simulation dieser Strukturen konnten diese als Quelle der spektral scharfen Emissionslinien identifiziert werden. Zudem wurde mittels Auto- und Kreuzkorrelationsmessungen nachgewiesen, dass diese Nanocluster einzelne Photonen emittieren und verschieden geladene exzitonische und biexzitonische Ladungsträgerkomplexe binden können. Anschließend wurde der Fokus auf InGaAs-Quantenpunkte gelegt und zunächst im Rahmen einer experimentellen und theoretischen Gemeinschaftsarbeit die Kohärenzeigenschaften eines gekoppelten Quantenpunkt-Mikrokavität-Systems untersucht. Über temperaturabhängige Zwei-Photonen Interferenz Messungen und dem Vergleich mit einem mikroskopischen Modell des Systems konnten gezielt die Bestandteile der Quantenpunkt-Dephasierung extrahiert werden. Auf diesen Ergebnissen aufbauend wurde die gepulste, strikt resonante Anregung von Quantenpunkten als experimentelle Schlüsseltechnik etabliert. Damit konnten bei tiefen Temperaturen nahezu vollständig ununterscheidbare Photonen durch eine Zwei-Photonen Interferenz Visibilität von über 98 % nachgewiesen werden. Für ein skalierbares und deterministisches Quantenpunkt-Bauelement ist entweder die Kontrolle über die Position an welcher der Quantenpunkt gewachsen wird nötig, oder die Position an der eine Mikrokavität geätzt wird muss auf die Position eines selbstorganisiert gewachsenen Quantenpunktes abgestimmt werden. Im weiteren Verlauf werden Untersuchungen an beiden technologischen Ansätzen durchgeführt. Zunächst wurde der Fokus auf positionierte Quantenpunkte gelegt. Mittels in das Substrat geätzter Nanolöcher wird der Ort der Quantenpunkt-Nukleation festgelegt. Durch die geätzten Grenzflächen in Quantenpunkt-Nähe entstehen jedoch auch Defektzustände, die negativen Einfluss auf die Kohärenz der Quantenpunkt-Emission nehmen. Deshalb wurde an diesem Typus von Quantenpunkten die strikt resonante Anregung etabliert und zum ersten Mal die kohärente Kopplung des Exzitons an ein resonantes Lichtfeld demonstriert. Zudem konnte die deterministische Kontrolle der Exzitonbesetzung über den Nachweis einer Rabi-Oszillation gezeigt werden. Abschließend wird das Konzept der kryogenen in-situ-Lithographie vorgestellt. Diese erlaubt die laterale Ausrichtung der Mikrokavität an die Position eines selbstorganisiert gewachsenen Quantenpunktes. Damit konnte gezielt die Emission eines zuvor ausgewählten, spektral schmalen Quantenpunktes mit nahezu 75 % Gesamteffizienz eingesammelt werden. Die Ununterscheidbarkeit der Quantenpunkt-Photonen war dabei mit einer Zwei-Photonen Interferenz Visibilität von bis zu $\nu=(88\pm3)~\%$ sehr hoch. Damit wurde im Rahmen dieser Arbeit eine Einzelphotonenquelle realisiert, aus der sich sehr effizient kohärente Photonen auskoppeln lassen, was einen wichtigen Schritt hin zur deterministischen Fabrikation von Lichtquellen für quantenphysikalischen Anwendungen darstellt. N2 - The aim of this thesis was to develop an efficient and scalable source of single and indistinguishable photons. This is a fundamental element of future quantum physical applications like quantum communication or quantum networks. These concepts use quantum mechanical systems to either establish absolute secure communication or to construct new computers, whose calculating capacity for specialized algorithms - like integer factorization - is far beyond today's systems. One possible realization of quantum communication is the key distribution between two parties via using the BB84-protocol. This scheme needs a lights source that emits the physical smallest amount of light - a single photon. The communication channel between transmitter and receiver is then secured against eavesdropping by different polarisation states of these photons. The non-avoidable loses in the quantum channel limit the maximum possible communication distance, which is why the signal has to be amplified with a so called quantum repeater after a certain distance. Such a repeater can also be realized with a single photon source. In addition to the BB84-protocol, for realizing the concept of a quantum repeater the photons have to share all their properties like energy and polarization, i. e. they need to be indistinguishable. Over the past years, semiconductor quantum dots have been identified as a promising candidate for such a light source. Due to the solid state scheme, these structures can be implemented into complex photonic architectures to increase the outcoupling efficiency and the emission rate of single photons. The main goal of the following work was therefore the realization of an efficient source of single and indistinguishable photons. Keeping future applications in mind, the additional focus of this work was lying on the scalable and deterministic fabrication of these quantum dot structures and two technological approaches - the cryogenic in-situ-lithography and the positioned growth of quantum dots - were investigated. In the first part of this thesis, a novel material system, which serves as a source of single photons is presented. Spectrally sharp emission features with a linewidth down to 50 µeV from bulk Al$_{0,48}$In$_{0,52}$As grown on InP(111) substrates were observed. Via cross-section scanning tunneling microscopy measurements, nanoclusters with a diameter of approximately 16 nm and a 7 % increased indium concentration compared to the nominal composition, were found. Additional simulations of these complexes identify these nanoclusters as sources of the spectrally sharp emissions lines. Furthermore, single photon emission as well as the formation of multi excitonic charge complexes within these clusters via auto- and crosscorrelation measurements is confirmed. Afterwards, the work focusses on InGaAs-quantum dots and, as a first step, the coherence properties of a coupled quantum dot microcavity system are investigated within a joint theoretical and experimental work. Via temperature dependent two-photon interference measurements the single dephasing mechanisms of this system are extracted via modelling the results with a microscopic theory. Based on this results, the strict resonant excitation of quantum dots was established as a experimental key technique and quantum dot photons with a two-photon interference visibility above 98 % were generated at low temperatures. For scalable and deterministic quantum dot devices, one either needs to control the growth spot of a quantum dot or the position of an etched microcavity has to be aligned to the position of a self-organized quantum dot. In the subsequent parts if this work, studies on both technological approaches are presented. First, spectroscopic experiments on site controlled quantum dots were carried out. Via etched nanoholes, the nucleation spot of the quantum dot is defined. These etched surfaces may lead to defect states, which decrease the coherence of the quantum dot emission. In order to avoid these detrimental influence, the strict resonant excitation of such site controlled quantum dots is established and the coherent coupling of the site controlled quantum dot exciton to the resonant laser field is observed. In addition, deterministic control of the site controlled quantum dot population is achieved, which is verified via the observation of the first Rabi-oscillation. Finally, the so-called in-situ-lithography is presented, which allows for the lateral alignment of a self-organized quantum dot and the fundamental mode of a micropillar. Using this technique, an overall collection efficiency of single photons from a pre-selected quantum dot with a small linewidth of almost 75 % is shown. The coherence of this quantum dot was notably, which is demonstrated by a two-photon interference visibility as high as $\nu=(88\pm3)~\%$. In summary, an efficient source of single and indistinguishable photons was realized in this thesis, which is an important step towards the fabrication of deterministic quantum dot devices for quantum mechanical applications. KW - Quantenpunkt KW - Einzelphotonenemission KW - Quantenkommunikation KW - Einzelphotonenquelle KW - Mikrosäulenresonator KW - Nichtunterscheidbarkeit KW - Verteilte Bragg-Reflexion KW - Optischer Resonator Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147322 ER - TY - THES A1 - Herrmann, Oliver T1 - Graphene-based single-electron and hybrid devices, their lithography, and their transport properties T1 - Lithographie und Transporteigenschaften auf Graphen basierender Einzelelektronentransistoren und Hybridbauteilen N2 - This work explores three different aspects of graphene, a single-layer of carbon atoms arranged in a hexagonal lattice, with regards to its usage in future electronic devices; for instance in the context of quantum information processing. For a long time graphene was believed to be thermodynamically unstable. The discovery of this strictly two-dimensional material completed the family of carbon based structures, which had already been subject of intensive research with focus on zero-dimensional fullerenes and one-dimensional carbon nanotubes. Within only a few years of its discovery, the field of graphene related research has grown into one of today’s most diverse and prolific areas in condensed matter physics, highlighted by the award of the 2010 Nobel Prize in Physics to A.K. Geim and K. Noveselov for “their groundbreaking experiments regarding the two-dimensional material graphene”. From the point of view of an experimental physicist interested in the electronic properties of a material system, the most intriguing characteristic of graphene is found in the Dirac-like nature of its charge carriers, a peculiar fact that distinguishes graphene from all other known standard semiconductors. The dynamics of charge carriers close to zero energy are described by a linear energy dispersion relation, as opposed to a parabolic one, which can be understood as a result of the underlying lattice symmetry causing them to behave like massless relativistic particles. This fundamentally different behavior can be expected to lead to the observation of completely new phenomena or the occurrence of deviations in well-known effects. Following a brief introduction of the material system in chapter 2, we present our work studying the effect of induced superconductivity in mesoscopic graphene Josephson junctions by proximity to superconducting contacts in chapter 3. We explore the use of Nb as the superconducting material driven by the lack of high critical temperature and high critical magnetic field superconductor technology in graphene devices at that time. Characterization of sputter-deposited Nb films yield a critical transition temperature of \(T_{C}\sim 8{\rm \,mK}\). A prerequisite for successful device operation is a high interface quality between graphene and the superconductor. In this context we identify the use of an Ti as interfacial layer and incorporate its use by default in our lithography process. Overall we are able to increase the interface transparency to values as high as \(85\%\). With the prospect of interesting effects in the ballistic regime we try to enhance the electronic quality of our Josephson junction devices by substrate engineering, yet with limited success. We achieve moderate charge carrier mobilities of up to \(7000{\rm \,cm^2/Vs}\) on a graphene/Boron-nitride heterostructure (fabrication details are covered in chapter 5) putting the junction in the diffusive regime (\(L_{device} KW - Spektroskopie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127438 ER - TY - THES A1 - Schömig, Herbert Richard T1 - Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik T1 - Nanooptics on wide-bandgap semiconductor nanostructures for spintronics and optoelectronics N2 - Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. N2 - This work treats three topics from the research on nanostructured semiconductors in the field of spintronics and optoelectronics. 1) Single semimagnetic quantum dots Semiconductors doped with Mn, so-called diluted magnetic semiconductors, exhibit an intense sp-d exchange interaction between free carrier spins and localized Mn spins. Due to this coupling an exciton, optically injected into the DMS semiconductor, acquires an exchange energy proportional to the Mn magnetization within the exciton volume. If the exciton localizes in a quantum dot it can be employed as a probe monitoring the magnetization in the nanoenvironment. However, this requires the spectroscopic selection of single quantum dots. In this work single CdSe/ZnMnSe quantum dots could be addressed with the help of an opaque metal mask on top of the semiconductor with nanoapertures prepared by electron lithography. The PL emission from such nanoapertures shows individual PL lines corresponding to single quantum dots. By means of magneto-PL-spectroscopy the magnetic moment of single quantum dots of only some tens of Bohrmagnetons is addressed, including its thermal fluctuations. The temperature as well as magnetic field dependence of the exciton-Mn coupling is consistently described in the frame of a modified Brillouin model. 2) Ferromagnet-DMS-Hybrids A local manipulation of spins in a semiconductor can be realized by a preparation of ferromagnetic structures on the surface of a semiconductor. Magnetic fringe fields, emerging from nanostructured ferromagnets (FM) are capable of bending the spin bands of a buried quantum well on a mesoscopic length scale. This is especially valid for a semimagnetic quantum well like the ZnCdMnSe/ZnSe heterostructure used in the following experiments. Due to the drastic enhancement of the exciton g factor by the coupling to the Mn spins, huge spin splittings become possible. Magnetostatic calculations performed for ferromagnetic dysprosium (Dy) wire structures show, that fringe fields in the range of 0.1 to 1 T can be achieved in a perpendicular magnetization configuration. Magneto-PL measurements with a high spatial resolution actually demonstrate an influence of nanostructured ferromagnets on the excitonic spin bands in the quantum well and even provide some information about the magnetic characteristics of the FM nanoelements. 3) Single localization centers in a InGaN/GaN quantum well The localization of charge carriers in nm-sized islands has a strong influence on the optical properties of InGaN/GaN quantum wells. A detailed analysis of these effects require a reproduceable, spectroscopic access to single localization centers. This prerequisite has been fulfilled by depositing a mask with nanoapertures on the semiconductor surface. PL spectra measured on these nanoapertures at a temperature of 4 K reveal individual, spectrally narrow emission lines with a halfwidth down to 0.8 meV. Such a single PL line can be attributed to the emission from a single localization center. The optical access to single centers has been demonstrated here for the first time. As the following experiments showed, there is a profound difference between the behavior of such single PL lines and the inhomogenous PL signal from a large ensemble of centers. This gives a clear picture of the impact of some mechanisms relevant for the PL characteristics of InGaN quantum films, that have been the subject of a controversial debate. The most influential factors are the internal piezo electric field, the bandfilling effect and the formation of multiexcitons. KW - Cadmiumselenid KW - Zinkselenid KW - Manganselenide KW - Semimagnetischer Halbleiter KW - Quantenpunkt KW - Halbleiteroberfläche KW - Ferromagnetische Schicht KW - Nanostruktur KW - Spin KW - Indiumnitrid KW - Galliumnitrid KW - Ferromagnete KW - Photolumineszenz KW - Quantum dots KW - semimagnetic semiconductors Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126558 N1 - Dieses Dokument wurde aus Datenschutzgründen - ohne inhaltliche Änderungen - erneut veröffentlicht. Die ursprüngliche Veröffentlichung war am: 22.10.2005 ER - TY - THES A1 - Gold, Peter T1 - Quantenpunkt-Mikroresonatoren als Bausteine für die Quantenkommunikation T1 - Quantum Dot Microresonators as Building Blocks for Quantum Communication N2 - Technologien, die im wesentlichen auf quantenmechanischen Gesetzen beruhen, wie die Quanteninformationsverarbeitung und die Quantenkommunikation, sind weltweit Gegenstand enormer Forschungsanstrengungen. Sie nutzen die einzigartigen Eigenschaften einzelner Quantenteilchen, wie zum Beispiel die Verschränkung und die Superposition, um ultra-schnelle Rechner und eine absolut abhörsichere Datenübertragung mithilfe von photonischen Qubits zu realisieren. Dabei ergeben sich Herausforderungen bei der Quantenkommunikation über große Distanzen: Die Reichweite der Übertragung von Quantenzuständen ist aufgrund von Photonenverlusten in den Übertragungskanälen limitiert und wegen des No-Cloning-Theorems ist eine klassische Aufbereitung der Information nicht möglich. Dieses Problem könnte über den Einsatz von Quantenrepeatern, die in den Quantenkanal zwischen Sender und Empfäger eingebaut werden, gelöst werden. Bei der Auswahl einer geeigneten Technologieplattform für die Realisierung eines Quantenrepeaters sollten die Kriterien der Kompaktheit und Skalierbarkeit berücksichtigt werden. In diesem Zusammenhang spielen Halbleiterquantenpunkte eine wichtige Rolle, da sie sich nicht nur als Zwei-Niveau-Systeme ideal für die Konversion und Speicherung von Quantenzuständen sowie für die Erzeugung von fliegenden Qubits eignen, sondern auch mit den gängigen Mitteln der Halbleitertechnologie und entsprechender Skalierbarkeit realisierbar sind. Ein Schlüssel zur erfolgreichen Implementierung dieser Technologie liegt in der Zusammenführung des Quantenpunktes als Quantenspeicher mit einem Bauteil, welches einzelne Photonen einfangen und aussenden kann: ein Mikroresonator. Aufgrund der Lokalisierung von Elektron und Photon über einen längeren Zeitraum auf den gleichen Ort kann die Effizienz des Informationstransfers zwischen fliegenden und stationären Qubits deutlich gesteigert werden. Des Weiteren können Effekte der Licht-Materie-Wechselwirkung in Resonatoren genutzt werden, um hocheffiziente Lichtquellen zur Erzeugung nichtklassischen Lichts für Anwendungen in der Quantenkommunikation zu realisieren. Vor diesem Hintergrund werden in der vorliegenden Arbeit Halbleiterquantenpunkte mithilfe von spektroskopischen Methoden hinsichtlich ihres Anwendungspotentials in der Quantenkommunikation untersucht. Die verwendeten Quantenpunkte bestehen aus In(Ga)As eingebettet in eine GaAs-Matrix und sind als aktive Schicht in vertikal emittierende Mikroresonatoren auf Basis von dielektrischen Spiegeln integriert. Dabei werden entweder planare Strukturen verwendet, bei denen die Spiegel zur Erhöhung der Auskoppeleffizienz von Photonen dienen, oder aber Mikrosäulenresonatoren, die es ermöglichen, Effekte der Licht-Materie-Wechselwirkung in Resonatoren zu beobachten. Zur Untersuchung der Strukturen wurden Messplätze zur Photolumineszenz-, Resonanzfluoreszenz-,Reflexions- und Photostromspektroskopie sowie zu Photonenkorrelationsmessungen erster und zweiter Ordnung aufgebaut oder erweitert und eingesetzt. Reflexions- und Photolumineszenzspektroskopie an Mikrosäulenresonatoren mit sehr hohen Güten: Eine der wichtigsten Eigenschaften eines Mikrosäulenresonators ist seine Güte, auch Q-Faktor genannt. Er beeinflusst nicht nur das Regime der Licht-Materie-Wechselwirkung, sondern auch die Höhe der Auskoppeleffizienz eines Quantenpunkt-Mikrosäulenresonator-Systems. Vor diesem Hintergrund wird eine Analyse der Verlustmechanismen, die eine Abnahme des Q-Faktors bewirken, durchgeführt. Dazu wird die Güte von Mikrosäulenresonatoren mit Durchmessern im Bereich von 2 − 8 µm mithilfe von Reflexions- und Photolumineszenzspektroskopie gemessen. Aufgrund der erhöhten Absorption an nichtresonanten Quantenpunkten und freien Ladungsträgern sind die Verluste bei den Messungen in Photolumineszenzspektroskopie höher als in Reflexionsspektroskopie, wodurch die in Reflexionsspektroskopie ermittelten Q-Faktoren für alle Durchmesser größer sind. Für einen Quantenpunkt-Mikrosäulenresonator mit einem Durchmesser von 8 µm konnten Rekordgüten von 184.000 ± 8000 in Photolumineszenzspektroskopie und 268.000 ± 13.000 in Reflexionsspektroskopie ermittelt werden. Photostromspektroskopie an Quantenpunkt-Mikrosäulenresonatoren: Durch einen verbesserten Messaufbau und die Verwendung von Mikrosäulenresonatoren mit geringen Dunkelströmen konnte erstmals der Photostrom von einzelnen Quantenpunktexzitonlinien in elektrisch kontaktierten Mikroresonatoren detektiert werden. Dies war Voraussetzung, um Effekte der Licht-Materie-Wechselwirkung zwischen einem einzelnen Quantenpunktexziton und der Grundmode eines Mikrosäulenresonators elektrisch auszulesen. Hierzu wurden Photostromspektren in Abhängigkeit der Verstimmung zwischen Exziton und Kavitätsmode unter Anregung auf die Säulenseitenwand sowie in axialer Richtung durchgeführt. Unter seitlicher Anregung konnte der Purcell-Effekt, als Zeichen der schwachen Kopplung, über eine Abnahme der Photostromintensität des Quantenpunktes im Resonanzfall nachgewiesen werden und der entsprechende Purcell-Faktor zu Fp = 5,2 ± 0,5 bestimmt werden. Da die Transmission des Resonators bei der Anregung auf die Säulenoberseite von der Wellenlänge abhängt, ist die effektive Anregungsintensität eines exzitonischen Übergangs von der spektralen Verstimmung zwischen Exziton und Resonatormode bestimmt. Dadurch ergab sich im Gegensatz zur Anregung auf die Seitenwand des Resonators eine Zunahme des Photostroms in Resonanz. Auch in diesem Fall konnte ein Purcell-Faktor über eine Anpassung ermittelt werden, die einen Wert von Fp = 4,3 ± 1,3 ergab. Des Weiteren wird die kohärente optische Manipulation eines exzitonischen Qubits in einem Quantenpunkt-Mikrosäulenresonator gezeigt. Die kohärente Wechselwirkung des Zwei-Niveau-Systems mit den Lichtpulsen des Anregungslasers führt zu Rabi-Oszillationen in der Besetzungswahrscheinlichkeit des Quantenpunktgrundzustandes, die über dessen Photostrom ausgelesen werden können. Über eine Änderung der Polarisation des Anregungslasers wurde hier eine Variation der Kopplung zwischen dem Quantenemitter und dem elektromagnetischen Feld demonstriert. Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten: Für die meisten technologischen Anwendungen in der Quantenkommunikation und speziell in einem Quantenrepeater sollten die verwendeten Quellen nicht nur einzelne sondern auch ununterscheidbare Photonen aussenden. Vor diesem Hintergrund wurden Experimente zur Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten in planaren Resonatorstrukturen durchgeführt. Dazu wurde zunächst die Interferenz von Photonen aus einer Quelle demonstriert. Im Fokus der Untersuchungen stand hier der Einfluss der Anregungsbedingungen auf die Visibilität der Zwei-Photonen-Interferenz. So konnte in nichtresonanter Dauerstrichanregung ein nachselektierter Wert der Visibilität von V = 0,39 gemessen werden. Um den nicht nachselektierten Wert der Visibilität der Zwei-Photonen-Interferenz zu bestimmen, wurde die Einzelphotonenquelle gepulst angeregt. Während die Visibilität für nichtresonante Anregung in die Benetzungsschicht über ein Wiederbefüllen und zusätzliche Dephasierungsprozesse durch Ladungsträger auf einen Wert von 12% reduziert ist, konnte unter p-Schalen-Anregung in einem Hong-Ou-Mandel-Messaufbau eine hohe Visibilität von v = (69 ± 1) % erzielt werden. Außerdem wurde die Interferenz von zwei Photonen aus zwei räumlich getrennten Quantenpunkten demonstriert. Hierbei konnte eine maximale Visibilität von v = (39 ± 2)% für gleiche Emissionsenergien der beiden Einzelphotonenquellen erzielt werden. Durch die Änderung der Photonenenergie über eine Temperaturvariation eines der beiden Quantenpunkte konnten die Photonen der beiden Quellen zunehmend unterscheidbar gemacht werden. Dies äußerte sich in einer Abnahme der Interferenz-Visibilität. Um noch größere Visibilitäten der Zwei-Photonen-Interferenz zu erreichen, ist die resonante Anregung des Quantenpunktexzitons vielversprechend. Deswegen wurde ein konfokales Dunkelfeldmikroskop für Experimente zur Resonanzfluoreszenz aufgebaut und bereits Einzelphotonenemission sowie das Mollowtriplet im Resonanzfluoreszenzspektrum eines Quantenpunktexzitons nachgewiesen. N2 - Technologies relying on the basic laws of quantum mechanics are subject to huge research interest all over the world. They use the unique properties of single quantum particles, like quantum entanglement and superposition, to allow for ultra-fast computers and absolutely secure data transfer with photonic qubits. However, there are some challenges with quantum communication over long distances. The transfer range is limited due to unavoidable photon losses in transfer channels and classic signal amplification is not possible because of the ’no-cloning-theorem’. This issue could be solved by integrating quantum repeaters into the quantum channel between the transmitter and the receiver. An appropriate technology platform for the implementation of a quantum repeater should satisfy the criteria of compactness and scalability. In this context, semiconductor quantum dots become important. As two-level-systems, quantum dots are not only suited for the conversion and storage of quantum states and the generation of flying qubits, but also offer the advantage to be realized with standard semiconductor technology and the corresponding scalability. The key to successfully implement this technology is to combine quantum dots with a device that can trap and emit photons: a microcavity. This device allows for increasing the interaction between the two-level-system and a photon by localizing both at the same place for an extended period of time. In addition, cavity quantum electrodynamics effects can be used to create highly efficient sources of non-classical light for applications in quantum communications. In this context, semiconductor quantum dots are studied in this thesis by means of spectroscopic methods with regard to their potential for applications in quantum communication. The quantum dots consist of In(Ga)As embedded in a GaAs matrix and are integrated into microcavities with distributed bragg reflectors. Here, either planar structures are used to increase the out-coupling efficiency of photons by an asymmetric cavity design or micropillars are applied to facilitate the observation of light-matter coupling in the cavity quantum electrodynamics regime. Furthermore, different experimental setups were extended or built to investigate these structures, including photoluminescence, resonance fluorescence, reflection and photocurrent spectroscopy and setups for measuring the first and second order correlation function. Reflection- and Photoluminescence Spectroscopy of Micropillar Cavities with Very Large Quality Factors One of the most important characteristics of a microresonator is its quality factor. It influences not only the regime of the light-matter interaction but also the out-coupling efficiency of a quantum dot-micropillar cavity system. In this context, an analysis of the loss channels that lead to a reduction of the quality factor is performed. For this purpose, the quality factor of micropillar cavities with different diameters in the range 2 − 8 µm are measured by reflection- and photoluminescence spectroscopy. Because of the increased absorption due to nonresonant quantum dots and free carriers, the photon losses in photoluminescence are larger than in reflection spectroscopy. Therefore, the quality factors measured in reflection spectroscopy are larger for each diameter. Record quality factors of 184,000 ± 8,000 in photoluminescence and 268,000 ± 13,000 were obtained for a quantum dot-micropillar cavity with a diameter of 8 µm. Photocurrent Spectroscopy on Quantum Dot-Micropillar Cavities: An improved experimental setup and the exploitation of micropillar cavities with reduced dark currents made it possible to observe single quantum dot exciton lines in the photocurrent signal of an electrically contacted microresonator. This was the precondition for the electrical readout of light-matter coupling effects between a single quantum emitter and the fundamental mode of a micropillar cavity. For this purpose, photocurrent spectra were taken as a function of the detuning between the exciton and the cavity mode under excitation either on the pillar sidewall or on top of the pillar. In sidewall excitation, the Purcell effect, as a clear sign of the weak coupling regime, could be observed through a reduced photocurrent signal of the quantum dot in resonance with the cavity mode and a corresponding Purcell factor of Fp = 5,2 ± 0,5. In top excitation, the transmission of the resonator is a function of the wavelength, i.e. the maximum transfer of light into the resonator occurs when the laser wavelength coincides with an optical resonance of the micropillar cavity. Therefore, the effective excitation power of the excitonic transition depends on the spectral detuning between the exciton and the cavity mode. Due to this detuning dependent excitation intensity, the photocurrent signal shows an increase at resonance, which is in contrast to the sidewall excitation scheme. Also, in this case a Purcell factor of Fp = 4,3 ± 1,3 was extracted by a fit to the experimental data. In addition, the coherent optical control of an excitonic qubit in a quantum dot micropillar cavity is demonstrated. The coherent interaction of the two-level system with the light pulses of the excitation laser leads to Rabi oscillations in the occupation probability of the quantum dot ground state, which were monitored via the photocurrent originating from the quantum dot. By changing the polarization angle of the exciting laser, a variation of the coupling between the quantum emitter and the electromagnetic field was observed. Interference of Indistinguishable Photons Emitted from Semiconductor Quantum Dots: Most technological applications in the field of quantum communication, and especially quantum repeaters, require photon sources of not only single but also indistinguishable photons. In this context, experiments on the interference of indistinguishable photons emitted from semiconductor quantum dots in planar resonator structures were performed. First, the interference of consecutively emitted photons from the same quantum dot is studied. The investigation focuses on the influence of the excitation condition on the two-photon interference visibility. In nonresonant continuous wave excitation, a postselected value of the two-photon interference visibility of V = 0,39 is measured. To obtain the non-postselected value, the excitation of the single photon source has to be pulsed. Recapturing and dephasing processes of additional charge carriers reduce the nonpostselected visibility for nonresonant excitation into the wetting layer states to a value of 12%, while for p-shell excitation, a larger visibility of v = (69 ± 1) % was achieved in a Hong-Ou-Mandel setup.Furthermore, the interference of two photons from two spatially separated quantum dots is demonstrated. Here, a maximum visibility of v = (39 ± 2)% was achieved for equal emission energies of both single photon sources. By changing the emission energy of one of the two quantum dots via a variation of its temperature, the photons emitted from each source could be made increasingly distinguishable, resulting in a decrease of the interference visibility. To obtain even larger two-photon interference visibilities, a strict resonant excitation of the quantum dot exciton is very promising. Hence, a confocal dark field microscope was built for experiments in resonance fluorescence. Single photon emission as well as the Mollow triplet were already identified in resonance fluorescence. KW - Quantenpunkt KW - Optischer Resonator KW - Quantenkommunikation KW - Mikroresonator KW - Purcell-Effekt KW - quantum dot KW - micro cavity KW - two photon interference KW - photocurrent KW - Ununterscheidbarkeit KW - Einzelphotonenemisson KW - Photostrom Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121649 ER - TY - THES A1 - Beetz, Johannes T1 - Herstellung und Charakterisierung von Halbleiterbauelementen für die integrierte Quantenphotonik T1 - Fabrication and characterization of semiconductor devices for integrated quantum photonics N2 - Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung quantenphotonischer Komponenten, welche für eine monolithische Integration auf einem Halbleiter-Chip geeignet sind. Das GaAs-Materialsystem stellt für solch einen optischen Schaltkreis die ideale Plattform dar, weil es flexible Einzelphotonenquellen bereithält und mittels ausgereifter Technologien auf vielfältige Weise prozessiert werden kann. Als Photonenemitter werden Quantenpunkte genutzt. Man kann sie mit komplexen Bauelementen kombinieren, um ihre optischen Eigenschaften weiter zu verbessern. Im Rahmen dieser Arbeit konnte eine erhöhte Effizienz der Photonenemission beobachtet werden, wenn Quantenpunkte in Wellenleiter eingebaut werden, die durch photonische Kristalle gebildet werden. Die reduzierte Gruppengeschwindigkeit die diesem Effekt zugrunde liegt konnte anhand des Modenspektrums von kurzen Wellenleitern nachgewiesen werden. Durch zeitaufgelöste Messungen konnte ermittelt werden, dass die Zerfallszeit der spontanen Emission um einen Faktor von 1,7 erhöht wird, wenn die Emitter zur Mode spektrale Resonanz aufweisen. Damit verbunden ist eine sehr hohe Modeneinkopplungseffizienz von 80%. Das Experiment wurde erweitert, indem die zuvor undotierte Membran des Wellenleiters durch eine Diodenstruktur ersetzt und elektrische Kontakte ergänzt wurden. Durch Anlegen von elektrischen Feldern konnte die Emissionsenergie der Quantenpunkte über einen weiten spektralen Bereich von etwa 7meV abgestimmt werden. Das Verfahren kann genutzt werden, um die exzitonischen Quantenpunktzustände in einen spektralen Bereich der Wellenleitermode mit besonders stark reduzierter Gruppengeschwindigkeit zu verschieben. Hierbei konnten für Purcell-Faktor und Kopplungseffizienz Bestwerte von 2,3 und 90% ermittelt werden. Mithilfe einer Autokorrelationsmessung wurde außerdem nachgewiesen, dass die Bauelemente als Emitter für einzelne Photonen geeignet sind. Ein weiteres zentrales Thema dieser Arbeit war die Entwicklung spektraler Filterelemente. Aufgrund des selbstorganisierten Wachstums und der großen räumlichen Oberflächendichte von Quantenpunkten werden von typischen Anregungsmechanismen Photonen mit einer Vielzahl unterschiedlicher Energien erzeugt. Um die Emission eines einzelnen Quantenpunktes zu selektieren, muss der Transmissionsbereich des Filters kleiner sein als der Abstand zwischen benachbarten Spektrallinien. Ein Filter konnte durch die Variation des effektiven Brechungsindex entlang von indexgeführten Wellenleitern realisiert werden. Es wurde untersucht wie sich die optischen Eigenschaften durch strukturelle Anpassungen verbessern lassen. Ein weiterer Ansatz wurde mithilfe photonischer Kristalle umgesetzt. Es wurde gezeigt, dass der Filter hierbei eine hohe Güte von 1700 erreicht und gleichzeitig die Emission des Quantenpunkt-Ensembles abgetrennt werden kann. Die Bauelemente wurden so konzipiert, dass die im photonischen Kristall geführten Moden effizient in indexgeführte Stegwellenleiter einkoppeln können. Ein Teil dieser Arbeit beschäftigte sich zudem mit den Auswirkungen von anisotropen Verspannungen auf die exzitonischen Zustände der Quantenpunkte. Besonders starke Verspannungsfelder konnten induziert werden, wenn der aktive Teil der Bauelemente vom Halbleitersubstrat abgetrennt wurde. Dies wurde durch ein neu entwickeltes Fabrikationsverfahren ermöglicht. Infolgedessen konnten die Emissionsenergien reversibel um mehr als 5meV abgestimmt werden, ohne dass die optischen Eigenschaften signifikant beeinträchtigt wurden. Die auf den aktiven Teil der Probe wirkende Verspannung wurde durch die Anwendung verschiedener Modelle abgeschätzt. Darüberhinaus wurde gezeigt, dass durch Verspannungen der spektrale Abstand zwischen den Emissionen von Exziton und Biexziton gezielt beeinflusst werden kann. Die Kontrolle dieser exzitonischen Bindungsenergie kann für die Erzeugung quantenmechanisch verschränkter Photonen genutzt werden. Dieses Ziel kann auch durch die Reduzierung der Feinstrukturaufspaltung des Exzitons erreicht werden. Die experimentell untersuchten Quantenpunkte weisen Feinstrukturaufspaltungen in der Größenordnung von 100meV auf. Durch genau angepasste Verspannungsfelder konnte der Wert erheblich auf 5,1meV verringert werden. Beim Durchfahren des Energieminimums der Feinstrukturaufspaltung wurde eine Drehung der Polarisationsrichtung um nahezu 90° beobachtet. Desweiteren wurde ein Zusammenhang des Polarisationsgrades mit der Feinstrukturaufspaltung nachgewiesen. Es wurde ein weiterer Prozessablauf entworfen, um komplexe Halbleiterstrukturen auf piezoelektrische Elemente übertragen zu können. Damit war es möglich den Einfluss der Verspannungsfelder auf Systeme aus Quantenpunkten und Mikroresonatoren zu untersuchen. Zunächst wurde demonstriert, dass die Modenaufspaltung von Mikrosäulenresonatoren reversibel angepasst werden kann. Dies ist ebenfalls von Interesse für die Erzeugung polarisationsverschränkter Photonen. An Resonatoren aus photonischen Kristallen konnte schließlich gezeigt werden, dass das Verhältnis der spektralen Abstimmbarkeiten von exzitonischen Emissionslinien und Resonatormode etwa fünf beträgt, sodass beide Linien in Resonanz gebracht werden können. Dieses Verhalten konnte zur Beeinflussung der Licht-Materie-Wechselwirkung genutzt werden. N2 - The focus of this work lies on the development of quantum photonic components which are capable to be integrated into a monolithic semiconductor chip. The GaAs material system is an ideal platform for such an optical circuit since it offers flexible emitters for single photons and can be processed in various ways using mature technologies. Quantum dots can serve as photon emitters. They can be readily combined with complex devices in order to enhance their optical properties. In this thesis, an increased efficiency of the photon emission was observed when quantum dots are embedded into photonic crystal waveguides. The reduced group velocity which is responsible for this effect was verified in short waveguides by analyzing spectral features of the mode. Time resolved measurements were used to show a decrease of the decay time of the spontaneous emission time by a factor of 1.7 when the emitter is resonant to the mode. As a consequence, a very high mode coupling efficiency of 80% was found. In an extended experiment, the previously undoped membrane of the waveguide was replaced by a diode-like layer structure and electrical contacts were added to the device. Using an electrical field, the emission energies of the quantum dots were tuned in a wide spectral range of approximately 7 meV. This technique can be used to shift the excitonic states of the quantum dots towards the spectral part of the waveguide mode where the group velocity is strongly reduced. As a result, the Purcell factor and the coupling efficiency were found to be as high as 2.3 und 90%. Using autorcorrelation measurements single photon emission was demonstrated for the devices. A futher topic of this work is focused on the development of spectral filters. Due to the self-assembled growth and high spatial surface density of quantum dots, typical excitation schemes generate a great number of photons with different energies. In order to select the emission of a single quantum dot, the transmission range of the filters must be lower than the distance of adjacent spectral lines. A filter device was realized by variations of the effective refractive index alongside of ridge waveguides. The optical properties were improved by structural adjustments. Another approach was implemented by using photonic crystals. This filter yielded a quality factor of 1700 and was able to suppress the emission of the quantum dot ensemble. The devices were designed to efficiently couple the mode from the photonic crystal to a ridge waveguide. Another part of this work addresses the effect of anistropic strain on the excitonic states of the quantum dots. In order to induce high amounts of strain, the active parts of the devices must be separated from the semiconductor substrate. For this reason a new fabrication process was developed. Consequently, reversible tuning ranges of more than 5 meV could be achieved for the emission energies while largely maintaining the optical properties. Strain applied at the active parts of the sample was estimated using various models. Furthermore, it was demonstrated that the spectral distance between exciton and biexziton is influenced by strain. The manipulation of the excitonic binding energy is useful for the generation of quantum-mechanically entangled photons. Another way to accomplish this goal is the reduction of the fine structure splitting of the exciton. The fine structur splitting of quantum dots used in the experiments is in the order of magnitude of 100 µeV. This value was decreased to 5.1 µeV by precise adjustments of the induced strain. A rotation of the emission polarization by almost 90◦ was observed when crossing the energetic minimum of the fine structure splitting. Furthermore, a change of the degree of polarization associated with the fine structure splitting was demontrated. A further process flow was developed in order to transfer complex device structures onto piezoelectric substrates. This allows for the investigation of strain induced to systems composed of quantum dots and microresonators. It was demonstrated that the spectral splitting of the mode of micropillar resonators can be tuned in a reversible manner. This finding is again interesting for the generation of polarization-entangled photons. When strain is applied to photonic crystal resonators a ratio of 5 is observed for the tuning ranges of excitonic emission lines and resonator mode with the result that resonance can accomplished between both lines. Since the tuning sensitivities are different the interaction of light and matter can be adjusted by strain. KW - Galliumarsenid-Bauelement KW - Resonatoren KW - Photonische Kristalle KW - Quantenpunkt KW - Photonik KW - Halbleiter Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117130 ER - TY - THES A1 - Heindel, Tobias T1 - Elektrisch gepumpte Quantenpunkt-Einzelphotonenquellen für die Quantenkommunikation T1 - Electrically Pumped Quantum-Dot Single-Photon Sources for Quantum Communication N2 - Als erste kommerziell verfügbare Technologie der Quanteninformation ermöglicht die Quanten-Schlüsselverteilung eine sichere Datenübertragung indem einzelne Photonen oder quantenmechanisch verschränkte Photonenpaare zur Erzeugung eines Schlüssels verwendet werden. Die hierfür benötigten nicht-klassischen Photonen-Zustände können durch Halbleiter-Quantenpunkte erzeugt werden. Im Gegensatz zu anderen Quanten-Emittern wie isolierten Atomen, organischen Molekülen oder Fehlstellen in Diamantnanokristallen bieten diese zudem den Vorteil, direkt in komplexe Halbleiter-Mikrostrukturen integriert werden zu können. Quantenpunkte sind somit prädestiniert für die Entwicklung neuartiger optoelektronischer Bauelemente auf einer skalierbaren Technologieplattform. Vor diesem Hintergrund werden in der vorliegenden Arbeit die Eigenschaften elektrisch gepumpter Quantenpunkt-Mikrostrukturen untersucht. Als optisch aktives Medium dienen dabei selbstorganisierte InAs/GaAs-Quantenpunkte. Die Zielsetzung ist die Erzeugung nicht-klassischen Lichts für Anwendungen in der Quantenkommunikation, wobei ein besonderer Fokus auf dem elektrischen Betrieb der entsprechenden Quantenlichtquellen liegt. Dabei werden sowohl ausgeprägte Resonatoreffekte im Regime der schwachen Licht-Materie-Wechselwirkung ausgenutzt, um helle Einzelphotonenquellen zu realisieren, als auch die Eigenschaften korrelierter Photonenpaare zweier spektral separierter Quantenpunkt-Zustände analysiert. Als Untersuchungsmethode wird in erster Linie die spektral und zeitlich hochauflösende Mikro-Lumineszenz-Spektroskopie bei kryogenen Temperaturen eingesetzt. Zudem erfolgen Experimente zur Photonenstatistik anhand von Messungen der Auto- sowie Kreuzkorrelationsfunktion zweiter Ordnung. Wie im Folgenden aufgeführt, gelingt dabei der Bogenschlag von grundlegenden Untersuchungen an Quantenpunkt-Mikrostrukturen bis hin zur erstmaligen Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in realistischen Experimenten zur Quanten-Schlüsselverteilung außerhalb einer geschützten Laborumgebung. Elektrisch getriggerte Einzelphotonenquellen: Für die Erzeugung elektrisch getriggerter, einzelner Photonen wurden Quantenpunkte in Mikroresonatoren eingebettet. Diese basieren auf dotierten, zylindrischen Fabry-Pérot Mikrosäulenresonatoren, deren Design bezüglich der Photonen-Auskoppeleffizienz optimiert wurde. […] Anhand von Messungen zur Photonenstatistik konnte für diese spektral resonant gekoppelten Quantenpunkt-Mikroresonatorsysteme sowohl unter kontinuierlicher- als auch unter gepulst-elektrischer Anregung Einzelphotonen-Emission nachgewiesen werden. […] Anhand einer eingehenden Analyse der Emissionsraten sowie der elektrischen Injektionseffizienzen bei Anregungs-Repetitionsraten von bis zu 220 MHz konnte gezeigt werden, dass die untersuchten Mikroresonatoren zudem als äußerst effiziente, elektrisch getriggerte Einzelphotonenquellen eingesetzt werden können. Sowohl bezüglich der Einzelphotonen-Emissionsraten von bis zu (47,0+/-6,9) MHz als auch der Gesamteffizienz der Bauteile bis hin zu (34+/-7) % konnten dabei Rekordwerte erzielt werden. Korrelierte Photonenpaare elektrisch gepumpter Quantenpunkte: […] Quanten-Schlüsselverteilung mit elektrisch getriggerten Einzelphotonenquellen: Ausgehend von den grundlegenden Untersuchungen dieser Arbeit, erfolgte die erstmalige Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in Experimenten zur Quanten-Schlüsselverteilung. Basierend auf den eingehend analysierten Quantenpunkt-Mikroresonatoren, wurden dabei zwei Experimente in Freistrahloptik mit unterschiedlichen Übertragungsdistanzen durchgeführt. In beiden Fällen wurde ein BB84-Protokoll nachgeahmt, indem auf die einzelnen Photonen eine feststehende Abfolge von vier unterschiedlichen Polarisationszuständen aufmoduliert wurde. Das erste Experiment, durchgeführt im Labormaßstab in Würzburg, basierte auf einem Quantenkanal mit einer Länge von etwa 40 cm und arbeitete bei einer Taktrate von 183 MHz. Die höchste dabei erzielte ausgesiebte Schlüsselrate (engl. sifted-key rate) betrug 35,4 kbit/s bei einem Quanten-Bitfehlerverhältnis (QBER) von 3,8 %. Der Einzelphotonen-Charakter der Emission innerhalb des Quantenkanals konnte jeweils eindeutig nachgewiesen werden […]. Das zweite Experiment zur Quanten-Schlüsselverteilung wurde mittels zweier Teleskope über eine Distanz von 500 m in der Münchner Innenstadt zwischen den Dächern zweier Gebäude der Ludwig-Maximilians-Universität realisiert. […] Bei einer Taktrate von 125 MHz konnte mit diesem System im Einzelphotonen-Regime eine maximale sifted-key rate von 11,6 kbit/s bei einem QBER von 6,2 % erzielt werden. Diese erstmalige Implementierung elektrisch betriebener, nicht-klassischer Lichtquellen in Experimenten zur Quanten-Schlüsselverteilung stellt einen wichtigen Schritt hinsichtlich der Realisierung effizienter und praktikabler Systeme für die Quantenkommunikation dar. N2 - Quantum key distribution is the first commercially available technology of quantum information and allows for secure data communication by utilizing single-photons or entangled photon-pairs for key generation. The required non-classical light states can be produced by semiconductor quantum dots. Compared to other quantum emitters, such as isolated atoms, organic molecules or vacancy centers in diamond nanocrystals, they offer the advantage of being capable for the integration into complex semiconductor microstructures. Therefore quantum dots are predestinated for the development of novel optoelectronic devices on a scalable technology platform. In this context, the work at hand explores the properties of electrically-pumped quantum dot microstructures. Thereby selforganized InAs/GaAs quantum dots serve as optically active medium. Aim of this work is the generation of non-classical light for applications in quantum communication, at which the study focuses specifically on electrical operation of the respective quantum light sources. In this framework pronounced cavity effects in the weak coupling regime of light-matter interaction will be employed to realize bright single-photon sources. Furthermore the properties of correlated photon-pairs from two spectrally-seperated quantum dot states will be analyzed. The structures were investigated by means of microluminescence spectroscopy with high spatial and temporal resolution. Moreover, experiments on the photon statistics were performed by measurements of the second-order auto- and cross-correlationfunction. As specified below, achievements within this study range from fundamental investigations on quantum dot microstructures to the first implementation of electrically-triggered quantum dot single-photon sources in realistic quantum key distribution experiments outside a shielded lab environment. Electrically-Triggered Single-Photon Sources: For the generation of electrically-triggered single-photons quantum dots were embedded in microcavities. The latter ones are based on doped Fabry-Pérot micropillar resonators featuring a design that was optimized for enhanced photon-exctraction effiency. […] Photon statistic measurements on these resonantly-coupled quantum dot micropillar systems prooved single-photon emission under continuous electrical as well as pulsed electrical excitation. […] A detailed investigation of the photon emission rates and carrier injection efficincies at excitation repetition rates of up to 220 MHz showed, that the micropillar cavities can be used as extremely efficient single-photon sources. Record high values for single-photon emission rates of up to (47.0+/-6.9) MHz as well as overall efficiencies of up to (34+/-7) % were achieved for these devices. Correlated Photon-Pairs of Electrically Pumped Quantum Dots: […] Quantum Key Distribution Using Electrically Triggered Single-Photon Sources: Based on the fundamental investigations in this work, the first implementation of electrically driven quantum dot single-photon sources into quantum key distribution experiments was carried out. Utilizing the investigated quantum dot micropillar cavities, two free space experiments were performed with different transmission distances. In both cases a BB84-protocoll was emulated by modulating the single-photons with a fixed pattern of four different polarization settings. The first experiment, performed on a lab-scale in Würzburg, is based on a 40 cm quantum channel and worked at a clock rate of 183 MHz. Sifted-key rates of up to 35.4 kbit/s with a quantum bit error ratio (QBER) of 3.8 % were achieved. Single-photon emission within the quantum channel was proven unambiguously […]. The second quantum key distribution experiment was realized over a distance of 500 m in downtown Munich, connecting two buildings of the Ludwig-Maximilians-Universität via telescopes on the rooftops. […] Using this system at a clock rate of 125 MHz, a maximum sifted-key rate of 11.6 kbit/s at a QBER of 6.2 % was achieved in the single-photon regime. This first implementation of an electrically-driven non-classical light source in quantum key distribution experiments can be considered as a major step toward the realization of efficient and practical quantum communication systems. KW - Quantenpunkt KW - Lumineszenzdiode KW - Einzelphotonenemission KW - semiconductor quantum dot KW - single photon emission KW - non-classical light KW - electrically triggered KW - quantum key distribution KW - quantum information technology KW - Quantenkryptologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105778 ER - TY - THES A1 - Albert, Ferdinand T1 - Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung T1 - Vertical and lateral emission properties of semiconductor quantum-dot-microresonators in the regime of weak and strong light matter interaction N2 - Die vorliegende Arbeit beschäftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungsträger unterhalb der de-Broglie-Wellenlänge eingeschränkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als künstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikrosäulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavität, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission über Fabry-Perot Moden, als auch eine laterale Emission über Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungsträgern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt über das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die Dämpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erhöht werden kann. In diesem Regime können Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpströmen realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt. N2 - The present work deals with the light-matter interaction in quantum dot microcavities and their vertical and lateral emission properties. Quantum dots are nanoscopic structures, in which charge carriers are confi� ned in all three dimensions below the de-Broglie wavelength. As a consequence, the density of electronic states becomes singular and quantum dots are therefore referred to as arti� cal atoms. To modify the emission properties of quantum dots, they are introduced in micropillar cavities. These consist of a GaAs � -cavity, which is sandwiched between two Bragg mirrors of alternating layers of GaAs and AlAs. The micropillar resonators provide both a vertical emission via Fabry-P� erot modes, as well as a lateral emission via whispering gallery modes. The light-matter interaction between the microcavity modes and the localized charge carriers, called exzitons, can be devided into two regimes. In the strong coupling regime, the spontaneous emission process becomes reversible and an emitted photon can be reabsorbed by the quantum dot. The theoretical description of the coupling of a two-level emitter with a photonic mode is given by the Jaynes-Cummings model. For multiple two-level emitters, it can be extended to the Tavis-Cummings model. In the weak coupling regime the spontaneous emission rate of a quantum dot can be increased by the Purcell e� ect. Here, microlasers with high spontaneous emission coupling factors and low lasing thresholds can be realized. In order to investigate the samples, especially the methods of microelectroluminescence and photon correlation measurements are applied. KW - Drei-Fünf-Halbleiter KW - Quantenpunkt KW - Halbleiterlaser KW - Quantenoptik KW - Mikrolaser KW - Mikrosäulenresonator KW - Quantenpunkt KW - Flüstergaleriemode KW - Galliumarsenidlaser KW - Optischer Resonator KW - Mikrooptik KW - Mikroresonator Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93016 ER - TY - THES A1 - Göpfert, Sebastian T1 - Einzel-Quantenpunkt-Speichertransistor: Experiment und Modellierung T1 - Single quantum dot memory transistor: Experiment and modeling N2 - In dieser Arbeit wurden Einzel-Quantenpunkt-Speichertransistoren im Experiment untersucht und wesentliche Ergebnisse durch Modellierung nachgebildet. Der Einzel-Quantenpunkt-Speichertransistor ist ein Bauelement, welches durch eine neuartige Verfahrensweise im Schichtaufbau und bei der Strukturierung realisiert wurde. Hierbei sind vor allem zwei Teilschritte hervorzuheben: Zum einen wurde das Speicherelement aus positionskontrolliert gewachsenen InAs Quantenpunkten gebildet. Zum anderen wurden durch eine spezielle Trockenätztechnik schmale Ätzstrukturen erzeugt, welche sehr präzise an der lateralen Position der Quantenpunkte ausgerichtet war. Durch diese Verfahrensweise war es somit möglich, Transistorstrukturen mit einzelnen Quantenpunkten an den charakteristischen Engstellen des Kanals zu realisieren. N2 - In this thesis single-quantum-dot memory-transistors have been studied in experiment and the experimental findings have been reproduced by modeling. The studied single-quantum-dot memory transistor is a device which has been realized by a novel process technique as regards layer composition and structuring. According to this there are two steps to be emphasized: First the memory element is based on site-controlled grown InAs quantum dots. Second, there has been used a unique dry etching technique to define narrow etched structures, which have been precisely aligned laterally with respect to the position of the quantum dots. Due to this method it was possible to realize transistor structures with single quantum dots centered in a quantum wire. KW - Quantenpunkt KW - Transistor KW - Speicherelement KW - single electron transport KW - single quantum dot KW - nanotechnology KW - Nanotechnologie KW - Elektronischer Transport KW - Single electron transfer Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-80600 ER - TY - THES A1 - Huggenberger, Alexander T1 - Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren T1 - Optimization of site-controlled In(Ga)As quantum dots for the integration into semiconductor micro resonators N2 - Diese Arbeit beschäftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Datenübertragung, die durch Quantenkryptographie abhörsicher verschlüsselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschränkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein häufig untersuchtes System und können heutzutage mit hoher Kristallqualität durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erhöhen, wurden Mikrosäulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate für die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen Ätztechniken erreicht. Für den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema für den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. Für die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngröße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese häufig aufgrund spektraler Diffusion größer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ansätze und Strategien zur Überwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV für die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualität besitzen. Die FSS der Emission eines Quantenpunktes sollte für die direkte Erzeugung polarisationsverschränkter Photonen möglichst klein sein. Deswegen wurden unterschiedliche Ansätze diskutiert, um die FSS einer möglichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in geätzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend für den künftigen Einsatz solcher Quantenpunkte in Quellen für verschränkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschränkten Zustandes gezeigt. In Zusammenarbeit mit der Universität Tokyo wurde ein Konzept entwickelt, mit dem künftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavitäten hergestellt werden können. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikrosäulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavitätsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion für verschwindende Zeitdifferenzen nachgewiesen wurde. N2 - The present thesis is about the fabrication of site-controlled In(Ga)As quantum dots for the scalable integration into devices. The optical properties of these quantum dots were systematically optimized with special care regarding the optical linewidth and the fine structure splitting of single quantum dots. This optimization was accomplished in order to use the quantum dots in light sources for quantum key distribution By coupling semiconductor microcavities and quantum dots one is able to realize single photon sources or sources of entangled photons. This work demonstrates the scalable integration of site-controlled quantum dots into semiconductor microresonators. The growth of In(Ga)As quantum dots on GaAs substrates is a field of vivid research nowadays and can be fabricated with high quality by molecular beam epitaxy. The emission from single quantum dots exhibits lines that resemble the discrete emission spectra of atoms. This thesis uses micropillar cavities and photonic crystal cavities to direct the emission of quantum dots and to increase the extraction efficiency. The integration into these resonator systems was done by adjusting the quantum dots’ positions to reference structures on the samples. This allows for a scalable fabrication of many spatially coupled quantum dot resonator systems The substrates were patterned using a combination of optical and electron beam lithography followed by wet or dry etching. Electrical carrier injection was realized by developing a contact scheme. The quantum dots were fabricated using a stacked growth scheme that consists of a seeding layer and an optical active quantum dot layer. Quantum dots on square lattices with a period of up to 10 mum were fabricated to enable the integration of single quantum dots into semiconductor microresonators. On the other hand, it was possible to realize periods of only 200 nm which is promising for the investigation of superradiance effects in the ensemble emission of quantum dots. The optical properties of site-controlled quantum dots were investigated by studying the photoluminescence. The emission linewidth of single quantum dots is an important benchmark for the optical quality. Site-controlled quantum dots are known to exhibit large linewidths due to the effect of spectral diffusion. Different strategies to overcome this obstacle were investigated during this work. A linewidth as low as 25 mueV was observed for a single site-controlled quantum dot (on a square lattice of 2 mum period). The statistical evaluation yields a mean value of 133 mueV for this kind of quantum dots. Both results prove the high optical quality of the site-controlled quantum dots fabricated in this work. The fine structure splitting of the quantum dot emission should be close to zero for the direct observation of polarization entangled photons. Different concepts were investigated during this work to reduce the fine structure splitting of the quantum dot ensemble. The lowest splitting obtained for site-controlled In(Ga)As quantum dots on (100) GaAs was 9.8 mueV. By growing quantum dots into inverted pyramids etched into (111) GaAs one should be able to further reduce the splitting due to the threefold symmetry of (111) GaAs. Furthermore, the piezoelectric field in (211) GaAs should compensate the fine structure splitting. Using quantum dots on these high index materials the fine structure splitting was reduced to values below 5 mueV during this work. Another concept to reduce the fine structure splitting is the application of a lateral electric field which was shown to reduce the splitting from 25 mueV to 15 mueV. For the future measurement of the degree of entanglement of photons, an experimental setup was established and its functionality was proven by measuring the temporal characteristics of an biexciton-exciton-cascade. In cooperation with the group of Prof. Arakawa from Tokyo University a concept was developed to realize single quantum dot lasers by combining site-controlled quantum dots and two- or three-dimensional photonic crystal cavities in the near future. Furthermore, with the help of an electrically driven micropillar resonator the enhancement of the spontaneous emission for spectral resonance of the cavity mode with the emission of a site-controlled quantum dot was shown. This system could be used as a single photon source which is proven by the measurement of the autocorrelation function for zero time delay. KW - Quantenpunkt KW - Einzelphotonenemission KW - Drei-Fünf-Halbleiter KW - quantum dot KW - semiconductor KW - molecular beam epitaxy KW - single photon emission KW - optical resonator KW - Halbleiter KW - Molekularstrahlepitaxie KW - Optischer Resonator KW - Linienbreite Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78031 ER - TY - THES A1 - Gerhard, Sven T1 - AlGaInP-Quantenpunkte für optoelektronische Anwendungen im sichtbaren Spektralbereich T1 - AlGaInP Quantum Dots for Optoelectronic Applications in the Visible Spectral Range N2 - Die Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von AlGaInP Quantenpunkten auf GaP und GaAs-Substrat. Auf Basis dieser Quantenpunkte wurden Halbleiterlaser auf GaAs hergestellt, welche bei Raumtemperatur zwischen 660 nm und 730 nm emittierten. Die Untersuchung von Breitstreifenlasern, welche aus diesen Strukturen gefertigt wurden, legen nahe, dass man mithilfe eines höheren Aluminiumanteils in größeren Quantenpunkten bei vergleichbarer Wellenlänge Laser mit besseren Eigenschaften realisieren kann. Weiterhin wurden in dieser Arbeit Quantenpunkten auf GaP-Substrat untersucht, welche in AlGaP eingebettet wurden. Da diese Quantenpunkte in Barrieren eingebettet sind, welche eine indirekte Bandlücke besitzen, ergibt sich ein nicht-trivialer Bandverlauf innerhalb dieser Strukturen. In dieser Arbeit wurden numerische 3D-Simulationen verwendet, um den Bandverlauf zu berechnen, wobei Verspannung und interne Felder berücksichtigt wurden und auch die Grundzustandswellenfunktionen ermittelt wurden. Ein eingehender Vergleich mit dem Experiment setzt die gemessenen Emissionswellenlängen und -intensitäten mit berechneten Übergangsenergien und Überlappintegralen in Verbindung. N2 - The scope of this work is the fabrication and characterization of AlGaInP quantum dots on GaP an GaAs substrates. Based on such quantum dots, semiconductor lasers have been realized, emitting between 660 nm and 730 nm at room temperature. The examination of broad-area lasers processed on these structures suggests that active layers of larger quantum dots with higher aluminium contents lead to lasers with better performance at similar emission wavelength. Additionally, quantum dots grown on GaP substrates have been characterized, that were embedded in AlGaP barriers. Since these barriers exhibit an indirect bandgap, a non-trivial band alignment within these structures is expected. In this work, numerical 3D-simulations are employed to calculate the band alignment including strain and internal fields. Also, ground state wavefunctions of charge carriers have been determined. A thorough comparison between theory and experiment connects the measured emission wavelength and luminescence intensities with calculated transition energies and wavefunction overlaps. KW - Quantenpunkt KW - Drei-Fünf-Halbleiter KW - Optoelektronik KW - AlGaInP KW - AlGaInP KW - quantum dot KW - gallium phosphide KW - Galliumphosphid KW - Laser Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76174 ER - TY - THES A1 - Münch, Steffen T1 - Photolumineszenz-Spektroskopie an niederdimensionalen Halbleiterstrukturen auf III-V-Basis T1 - Photoluminescence Spectroscopy on low-dimensional III-V Semiconductor Structures N2 - Die vorliegende Arbeit beschäftigt sich mit optischen Untersuchungen an niederdimensionalen III/V-Halbleiterstrukturen. Dabei werden zunächst im ersten Teil selbst-organisiert gewachsene Nanodrähte aus InP und GaN bezüglich ihrer Oberflächen- und Kristallqualität charakterisiert. Dies ist besonders im Hinblick auf zukünftige opto- und nanoelektronische Bauteile von Interesse. Der zweite, grundlagenorientierte Teil der Arbeit ist im Bereich der Quantenoptik angesiedelt und widmet sich magneto-optischen Studien zur Licht-Materie Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen im Regime der starken Kopplung. Oberflächen-Untersuchungen an Halbleiter-Nanodrähten Bei diesem Teilaspekt der vorliegenden Arbeit stehen Untersuchungen von Halbleiter-Nanodrähten mittels zeitintegrierter und zeitaufgelöster Photolumineszenz (PL)-Spektroskopie im Vordergrund. Diese eindimensionalen Nanostrukturen bieten eine vielversprechende Perspektive für die weitere Miniaturisierung in der Mikroelektronik. Da konventionelle Strukturierungsverfahren wie die optische Lithographie zunehmend an physikalische und technologische Grenzen stoßen, sind selbstorganisierte Wachstumsprozesse hierbei von besonderem Interesse. Bei Nanodrähten besteht darüber hinaus konkret noch die Möglichkeit, über ein gezieltes axiales und radiales Wachstum von Heterostrukturen bereits bei der Herstellung komplexere Funktionalitäten einzubauen. Auf Grund ihres großen Oberfläche-zu-Volumen Verhältnisses sind die elektronischen und optischen Eigenschaften der Nanodrähte extrem oberflächensensitiv, was vor allem im Hinblick auf zukünftige Anwendungen im Bereich der Mikro- oder Optoelektronik sowie der Sensorik von essentieller Bedeutung ist. Zur näheren Untersuchung der Oberflächeneigenschaften von Nanodrähten eignet sich die optische Spektroskopie besonders, da sie als nicht-invasive Messmethode ohne aufwändige Probenpräparation schnell nützliche Informationen liefert, die zum Beispiel in der Optimierung des Herstellungsprozesses eingesetzt werden können. Quantenoptik an Halbleiter-Mikrokavitäten Der zweite Teil dieser Arbeit widmet sich der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen. Dabei ist das Regime der starken Kopplung zwischen Emitter und Resonator, auch im Hinblick auf mögliche zukünftige Anwendungen in der Quanteninformationsverarbeitung, von besonderem Interesse. Diese Mikroresonator-Türmchen, die auf planaren AlAs/GaAs-Mikroresonatoren mit InGaAs Quantenpunkten in der aktiven Schicht basieren, wurden mittels zeitintegrierter und zeitaufgelöster Mikro-PL-Spektroskopie in einem äußeren magnetischen Feld in Faraday-Konfiguration untersucht. Grundlegende Untersuchungen von Quantenpunkten im Magnetfeld Zunächst wurden InxGa(1−x)As-Quantenpunkte mit unterschiedlichem In-Gehalt (x=30%, 45% und 60%) magneto-optisch untersucht. Aufgrund der größeren Abmessungen weisen die Quantenpunkte mit 30% In-Anteil auch hohe Oszillatorstärken auf, was sie besonders für Experimente zur starken Kopplung auszeichnet. Unter dem Einfluss des Magnetfeldes zeigte sich ein direkter Zusammenhang zwischen der lateralen Ausdehnung der Quantenpunkte und ihrer diamagnetischen Verschiebung. Starke Kopplung im magnetischen Feld Neben der Möglichkeit, das Resonanzverhalten über das externe Magnetfeld zu kontrollieren, zeigte sich eine Korrelation zwischen der Kopplungsstärke und dem magnetischen Feld, was auf eine Verringerung der Oszillatorstärke im Magnetfeld zurückgeführt werden konnte. Diese steht wiederum im Zusammenhang mit einer Einschnürung der Wellenfunktion des Exzitons durch das angelegte Feld. Dieser direkte Einfluss des Magnetfeldes auf die Oszillatorstärke erlaubt eine in situ Variation der Kopplungsstärke. Photon-Photon-Wechselwirkung bei der starken Kopplung im Magnetfeld Nach der Demonstration der starken Kopplung zwischen entarteten Exziton- und Resonatormoden im Magnetfeld, wurden im weiteren Verlauf Spin-bezogene Kopplungseffekte im Regime der starken Kopplung untersucht. Es ergaben sich im Magnetfeld unter Variation der Temperatur zwei Bereiche der Wechselwirkung zwischen den einzelnen Komponenten von Resonator- und Exzitonenmode. Von besonderem Interesse ist dabei eine beobachtete indirekte Wechselwirkung zwischen den beiden photonischen Moden im Moment der Resonanz, die durch die exzitonische Mode vermittelt wird. Diese sogenannte Spin-vermittelte Photon-Photon-Kopplung stellt ein Bindeglied zwischen eigentlich unabhängigen photonischen Moden über den Spinzustand eines Exzitons dar. N2 - This thesis deals with optical investigations on low-dimensional III/V-semiconductor structures. In the first part self-organized nanowires made of InP and GaN are characterized for their surface and crystal quality, which is of special interest with respect to future opto- and nanoelectronic devices. The second part is dedicated to the more basic research topic of Quantum Optics. It presents magneto-optical studies on the light-matter interaction in quantum dot microresonator systems within the regime of strong coupling. Surface investigations on semiconductor nanowires This aspect of the present work focuses on investigations of semiconductor nanowires by means of time-integrated and time-resolved photoluminescence (PL) spectroscopy. These one-dimensional nanostructures provide a promising perspective for the further miniaturization of microelectronics. Since conventional structuring techniques increasingly face physical and technological boundaries, self-organized growth processes are of special interest in this context. Moreover, nanowires offer the possibility to implement complex functionalities already during their fabrication by means of controlled growth of axial and radial heterostructures. Due to their high surface-to-volume ratio the electronic and optical properties of nanowires are extremely sensitive to the surface conditions, which is of essential relevance for future applications in the range of micro- and optoelectronics as well as sensor technology. For a detailed investigation of the surface properties of nanowires optical spectroscopy is especially suitable, because as a non-invasive measurement method it quickly provides useful information without the necessity of an eloborate sample preparation. This information can, for instance, be adopted for the optimization of the fabrication process. Quantum Optics in semiconductor microcavities The second part of this thesis addresses the light-matter interaction in quantum dot-microresonator systems. Here, the regime of strong coupling between emitter and resonator is of special interest, also with respect to potential future applications in the field of quantum information processing. These microresonator-pillars based on planar AlAs/GaAs microresonators with InGaAs quantum dots in the active layer have been investigated by means of time-integrated and time-resolved micro-PL-spectroscopy in an external magnetic field in Faraday configuration. Basic investigations of quantum dots in magnetic fields In the first place, InxGa(1−x)As quantum dots with different In-content (x = 30%, 45% and 60%) have been investigated magneto-optically. Due to their bigger dimensions these quantum dots with 30% In-content exhibit higher oscillator strengths which makes them especially suitable for experiments on strong coupling. The influence of the magnetic field showed a direct relation between the lateral extension of the quantum dots and their diamagnetic shift. Strong coupling in magnetic fields Besides the possibility of tuning the system in resonance by the external magnetic field, a correlation between the coupling strength and the magnetic field was discovered which could be ascribed to a reduction of the oscillator strength in the magnetic field. This in turn is based on a squeeze of the exciton’s wavefunction by the applied field. This direct influence of the magnetic field on the oscillator strength allows for an in situ control of the coupling strength. Photon-photon interaction under strong coupling in magnetic fields After the demonstration of strong coupling between degenerate exciton and resonator modes in magnetic fields, spin-related coupling effects within the regime of strong coupling have been investigated. Two regions of interaction between the individual components of the resonator and exciton mode developed in the magnetic field under variation of the temperature. Here, an observed indirect interaction between both photonic modes at the moment of resonance is of special interest, because it is mediated by the excitonic mode. This so-called spinmediated photon-photon coupling represents a link between technically independent photonic modes via the spin state of an exciton. KW - Drei-Fünf-Halbleiter KW - Niederdimensionaler Halbleiter KW - Photolumineszenzspektroskopie KW - quantum dot KW - quantum optics KW - optical spectroscopy KW - solid state physics KW - nanowire KW - Quantenpunkt KW - Quantenoptik KW - Optische Spektroskopie KW - Festkörperphysik KW - Nanodraht Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74104 ER - TY - THES A1 - Schneider, Christian T1 - Konzepte zur skalierbaren Realisierung von effizienten, halbleiterbasierten Einzelphotonenquellen T1 - Concepts for the scalable realization of efficient semiconductor single photon sources N2 - Dem Einsatz niederdimensionaler Nanostrukturen als optisch aktives Medium wird enormes Potential vorausgesagt sowohl in den klassischen optoelektronischen Bauteilen (wie z.B. Halbleiterlasern) als auch in optischen Bauteilen der näachsten Generation (z.B. Einzelphotonenquellen oder Quellen verschränkter Photonenpaare). Dennoch konnten sich quantenpunktbasierte Halbleiterlaser, abgesehen von einigen wenigen Ausnahmen (QDLaser inc.), im industriellen Maßstab bisher nicht gegen Bauelemente mit höherdimensionalen Quantenfilmen als optisch aktivem Element durchsetzen. Deshalb scheint der Einsatz von Quantenpunkten (QPen) in nichtklassischen Lichtquellen gegenwärtig vielversprechender. Um jedoch solche Bauteile bis zur letztendlichen Marktreife zu bringen, müssen neben der starken Unterdrückung von Multiphotonenemission noch wesentliche Grundvoraussetzungen erfüllt werden: In dieser Arbeit wurden grundlegende Studien durchgeführt, welche insbesondere dem Fortschritt und den Problemen der Effizienz, des elektrischen Betriebs und der Skalierbaren Herstellung der Photonenqullen dienen sollte. Zum Einen wurden hierfür elektrisch betriebene Einzelphotonenquellen basierend auf gekoppelten QP-Mikroresonatoren realisiert und de ren Bauteileffizienz gezielt optimiert, wobei konventionelle selbstorganisierte InAs-QPe als aktives Medium eingesetzt wurden. Für die skalierbare Integration einzelner QPe in Mikroresonatoren wurde des Weiteren das gesteuerte QP-Wachstum auf vorstrukturierten Substraten optimiert und auf diese Art ortskontrollierte QPe in Bauteile integriert. Für die Realisierung hocheffizienter, elektrisch gepumpter inzelphotonenquellen wurde zunächst das Wachstum von binären InAs-QPen im Stranski-Krastanov-Modus optimiert und deren optische Eigenschaften im Detail untersucht. Durch das Einbringen einer Schicht von Siliziumatomen nahe der QP-Schicht konnten die Emitter negativ geladen werden und der helle Trionenzustand der QPe als energetischer Eigenzustand des Systems zur effizienten Extraktion einzelner Photonen ausgenutzt werden. Durch die Integration dieser geladenen QPe in elektrisch kontaktierte, auf Braggspiegel basierte Mikrotürmchen konnten Einzelphotonenquellen realisiert werden, in denen gezielt Licht-Materie- Wechselwirkungseffekte zur Steigerung der Bauteileffizienz ausgenutzt wurden. Basierend auf theoretischen Überlegungen wurde die Schichtstruktur soweit optimiert, dass letztendlich experimentell eine elektrisch gepumpte Einzelphotonenquelle mit einer Photonenemissionsrate von 47 MHz sowie einer zuvor unerreichten Bauteileffizienz von 34 % im Regime der schwachen Licht-Materie-Kopplung demonstriert werden konnte. Da Effekte der Licht-Materie-Wechselwirkung zwischen QP und Resonator neben der spektralen Resonanz ebenfalls von der relativen Position von Resonator und QP zueinander abhängen, ist eine Kombination von positionierten QPen und Bauteilausrichtung nahezu unumg¨anglich für die skalierbare, deterministische Herstellung von Systemen aus perfekt angeordnetem Emitter und Resonator. Deshalb wurden bestehende Konzepte zum geordneten Wachstum von QPen weiterentwickelt: Hierbei wurde geordnetes InAs-QP-Wachstum mit Perioden realisiert, die vergleichbare Abmessungen wie optische Resonatoren aufweisen, also Nukleationsperioden zwischen 500 nm und 4 μm. Durch ein genaues Anpassen der Wachstums- und Prozessbedingungen konnte des Weiteren die Bildung von QP-Molekülen auf den Nukleationsplätzen nahezu unterdrückt beziehungsweise gesteuert werden. Durch eine systematische Optimierung der optischen Eigenschaften der QPe konnten Emitter mit Einzelquantenpunktlinienbreiten um 100 μeV realisiert werden, was eine Grundvoraussetzung zur Studie ausgeprägter Licht-Materie-Wechselwirkungseffekte in Mikroresonatoren darstellt. Letztendlich konnten durch die Integration derartiger QPe in optisch sowie elektrisch betriebene Mikroresonatoren erstmals Bauteile realisiert werden, welche einige der prinzipiellen, an eine Einzelphotonenquelle gestellten Anforderungen erfüllen. Insbesondere konnten deutliche Signaturen der schwachen Licht-Materie-Kopplung einzelner positionierter QPe in photonische Kristallresonatoren, Mikroscheibenresonatoren sowie Mikrotürmchenresonatoren festgestellt werden. Darüberhinaus konnte an einem spektral resonanten System aus einem positionierten QP und der Grundmode eines Mikrotürmchenresonators eindeutig Einzelphotonenemission unter optischer Anregung demonstriert werden. Ebenfalls konnten Mikrotürmchenresonatoren mit integrierten positionierten QPen erstmals elektrisch betrieben werden und somit die Grundvoraussetzung für eine der skalierbaren Herstellung effizienter Einzelphotonenquellen geschaffen werden. N2 - Employing low dimensional nanostructures as active medium in classical optoelectronic devices (for instance semiconductor laser diodes) as well as optical devices of the next generation (such as single photon sources or sources of entangled photon pairs promises enormous potential. Yet, despite some exceptions (for example QDLasers inc.), quantum dot (QD)-based semiconductor lasers can hardly compete with devices exploiting higher dimensional gain material so far. Hence, using QDs as single photon emitters seems very promising. In order to achieve compatibility on the market, some urgent pre-requisites still need to be met in such devices besides the surpression of multiphoton emission: • Efficiency: Only a highly efficient single photon source can be reasonably employed in applications. • Electrical operation: In order to achieve a high integration density and for reasons of user friendlyness, the device needs to be driven electrically. • Scalability: The scalable fabrication of single photon sources is pre-requisite and one of the greatest technological challenges. • Temperature: Eventually, single photon sources will only be established in the wide field of secure data transmission if their operation at room temperature can be assured. In this work, basic studies were carried out especially devoted to the progress in the first three challenges. On the one hand, electrically driven single photon sources based on coupled QD-microcavities were realized and optimized by employing conventional self organized InAs QDs as active material. On the other hand, in order to facilitate a scalable integration of single QDs into microcavities, directed QD nucleation on pre-patterned substrate was optimized. These site-controlled QDs were at last integrated into resonator devices. In order to realize highly efficient, electrically driven single photon sources, at first the growth of binary Stranski-Krastanov InAs QDs was optimized and their emission properties were investigated in detail. By introducing Silicon atoms in the vicinity of the QD-layer, the emitters could be negatively charged. The resulting bright trion state of the QDs can subsequently be exploited as the energetic eigenstate of the system for the extraction of single photons. By integrating these charged QDs in contacted, Bragg-reflector based micropillars, single photon sources were realized exploiting light-matter coupling to enhance the device’s efficiency. Based on theoretical considerations, the grown layer sequence was optimized to an extent that eventually an electrically driven single photon source with an emission rate of 47 MHz and an unprecedented device efficiency of 34 % in the weak coupling regime could be demonstrated. Since the effects of light-matter coupling between QD and resonator rely on the QD’s position in the device, a combination of site-controlled QD-growth and device alignment is almost inevitable for a scalable, deterministic fabrication of perfectly aligned emittercavity systems. Therefore, existing concepts for ordered QD-growth were adapted and improved [KH07]: Ordered QD-growth on periods comparable to dimensions of optical resonators between 500 nm und 4 μm was realized. By carefully adjusting the growth and process conditions, formation of QD-molecules on nucleation sites could be controlled and supressed almost entirely. Carrying out a systematic optimization of the QD’s optical properties, emitters with single QD-linewidth around 100 μeV were realized. This is pre-requsite for the study of pronounced light-matter interaction in microcavities. Finally, the integration of such QDs in optically and electrically driven microresonators resulted in devices demonstrating some of the fundamental properties requested from a single photon source. Pronounced signatures of the weak light-matter coupling between a site-controlled QD in a photonic crystal cavity, a microdisk cavity and micropillar cavities were observed. Furthermore, single photon emission of a spectrally resonant system of sitecontrolled QD and micropillar cavity under pulsed optical excitation was unambigiously demonstrated. Beyond this, micropillar cavities with site-controlled QDs were electrically driven for the first time, which is pre-requisite for the scalable fabrication of efficient single photon sources. KW - Einzelphotonenemission KW - Quantenpunkt KW - Positionierung KW - Drei-Fünf-Halbleiter KW - Optischer Resonator KW - Mikrokavität KW - Single photon emission KW - quantum dot KW - site-controlled KW - semiconductor KW - microcavity Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73506 ER - TY - THES A1 - Maier, Florian C. T1 - Spectromicroscopic characterisation of the formation of complex interfaces T1 - Spektromikroskopische Charakterisierung der Bildung komplexer Grenzflächen N2 - Within the framework of this thesis the mechanisms of growth and reorganisation of surfaces within the first few layers were investigated that are the basis for the fabrication of high quality thin films and interfaces. Two model systems, PTCDA/Ag(111) and CdSe/ZnSe quantum dots (QD), were chosen to study such processes in detail and to demonstrate the power and improvements of the aberration corrected spectromicroscope SMART [1] simultaneously. The measurements benefit especially from the enhanced transmission of the microscope and also from its improved resolution. SMART, the first double–aberration corrected instrument of its kind [2], provided comprehensive methods (LEEM/PEEM, μ–LEED, μ–XPS) to study in–situ and in real time the surface reorganisation and to determine morphology, local structure and local chemical composition of the resulting thin film. Complementarily, a commercial AFM [3] was used ex–situ. XPEEM and μ–XPS measurements were made possible by attaching SMART to the high flux density beamline of the soft–X–ray source BESSY–II [4]. PTCDA/Ag(111) – Growth and structure of the first two layers Although PTCDA/Ag(111) is one of the most intensely studied model systems for the growth of organic semiconductor thin films, it still offers new insights into a complex growth behaviour. This study enlightens the temperature dependant influence of morphological features as small as monatomic Ag steps on the growth process of the first two layers. At low temperatures, single Ag steps act as diffusion barriers. But interdiffusion was observed already for the 2nd layer whereas domain boundaries in the 1st PTCDA–layer persist for crystallite growth in the 2nd layer. 1st layer islands are more compact and the more dendritic development of the 2nd layer indicates reduced interaction strength between 2nd and 1st layer. These findings were explained by a model consisting of structural and potential barriers. The second part of the PTCDA study reveals a variety of phases that appears only if at least two layers are deposited. Besides the six known rotational domains of the interface system PTCDA/Ag(111) [5], a further manifold of structures was discovered. It does not only show a surprising striped image contrast, but the 2nd layer also grows in an elongated way along these so–called ’ripples’. The latter show a rather large period and were found in a wide temperature range. Additionally the μ-LEED pattern of such a domain shows a new super–superstructure as well. This phase is explained by a structural model that introduces a rotated, more relaxed domain in the 2nd layer that does not exist in the first layer. Its structural parameters are similar to those of the bulk unitcells of PTCDA. The model is confirmed by the observation of two different rotational domains that grow on top of one single ’substrate’ domain in the 1st layer. The orientations of the ripple phases fit as well to the predictions of the model. The growth direction along the ripples corresponds to the short diagonal of the super–superstructure unitcell with diamond–like shape. CdSe/ZnSe – Inverse structuring by sublimation of an α-Te cap With the second model system the formation of CdSe quantum dots (QD) from strained epi-layers was investigated. In this case the structures do not form during deposition, but rather during sublimation of the so–called ‘ignition cap’. For these pilot experiments not only the process of QD formation itself was of interest, but also the portability of the preparation and the prevention of contaminations. It was found that the α-Se is well suited for capping and the last step of the QD preparation, the sublimation of the α-Te cap, needs a sufficiently high rate in rise of temperature. Subsequently the cap, the process of desorption and the final surface with the quantum structures were investigated in detail. The cap was deposited by the MBE-group in Würzburg as an amorphous Te layer but was found to contain a variety of structures. Holes, cracks, and micro–crystallites within an α-Te matrix were identified. Sublimation of the “ignition cap” was observed in real–time. Thus the discovered cap-structures could be correlated with the newly formed features as, e.g., QDs on the bare CdSe surface. Since CdSe/ZnSe QDs prefer to form in the neighbourhood of the Te μ–crystallites, Te was found to play a major role in their formation process. Different explanations as the impact of Te as a surfactant, an enhanced mobility of adatoms or as stressor nuclei are discussed. The spectromicroscopic characterisation of the CdSe surface with QDs revealed the crystallographic directions. An increased Cd signal of the film was found at positions of former holes. Several possibilities as segregation or surface termination are reviewed, that might explain this slight Cd variation. Therewith, an important step to a detailed understanding of the complex reorganisation process in coating systems could be achieved. N2 - Im Rahmen dieser Arbeit wurden der Schicht– und Grenzflächenpräparation zu Grunde liegende Wachstums– und Reorganisationsmechanismen anhand von zwei Modellsystemen in–situ untersucht. Diese waren auch geeignet, das Potential von SMART [1, 2], dem ersten doppelt aberrationskorrigierten, niederenergetischen Elektronen-Spektromikroskop, in seiner weiter optimierten Version zu demonstrieren. Dabei wurde besonders von der gesteigerten Transmission des Mikroskops, aber auch von der verbesserten Auflösung durch die Aberrationskorrektur profitiert. SMART erlaubt nicht nur Messungen unter UHV–Bedingungen, sondern auch in Echtzeit, wobei zwischen einer Reihe von Methoden (LEEM/PEEM, μ–LEED, μ–XPS) kurzfristig und in–situ gewechselt werden kann. Ergänzt wurden die Messungen mit Hilfe eines kommerziellen AFM [3]. Erst die Installation von SMART an einem Strahlrohr von BESSY–II [4] mit hoher Flussdichte im Bereich der weichen Röntgenstrahlung ermöglichte die XPEEM– und μ–XPS–Messungen. PTCDA/Ag(111) – Wachstum und Struktur der ersten beiden Lagen Das ausgiebig untersuchte Modellsystem PTCDA/Ag(111) sorgt nach wie vor für Überraschungen. So konnte bei den vorgestellten Untersuchungen der Einfluss der Morphologie auf den Wachstumsprozess der ersten beiden Lagen detailliert beobachtet werden. Monoatomare Ag–Stufen fungieren dabei als T–abhängige Diffusionsbarrieren für die PTCDA–Moleküle in der ersten Lage. Hingegen ist die Diffusion von Molekülen der zweiten Lage über Domänengrenzen der ersten Lage hinweg leicht möglich, wenngleich PTCDA–Domänengrenzen der ersten ML auch für Kristallite in der zweiten Lage begrenzend sind. Das unterschiedliche Domänenwachstumsverhalten wird dadurch erklärt, dass die Wechselwirkungsstärke zwischen zweiter und erster Lage gegenüber der zwischen erster Lage und Ag(111) reduziert ist und dass benachbarte Domänen unterschiedliche Struktur aufweisen. Ein zweiter Teilaspekt beleuchtet den Polymorphismus der zweiten Lage PTCDA auf Ag(111). Neuartige Domänen zeigen nicht nur einen ungewöhnlichen, linear variierenden Kontrast, sondern auch anisotropes Wachstum in einem weiten Temperaturbereich, bevorzugt entlang der sogenannten ’Ripple’. Mit μ–LEED wurde die neue kristallographische Über–Überstruktur charakterisiert. Zudem wurden in Dunkelfeld-LEEM zwei unterschiedliche Rotationsdomänen auf einer einzelnen Substratdomäne beobachtet. Die Abmessungen der Einheitszelle der Moleküle in der zweiten Lage ähneln denen der ersten Lage, sind aber gegenüber diesen um unerwartete 75° gedreht. Zur Erklärung dieser Beobachtungen wird ein Strukturmodell vorgeschlagen, das aus zwei unterschiedlichen und daher verspannt gestapelten PTCDA–Domänen besteht. Derartige Domänen wachsen bevorzugt entlang der „Ripples“ und damit entlang der kurzen Diagonalen der vorgeschlagenen Über-Überstruktur auf. Die vorhergesagten Orientierungen der „Ripples“ wurden ebenfalls nachgewiesen. Der linienförmige Kontrast in der zweiten Lage wird durch eine Oszillation des Lagenabstandes erklärt. CdSe/ZnSe – Rückwirkende Strukturbildung durch Sublimation einer α–Te-Deckschicht Weiterhin wurde die Bildung von CdSe-Quantenpunkten (QD) aus verspannten CdSe/ZnSe(001)-Schichten untersucht, die sich bei Sublimation der Te-Schicht reorganisieren. In Pilotexperimenten mit einem Spektromikroskop an CdSe/ZnSe-Heterostrukturen wurden sowohl der Bildungsprozess der Quantenstrukturen selbst detailliert untersucht, als auch die Tauglichkeit des Kontaminationsschutzes sorgfältig verifiziert. Die in-situ Sublimation der mikromorphen Te-Deckschicht, Auslöser für die QD-Bildung, erfordert ausreichend hohe Heizraten. Schrittweise wurden die Deckschicht, der Desorptionsprozess und die resultierende Oberfläche mit den Quantenstrukturen unter die Lupe genommen. Die als α-Te abgeschiedene Kappe weist eine Vielzahl von Strukturen auf, welche als Löcher, Risse und Mikrokristallite in einer α-Te Matrix identifiziert und charakterisiert wurden. Durch die Echtzeitbeobachtung des Desorptionsprozesses konnten die Positionen der Strukturen in der Kappe mit den zurückbleibenden bzw. neu entstehenden Strukturen wie den Quantenpunkten korreliert werden. Aus der relativen Anordnung der Strukturen wird gefolgert, dass die Präsenz von Tellur bei der Bildung der Quantenpunkte eine wichtige Rolle spielt. Verschiedene Erklärungsansätze wie zum Beispiel die Wirkung als „Surfactant“, Erhöhung der Diffusion und spannungsinduzierte Nukleation werden diskutiert. Die LEED-Charakterisierung der QD-besetzten CdSe-Oberfläche erlaubt die Korrelation mit den kristallographischen Richtungen des Substrats. Das XPEEM-signal weist auf Cd–Segregation unter den Löchern hin, lässt aber auch die Deutung als Cd-terminierte Oberflächenrekonstruktion zu. Damit ist ein erster, wichtiger Schritt zur detaillierten Aufklärung des Reorganisationsprozesses des komplexen Schichtsystems bei der Bildung von selbstorganisierten Quantenpunkten gelungen. KW - Halbleiterschicht KW - Wachstumsprozess KW - Spektroskopie KW - Mikroskopische Technik KW - Perylendianhydrid KW - Silber KW - Quantenpunkt KW - Cadmiumselenid KW - Oberflächenanalyse KW - Röntgenspektroskopie KW - Elektronenmikroskopie KW - Semiconductor KW - organic KW - PTCDA KW - Ag(111) KW - anorganic KW - quantum dot KW - CdSe KW - ZnSe KW - CdTe KW - Spectromicroscopy KW - LEEM KW - XPEEM KW - LEED KW - XPS Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65062 ER - TY - THES A1 - Kießling, Tobias T1 - Symmetry and Optical Anisotropy in CdSe/ZnSe Quantum Dots N2 - Halbleiter Quantenpunkte (QDs) erregen immenses Interesse sowohl in der Grundlagen- als auch der anwendungsorientierten Forschung, was sich maßgeblich aus ihrer möglichen Nutzung als Fundamentalbausteine in neuartigen, physikalisch nicht-klassischen Bauelementen ergibt, darunter die Nutzung von QDs als gezielt ansteuerbare Lichtquellen zur Erzeugung einzelner Paare polarisationsverschränkter Photonen, was einen Kernbaustein in den intensiv erforschten optischen Quantenkryptographiekonzepten darstellt. Ein goßes Hindernis stellen hierbei die in allen aktuell verfügbaren QDs intrinsisch vorhandenen, ausgeprägten Asymmetrien dar. Diese sind eine Begleiterscheinung der selbstorganisierten Wachstumsmethoden der QDs und sie treten in verschiedenen Gestalten, wie Formasymmetrie oder inhomogenen Verspannungsverhältnissen innerhalb der QDs, auf. Im Gegenzug verursachen jene Asymmetrien deutliche Anisotropien in den optischen Eigenschaften der QDs, wodurch das optische Ansprechverhalten klassisch beschreibbar wird. Aus Sicht der anwendungsorientierten Forschung stehen Asymmetrien daher im Ruf ungewollte Nebeneffekte zu sein und es wird mit großem Aufwand daran geforscht, diese unter Kontrolle zu bringen. Für die Grundlagenforschung sind anisotrope QDs jedoch ein interessantes Modellsystem, da an ihnen fundamentale Quantenphysik beobachtbar ist, wobei anders als in Atomen die einschnürenden Potentiale nicht zwangsläufig zentralsymmetrisch sein müssen. Auf der Basis winkel- und polarisationsaufgelöster Photolumineszenzuntersuchungen (PL) wird die Anisotropie des linearen Polarisationsgrades in der Lumineszenzstrahlung (kurz: optische Anisotropie) der an CdSe/ZnSe-QDs gebundenen Exzitonen untersucht. Es wird gezeigt, dass die Elektron-Loch Austauschwechselwirkung in asymmetrischen QDs zu einer effektiven Umwandlung linearer in zirkulare Polarisationsanteile und umgekehrt führt. Die experimentellen Befunde lassen sich erfolgreich im Rahmen eines Exziton-Pseudospinformalismus, der auf der durch die Austauschwechselwirkung induzierten Feinstruktur der hellen Exzitonzustände basiert, beschreiben. Dies legt nahe, dass QDs funktionelle Bauelemente in hochintegrierten rein optischen Architekturen jenseits der viel diskutierten nichtklassischen Konzepte darstellen können, insbesondere als optische Polarisationskonverter und/oder -modulatoren. Weiterhin wird der Exziton-Pseudospinformalismus in Untersuchungen zur optischen Ausrichtung in QDs genutzt und gezeigt, wie so die anders nicht direkt messbare Symmetrieverteilung eines Ensembles von QDs detektiert werden kann. Diese Messungen stellen ein wertvolles Bindeglied zwischen optischen und strukturellen Untersuchungen dar, da sie einen direkten experimentellen Zugang zum mit topologischen Methoden nicht einsehbaren Anordnungsverhalten eingekapselter QDs liefern. Abschließend wird die optische Anisotropie unter Anlegung eines Magnetfeldes in der QD-Ebene untersucht. Dabei wird beobachtet, dass die Achse der linearen Polarisation der Lumineszenzstrahlung entweder entgegengesetzt zur Magnetfeldrichtung in der Probenebene rotiert oder fest entlang einer gegebenen kristallographischen Achse orientiert ist. Eine qualitative Auswertung der Ergebnisse auf der Basis des exzitonischen Pseudospin-Hamiltonian belegt, dass diese Polarisationsanteile durch isotrope und anisotrope Beiträge des Schwerloch Zeeman Terms begründet werden, wobei die anisotropen Anteile für ein kritisches Magnetfeld von B=0, 4 T gerade die forminduzierten uni-axialen Polarisationsanteile kompensieren, so dass ein optisches Verhalten resultiert, das man für hochsymmetrische QDs erwarten würde. Zur quantitativen Beschreibung wurde der vollständige k.p-Hamiltonianin der Basis der Schwerlochexzitonzustände numerisch ausgewertet und damit die optische Polarisation als Funktion der Magnetfeldstärke und -orientierung berechnet. Die Modellrechnungen stimmen mit die gemessenen Daten im Rahmen der experimentellen Unsicherheit mit einem jeweils probenspezifischen Parametersatz quantitativ überein. Dabei wird gezeigt, dass ein Ensemble von QDs ein optisches Signal, das man für hochsymmetrisches QDs erwarten würde, erzeugen kann ohne dass eine Symmetrisierung der hellen Exzitonzustände stattfindet, wie sie für nicht-klassische Anwednungen notwendig ist. Daraus ergibt sich, dass Konzepte, die Magnetfelder in der Probenebene zur Symmetrisierung des optischen Signals nutzen, mindestens die vier stark durchmischten Schwerlochexzitonzusände berücksichtigen müssen und eine Beschreibung, die nur die beiden hellen Exzitonzustände in Abwesenheit magnetischer Felder beinhaltet, zu kurz greift. Für die kontrovers geführte Diskussion bezüglich aktueller experimenteller Studien zur Erzeugung polarisationsverschränkter Photonen in asymmetrischen QDs ist daher zu verstehen, dass von solch einer vereinfachten Beschreibung nicht a priori erwartet werden kann, verlässliche Ergebnisse in Bezug auf exzitonische Bellzustände zu erzeugen. N2 - Semiconductor Quantum Dots (QDs) have been attracting immense interest over the last decade from both basic and application-orientated research because of their envisioned use as fundamental building blocks in non-classical device architectures. Their presumable ease of integration into existing semiconductor technology has bought them the reputation of being cost-efficiently scalable and renders them a place among the top candidates in a wide range of proposed quantum logic and quantum information processing schemes. These include the highly acclaimed use of QD as triggered sources of single pairs of entangled photons, which is a key ingredient of most of the intensivly investigated optical quantum cryptography operations. A big obstacle towards these goals are the pronounced asymmetries that are intrinsically present in all currently availabe semiconductor QD systems. They are a natural by-product that stems from the employed self-assembled growth methods and manifest in various forms such as shape-asymmetry, inhomogeneous strain distribution within the QD and concomittant piezo-elecric fields. These asymmetries in return give rise to distinct anisotropies in the optical properties of QDs, which in fact render their optical response classic. For device oriented research these anisotropies are therefore typically considered unwanted and actively researched to be controlled. They are, however, interesting from a fundamental point of view, as anisotropic QDs basically provide a testbed system for fundamental atom-like quantum physics with non-centrosymmetric potentials. As shall be shown in the current work, this gives rise to novel and interesting physics in its own right. Employing photoluminescence spectroscopy (PL) we investigate the optical anisotropy of the radiative recombination of excitons confined to CdSe/ZnSe QDs. This is done by angle-dependent polarization-resolved PL. We demonstrate experimentally that the electron-hole exchange interaction in asymmetric QDs gives rise to an effective conversion of the optical polarization from linear to circular and vice versa. The experiment is succesfully modeled in the frame of an exciton pseudospin-formalism that is based on the exchange induced finestructure splitting of the radiative excitonic states and unambiguously proves that the observed polarization conversion is the continuous-wave equivalent to quantum beats between the exchange split states in the time domain. These results indicate that QDs may offer extended functionality beyond non-classical light sources in highly integrated all-optical device schemes, such as polarization converters or modulators. In a further extension we apply the exciton pseudospin-formalism to optical alignment studies and demonstrate how these can be used to directly measure the otherwise hidden symmetry distribution over an ensemble of QDs. This kind of measurement may be used on future optical studies in order to link optical data more directly to structural investigations, as it yields valuable information on capped QDs that cannot be looked at directly by topological methods. In the last part of this work we study the influence of an in-plane magnetic field on the optical anisotropy. We find that the optical axis of the linear polarization component of the photoluminescence signal either rotates in the opposite direction to that of the magnetic field or remains fixed to a given crystalline direction. A qualitative theoretical analysis based on the exciton pseudospin Hamiltonian unambiguously demonstrates that these effects are induced by isotropic and anisotropic contributions to the heavy-hole Zeeman term, respectively. The latter is shown to be compensated by a built-in uniaxial anisotropy in a magnetic field B=0.4 T, resulting in an optical response that would be expected for highly symmetric QDs. For a comprehensive quantitative analysis the full heavy-hole exciton k.p-Hamiltonian is numerically calculated and the resulting optical polarization is modeled. The model is able to quantitatively describe all experimental results using a single set of parameters. From this model it is explicitly seen that a optical response characteristic for high symmetry QDs may be obtained from an ensemble of asymmetric QDs without a crossing of the zero-field bright exciton states, which was required for application of QDs in non-classical light sources. It is clearly demonstrated that any scheme using in-plane magnetic fields to symmetrize the optical response has to take into account at least four optically active states instead of the two observed in the absence of magnetic fields. These findings may explain some of the major disagreement on recent entanglement studies in asymmetric QDs, as models that do not take the above result into account cannot be a priori expected to provide reliable results on excitonic Bell states. KW - Quantenpunkt KW - Cadmiumselenid KW - Wide-gap-Halbleiter KW - Zinkselenid KW - Optische Anisotropie KW - Symmetrie KW - Optik KW - Austauschaufspaltung KW - optical polarization conversion Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40683 ER - TY - THES A1 - Müller, Christian Robert T1 - Nanoelektronische Feldeffekt-Transistoren und Quantenpunktspeicher auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen T1 - Nanoelectronic field-effect transistors and quantum-dot-flash memories based on modulation-doped GaAs/AlGaAs heterostructures N2 - Diese Arbeit beschäftigt sich mit Elektronentransport in nanostrukturierten Bauelementen auf Halbleiterbasis, wobei im Speziellen deren Transistor- und Speichereigenschaften untersucht werden. Grundlage für die Bauelemente stellt eine modulationsdotierte GaAs/AlGaAs Heterostruktur dar, die mittels Elektronenstrahllithographie und nasschemischen Ätzverfahren strukturiert wird. Auf Grund der Bandverbiegung bildet sich in der Nähe des Heteroübergangs ein zweidimensionales Elektronengas (2DEG) aus, das als leitfähige Schicht in den Strukturen dient. Im Rahmen der Arbeit werden die Transporteigenschaften für unterschiedliche Bauelementdesigns untersucht, wobei die laterale Ausdehnung der Bauelemente wenige 10 nm beträgt. Die Charakterisierung des Elektronentransports erfolgt sowohl im linearen als auch nichtlinearen Transportregime für tiefe Temperaturen (T = 4.2 K) bis hin zu Raumtemperatur. Das erste experimentelle Kapitel beschäftigt sich mit dem Entwurf und der Charakterisierung von statischen Speicherzellen mit integriertem Floating Gate. Bei den hierfür hergestellten Bauelementen befindet sich eine Schicht selbstorganisierter Quantenpunkte (QDs) in direkter Nähe zum 2DEG. Der Abstand zwischen 2DEG und QDs ist kleiner als die Abschirmlänge im Halbleitermaterial, wodurch die QDs als Floating Gate dienen und Informationen elektrisch gespeichert werden können. Die Speicherzellen wurden in Form von Quantendraht-Transistoren (QWTs) und Y-Schaltern (YBSs) realisiert und bezüglich der Speicherfähigkeit der QDs sowohl bei tiefen Temperaturen als auch bei Raumtemperatur untersucht. Im zweiten experimentellen Kapitel dieser Arbeit wird ein neues, auf dem Feldeffekt beruhendes, Transistordesign vorgestellt. Die hierfür hergestellten Heterostrukturen besitzen ein 2DEG, das sich zwischen 33 nm und 80 nm unterhalb der Oberfläche der Heterostruktur befindet. Mittels in die Oberfläche der Heterostruktur geätzter Gräben wird eine Isolation zwischen den leitfähigen Regionen der Bauelemente geschaffen. Das einfache Design der sogenannten Three-Terminal Junctions (TTJs), in Verbindung mit dem oberflächennahen 2DEG, ermöglicht die monolithische Realisierung von integrierten logischen Gattern. Durch eine ausführliche Betrachtung des Transistorverhaltens der TTJs können sowohl Subthreshold Swings kleiner als das thermische Limit klassischer Feldeffekt-Transistoren als auch Hochfrequenzfunktionalität demonstriert werden. N2 - In this thesis, electron transport in nano-structured, semiconductor devices is investigated with focus on transistor characteristics and memory effects. The investigated devices are based on a modulation-doped GaAs/AlGaAs heterostructure and are structured by electron-beam lithography and wet-chemical etching. Close to the heterointerface, a two-dimensional electron gas (2DEG) is formed and serves as conducting layer for the electron transport. Different devices with lateral dimensions of a few 10 nm are fabricated and are characterized in the linear and nonlinear transport regime at low temperatures, i.e. T = 4.2 K, as well as at room temperature. The first chapter is dedicated to the experimental results on the design and characterization of memory devices with a floating gate. The devices are based on a modulation-doped heterostructure with a layer of self-assembled quantum dots (QDs) in close vicinity to the conducting layer. The distance between QDs and 2DEG is less than the screening length and, therefore, the QDs serve as floating gate on the 2DEG. Hence, information can be stored electrically. For the memory devices, quantum-wire transistors (QWTs) and electron Y-branch switches (YBSs) are used and characterized, with respect to the floating-gate function of the QDs, at low temperatures and up to room temperature. In the second chapter of this thesis, a novel transistor design based on the field effect is presented. For this purpose, the 2DEG is situated between 33 and 80 nm below the surface of the heterostructure. The conducting parts of the devices are insulated from each other by etched insulation trenches. Due to the monolithic design of the three-terminal junctions (TTJs) with a shallow 2DEG, an integrated logic gate is realized. By analyzing the switching properties of the TTJs in detail, subthreshold swings below the thermal limit and high frequency functionality are demonstrated. KW - Galliumarsenid KW - Aluminiumarsenid KW - Heterostruktur-Bauelement KW - HEMT KW - SET-Transistor KW - Quantenpunkt KW - Nanodot-Speicher KW - Flash-Speicher KW - HEMT KW - field-effect transistor KW - quantum dot KW - flash memory KW - rectification Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39948 ER - TY - THES A1 - Spanheimer, Daniela Cornelia T1 - Dynamische Leistungsverstärkung bei GHz Frequenzen und Speichereigenschaften von nanoelektronischen GaAs/AlGaAs Transistoren T1 - Dynamic power gain at GHz frequencies and memory effects of nanoelectronic GaAs/AlGaAs transistors N2 - Es wurde gezeigt, dass durch die Vorpositionierung von Quantenpunkten, diese mit einem gezielten Abstand im Bereich von einigen 100 nm zueinander und daher mit einer definierten Dichte in Speicherbauelemente eingebracht werden können. Es wurde bei tiefen Temperaturen wohldefinierte Coulombblockade demonstriert. Durch die Analyse der Coulomb-Rauten war es möglich, auf die Größe und Ladeenergie von Quantenpunkten im Kanal zu schliessen. Es wurde gezeigt, dass vorpositionierte Quantenpunkte sehr gut als Floating Gate eingesetzt werden können. Die Speichereigenschaften dieser Quantenpunkte wurden im Hinblick auf die Hysteresebreite DeltaVth in Abhängigkeit der Kanalbreite, der Drainspannung und der Temperatur untersucht und diskutiert. Hierbei konnte eine deutliche Abhängigkeit der Thresholdspannung von der Kanalbreite der Struktur ermittelt werden. Für Strukturen mit einem breiten Kanal wurde festgestellt, dass der Stromfluss bereits bei negativen Gatespannungen einsetzt, während für schmale Strukturen positive Gatespannungen nötig sind, um einen Ladungstransport hervorzurufen. Zur Bestimmung der Temperaturstabilität der Ladezustände wurde sowohl die Thresholdspannung als auch die Hysteresebreite als Funktion der Probentemperatur im Bereich von 4.2K bis Raumtemperatur bei verschiedenen Drainspannungen bestimmt. Hierbei wurde festgestellt, dass die Hysteresebreite bis zu einer kritischen Temperatur stufenförmig abnimmt und danach wieder leicht ansteigt. Bei der Untersuchung der Threshold- Spannung wurde ein Unterschied Vth,zu und Vth,auf festgestellt. Erstmals konnte ein lateral und vertikal positionierter InAs Quantenpunkt als Speicher für den Betrieb bei Raumtemperatur demonstriert werden. Ferner wurde die Wirkung eines Gate-Leckstromes auf den gemessenen Drain- Strom eines monolithischen Drei-Kontakt-Struktur untersucht und diskutiert. Die untersuchten Proben basieren auf einem neuen Parallel-Design, in welchem das Gate nicht wie üblich zwischen Source und Drain positioniert wurde, sondern in serieller Verbindung mit dem Drain- oder Sourcekontakt, d.h. mit einem zentralen Drain zwischen Source und Gate, gesetzt wurde. Hierdurch konnte eine merkliche Reduzierung des Probeninnenwiderstandes erreicht werde. Zu Beginn wurden zur Charakterisierung der Probe Transportmessungen bei Raumtemperatur durchführt. Hierbei konnte verglichen mit herkömmlichen Quantendrahttranistoren realisiert auf demselbenWafer, zum einen eine deutlich höhere Transconductance durch das parallele Design erreicht werden. Zum anderen zeigte die ermittelte Transconductance nicht den erwarteten linearen Verlauf in Abhängigkeit der Drainspannung, sondern einen quadratischen. Die Messungen zeigten außerdem einen Abfall des Drain-Stromes ab einer kritischen Größe des Gate-Leckstromwertes, welcher auf ein dynamisches Gate, hervorgerufen durch die Ladungsträger aus dem Gate, zurückgeführt wird. Diese zusätzliche virtuelle Kapazität addiert sich in paralleler Anordnung zum geometrischen Gate-Kondensator und verbessert die Transistoreigenschaften. Zum Abschluss der Arbeit wurden Hochfrequenzmessungen zur Ermittlung einer Leistungsverstärkung von Drei-Kontakt-Strukturen bei Raumtemperatur für unterschiedliche Gate- und Drainspannungen durchgeführt. Um die Hochfrequenzeigenschaften der untersuchten Probe zu erhöhen, wurde hierfür ein Design gewählt, in welchem die Goldkontakte zur Kontaktierung sehr nahe an die aktive Region heranragen. Für diese Spannungskombination konnte für eine Frequenz im Gigaherz-Bereich eine positive Spannungsverstärkung > 1 dB gemessen werden. Höhere Spannungen führen zu einem Sättigungswert in der Leistungsverstärkung. Dies wird zurückgeführt auf den maximal zur Verfügung stehenden Strom in der aktiven Region zwischen den nahen Goldkontakten. Zudem wurde eine Lösung vorgestellt, um das fundamentale Problem der Impedanzfehlanpassung für Hochfrequenzmessungen von nanoelektronischen Bauelementen mit einem hohen Innerwiderstand zu lösen. Eine Anpassung der unterschiedlichen Impedanzen zwischen Bauelement und Messapparatur ist unbedingt notwendig, um Reflexionen bei der Übertragung zu vermeiden und somit die Gewinnoptimierung zu erhöhen. Zur Behebung der Fehlanpassung wurde im Rahmen dieser Arbeit ein Impedanz-Anpassungs-Netzwerk auf einer PCB-Platine realisiert, welches mit der Probe verbunden wurde. Die Anpassung wurde durch eingebaute Strichleitungen in das Layout des Anpassungsboards vorgenommen. Durchgeführte Simulationen der Probe in Verbindung mit dem Anpassungs-Netzwerk bestätigten die experimentellen Ergebnisse. Durch die Anpassung konnte der simulierte Reflexionskoeffizient deutlich reduziert werden, bei gleichzeitiger Erhöhung des Transmissionskoeffizienten. Ebenfalls zeigten die Messungen an einer Drei-Kontakt-Struktur mit Anpassungs-Board eine signifikante Verbesserung der Leistungsverstärkung. N2 - Dynamical Charging and Discharging of laterally aligned quantum dot structures We can demonstrate that the direct positioning enables us to embed quantum dots with given periods to each other of only a few 100 nm and therefore with a defined density into the memory-structures. For low temperatures, well defined Coulombblockade can be observed. The analysis of the measured diamond patterns allows the determination of the dimension and the charging energy of the embedded quantum dots in the channel. The memory properties of these quantum dots were analyzed and discussed in terms of the hysteresis width DeltaVth which depends on the channel width, the applied drain voltage and the device temperature. The measurements reveal a dependence of the threshold voltage on the channel width of the structure. For devices with a wide channel the current transport sets in with negative applied gate voltages, in contrast to structures with narrow channels, requiring positive gate voltages to cause a current flow through the channel. To explain these results we assume that in large channels a higher negative voltage is necessary to deplete the charges out of the channel due to the higher charge density. To analyze the temperature stability of the charge states the threshold voltage as well as the hysteresis width is detected as a function of the temperature for different drain voltages in the range of 4.2K up to room temperature. It is determined that the hysteresis width decreases to a critical temperature before it rises again. For the investigation of the threshold voltage a difference between Vth,up and Vth,down is demonstrated. We assume that this difference is caused by the different charging behavior for increasing charge energies. In this work, lateral and vertical positioned InAs quantum dots could be demonstrated as a memory device operated at room temperature for the first time. Improved transistor functionality caused by gate leakage currents in nanoscaled Three Terminal Structures Further we investigate the role of gate leakage on the drain current in a monolithic, unipolar GaAs/AlGaAs heterostructure based on three leaky coupled contacts. Two in-plane barriers, defined by rows of etched holes in a two-dimensional electron gas, separate the leaky gate from the central drain and the drain from the source. Because of this the internal resistance of the structure can be appreciably decreased. It should be noted that the observed differential voltage amplification in the gate leakage regime of the studied structure is by far larger compared to the voltage amplification of any in-plane wire transistor fabricated from the same wafer, which were controlled by two non-leaking in-plane gates. The calculated transconductance increases quadratically and not in a non-linear manner, as expected. A pronounced reduction of the drain current sets in when the gate starts to leak, pointing at a large parallel gate capacitor. We associate the gate-leakage current induced gating with a virtual floating gate induced by the space charge injected from the gate. The space charge can hereby be described by a parallel gate capacitor that can control a low dimensional channel lying nearby. High frequency measurements on Three Terminal Structures High frequency measurements for determination of the power gain in Three Terminal Structures are carried out at room temperature. To improve the high frequency properties of the investigated structures a special design was chosen, where the gold contacts for contacting the sample approach very closely the active switching region. The measurements show that negative gate voltages are much more efficient to the power gain than positive ones. For these voltage combinations a power gain > 1 dB for frequencies in the GHz range is detected, whereas the power gain saturates for higher voltages. This is interpreted in terms of the maximum number of charges in the active region between the gold contacts. Furthermore an answer to the fundamental obstacle of the impedance mismatch for high frequency measurements on nanoelectronic structures with high internal resistance is given. Such a matching between the device and the measurement setup is necessary to reduce signal reflections and therefore increase the gain. To match the impedances, an impedancematching- network on a PCB-plate (printed circuit board) via integrated stubs was realized. Simulation data of the sample in connection with the matching-network is in very good agreement with the experimental data. Using the network reduces the simulated reflection coefficient and simultaneously raises the transmission coefficient. The measurements also show a significant improvement of the power gain behaviour. KW - Verstärkung KW - Hochfrequenz KW - Nanoelektronik KW - HEMT KW - Quantenpunkt KW - Coulomb-Blockade KW - Leistungsverstärkung KW - power gain Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37589 ER - TY - THES A1 - Schmidt, Thomas T1 - Optische Untersuchung und Kontrolle der Spindynamik in Mn dotierten II-VI Quantenpunkten T1 - Optical Investigations and Control of Spindynamics in Mn doped II-VI Quantum Dots N2 - Die vorliegende Arbeit befasste sich mit dem Spin- und dem damit eng verbundenen Polarisationszustand von Ladungsträgern in CdSe/ZnSe Quantenpunkten. II-VI Materialsysteme können in geeigneter Weise mit dem Nebengruppenelement Mangan gemischt werden. Diese semimagnetischen Nanostrukturen weisen eine Vielzahl von charakteristischen optischen und elektrischen Besonderheiten auf. Verantwortlich dafür ist eine Austauschwechselwirkung zwischen dem Spin optisch erzeugter Ladungsträger und den 3d Elektronen der Mn Ionen. Im Rahmen dieser Arbeit erfolgte die Adressierung gezielter Spinzustände durch optische Anregung der Ladungsträger. Die Besetzung unterschiedlicher Spinzustände konnte durch Detektion des Polarisationsgrades der emittierten Photolumineszenz (PL) bestimmt werden. Dabei kamen verschiedene optische Methoden wie zeitaufgelöste und zeitintegrierte PL-Spektroskopie sowie Untersuchungen in Magnetfeldern zum Einsatz. N2 - The present thesis deals with the spin of charge carriers confined in CdSe/ZnSe quantum dots (QDs) closely linked to the polarization of emitted photons. II-VI material systems can be adequately mixed with the B-group element manganese. Such semimagnetic nanostructures offer a number of characteristic optical and electronic features. This is caused by an exchange interaction between the spin of optically excited carriers and the 3d electrons of the Mn ions. Within the framework of this thesis addressing of well defined spin states was realized by optical excitation of charge carriers. The occupation of different spin states was detected by the degree of polarization of the emitted photoluminescence (PL) light. For that purpose different optical methods of time-resolved and time-integrated spectroscopy as well as investigations in magnetic fields were applied. KW - Halbleiterschicht KW - Niederdimensionaler Halbleiter KW - Quantenpunkt KW - Optische Spektroskopie KW - Zirkularpolarisation KW - Polarisiertes Licht KW - Exziton KW - Spindynamik KW - semiconductor quantum dots KW - optical spectroscopy KW - circular polarization KW - exciton KW - spindynamic Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36033 ER - TY - THES A1 - Mahapatra, Suddhasatta T1 - Formation and Properties of Epitaxial CdSe/ZnSe Quantum Dots : Conventional Molecular Beam Epitaxy and Related Techniques T1 - Bildung und Eigenschaften Epitaxischer CdSe/ZnSe-Quantenpunkte : Molekularstrahlepitaxie und Verwandte Methoden N2 - Albeit of high technological import, epitaxial self-assembly of CdSe/ZnSe QDs is non-trivial and still not clearly understood. The origin and attributes of these QDs are significantly different from those of their III-V and group-IV counterparts. For III-V and group-IV heterosystems, QD-formation is assigned to the Stranski Krastanow (SK) transition, wherein elastic relaxation of misfit strain leads to the formation of coherent three-dimensional (3D) islands, from a supercritically strained two-dimensional (2D) epilayer. Unfortunately, this phenomenon is inconspicuous for the CdSe/ZnSe heterosystem. Well-defined 3D islands are not readily formed in conventional molecular beam epitaxial (MBE) growth of CdSe on ZnSe. Consequently, several alternative approaches have been adopted to induce/enhance formation of QDs. This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. It is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. The surface of the CdSe layer represents a rough 2D layer, characterized by a dense array of shallow (<1nm) abutting mounds. In capped samples, the CdSe deposit forms an inhomogeneous CdZnSe quantum well (QW)-like structure. This ternary QW consists of local Cd-rich inclusions, which confine excitons three-dimensionally, and act as QDs. The density of such QDs is very high (~ 1012 cm-2). The QDs defined by the composition inhomogeneities of the CdZnSe QW presumably originate from the shallow mounds of the uncapped CdSe surface. By a technique wherein a CdSe layer is grown at a low temperature (TG = 230 °C) and subsequently annealed at a significantly higher temperature (TA =310 °C), tiny but distinct 3D islands are formed. In this work, the mechanism underlying the formation of these islands is reported. While the CdSe deposit forms a quasi-two-dimensional (quasi-2D) layer at TG = 230 °C, subsequent annealing at TA = 310 °C results in a thermally activated “up-climb” of adatoms onto two-dimensional clusters (or precursors) and concomitant nucleation of 3D islands. The areal density of QDs, achieved by this technique, is at least a decade lower than that typical for conventional MBE growth. It is demonstrated that further reduction is possible by delaying the temperature ramp-up to TA. In the second technique, formation of distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (TD = 230 °C). Albeit the self-assembled islands are large, they are severely truncated during subsequent capping with ZnSe, presumably due to segregation of Cd and Zn-alloying of the islands. The segregation phenomenon is analyzed in this work and correlated to the optical properties of the QDs. Additionally, very distinct vertical correlation of QDs in QD-superlattices, wherein the first QD-layer is grown by this technique and the subsequent ones by migration enhanced epitaxy (MEE), is reported. The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. This leads not only to large alteration of the morphological and optical attributes of the QDs, but also to formation of unique self-assembled island-patterns. Oriented dashes, straight and buckled chains of islands, and aligned island-pairs are formed, depending on the thickness of the Te-cap layer. The islands are partially alloyed with Te and emit luminescence at very low energies (down to 1.7 eV at room temperature). The Te cap layer undergoes (poly)crystallization during temperature ramp-up (from room temperature to TD) for desorption. Here, it is shown that the self-assembled patterns of the island-ensembles are determined by the pattern of the grain boundaries of the polycrystalline Te layer. Based on an understanding of the mechanism of pattern formation, a simple and “clean” method for controlled positioning of individual QDs and QD-based extended nanostructures, is proposed in this work. The studies carried out in the framework of this thesis provide not only a deeper insight into the microscopic processes governing the heteroepitaxial self-assembly of CdSe/ZnSe(001) QDs, but also concrete approaches to achieve, optimize, and control several technologically-important features of QD-ensembles. Reduction and control of QD-areal-density, pronounced vertical correlation of distinctly-defined QDs in QD-superlattices, and self-assembly of QD-based extended structures, as demonstrated in this work, might turn out to be beneficial for envisioned applications in information-, and communication-technologies. N2 - Trotz ihrer großen technologischen Bedeutung ist die epitaktische Selbstorganisation von CdSe/ZnSe QDs noch immer nicht vollständig verstanden. Die Ursachen und Merkmale dieser QDs unterscheiden sich deutlich von ihren III-V- und IV-IV-Gegenstücken. Für III-V- und IV-IV-Heterosysteme wird die QD-Formation dem Stranski-Krastanow-(SK)-Übergang zugeordnet, bei dem, ausgehend von einer hochverspannten zweidimensionalen (2D) Epitaxieschicht, die elastische Relaxation von durch Gitterfehlanpassung hervorgerufener Verspannung zur Formation von dreidimensionalen (3D) Inseln führt. Im Falle des CdSe/ZnSe-Heterosystems ist es unklar, ob das SK-Modell die Formation von QDs zutreffend beschreibt. Beim Wachstum durch Molekularstrahlepitaxie (engl.: molecular beam epitaxy, MBE) von CdSe auf ZnSe kommt es nicht zur Bildung von 3D-Inseln, wie es für die meisten III-V- und IV-IV-Heterosysteme charakteristisch ist. Infolgedessen wurden mehrere alternative Herangehensweisen eingesetzt, um die Formation der QDs anzuregen bzw. zu verbessern. Diese Doktorarbeit beschreibt die systematische Untersuchung dreier solcher alternativer Ansätze im Zusammenspiel mit konventioneller MBE. Der Schwerpunkt liegt auf dem Formationsmechanismus der QDs und Optimierung ihrer morphologischen und optischen Eigenschaften. Beim MBE-Wachstum von CdSe auf ZnSe findet keine Bildung ausgeprägter, dreidimensionaler Inseln statt. Die Oberfläche der CdSe-Schicht stellt eine rauhe 2D-Schicht dar, gekennzeichnet durch eine dichte Anordung flacher, aneinander angrenzender Hügel. In bedeckten Proben bildet die CdSe-Ablagerung eine inhomogene CdZnSe-quantentrog-ähnliche (engl.: quantum well, QW) Struktur . Dieser ternäre QW enthält lokale Cd-reiche Einschlüsse, die die Bewegung von Exzitonen in drei Dimensionen einschränken und als QDs fungieren. Die Dichte solcher QDs ist sehr hoch (~ 1012 cm-2). Diese durch die Inhomogenität des CdZnSe-QW definierten QDs haben ihren Ursprung in den flachen Hügeln der unbedeckten CdSe-Oberfläche. Mit einer Methode, bei der man eine CdSe-Schicht bei niedriger Temperatur (TG = 230 °C) wachsen lässt und anschießend bei höherer Temperatur (TA = 310 °C) tempert, kommt es zur Bildung winziger, aber ausgeprägter, 3D-Inseln. In dieser Arbeit wird der Mechanismus, der der Bildung dieser Inseln zugrunde liegt, beschrieben. Während die CdSe-Ablagerung eine quasi-zweidimensionale (quasi-2D) Schicht bei TG = 230 °C bildet, führt das darauf folgende Tempern bei TA = 310 °C zu einem thermisch aktivierten „up-climb“ von Adatomen auf zweidimensionale Cluster (oder Vorgänger, engl.: precursor), bei gleichzeitiger Nukleation von 3D-Inseln. Die Flächendichte von QDs, die mit dieser Methode erreicht werden kann, ist mindestens eine Größenordung geringer als es für konventionelles MBE-Wachstum typisch ist. Eine weitere Verringerung ist möglich, indem der Temperaturanstieg auf TA verzögert wird. In einer zweiten Variante wird die Bildung großer und ausgeprägter Inseln durch Aufbringen einer amorphen Selenschicht (α-Se) auf eine 2D-CdSe-Epischicht bei Raumtemperatur und anschließender Desorption bei höherer Temperatur (TD = 230 °C) demonstriert. Obwohl die selbstorganisierten Inseln groß sind, werden sie durch nachträgliches Bedecken mit ZnSe stark abgeflacht, was durch Segregation von Cd und Legieren der Inseln mit Zn hervorgerufen wird. Das Segregationsphänomen sowie sein Zusammenhang mit den optischen Eigenschaften der QDs wird in dieser Arbeit untersucht. Weiterhin wird vertikale Korrelation von QDs in QD-Übergittern beschrieben, in welchen die erste QD-Schicht mit dieser Methode wachsen gelassen wurde. Darauf folgende Schichten werden duch „migration enhanced epitaxy“ (MEE) aufgebracht. Die Prozessschritte der dritten Variante sind denen der eben beschriebenen sehr ähnlich. Die einzige Abwandlung besteht in der Substitution von Selen mit Tellur als bedeckendes Material. Diese Variation führt nicht nur zu beträchtlicher Veränderung der morphologischen und optischen Eigenschaften der QDs, sondern auch zur Bildung einzigartiger Muster von selbstorganisierten Inseln. Abhängig von der Dicke der Tellurbedeckung kommt es zur Bildung orientierter „dashes“, gerader und gebogener Ketten von Inseln und ausgerichteter Inselpaare. Die Inseln sind teilwese mit Tellur legiert und strahlen Lumineszenz in einem sehr niedrigen Energiebereich ab (bis hinunter zu 1,7 eV bei Raumtemperatur). Im Gegensatz zur α-Se-Bedeckung kommt es in der Te-Schicht während der Temperaturerhöhung (von Raumtemperatur zu TD) zur Polykristallisierung. Es wird gezeigt, dass die selbstorganisierten Muster der Inseln durch die Verteilung der Korngrenzen der polykristallinen Te-Schicht bestimmt werden. Basierend auf dem Verständnis des Mechanismus der Musterbildung wird hier eine einfache und „saubere“ Methode für die kontrollierte Positionierung individueller QDs und QD-basierter, ausgedehnter Nanostrukturen vorgeschlagen. KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Quantenpunkt KW - Würzburg / Sonderforschungsbereich II-VI-Halbleiter KW - Kraftmikroskopie KW - Selbstorganisation KW - Nanostructures KW - Self-organization KW - Molecular beam Epitaxy KW - CdSe KW - ZnSe KW - AFM KW - Luminescence Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32831 ER - TY - THES A1 - Löffler, Andreas T1 - Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren höchster Güte für Experimente zur starken Exziton-Photon-Kopplung T1 - Growth of self-assembled (Ga)InAs/GaAs Quantum Dots and Realization of high Quality Microcavities for Experiments in the field of strong Exciton Photon Coupling N2 - Als erster Schritt wurde der dreidimensionale optische Einschluss der Mikroresonatoren verbessert. Eine höhere Güte der Strukturen konnte vor allem durch Weiterentwicklung des Herstellungsprozesses erzielt werden. Der Ätzprozess der Türmchen wurde so optimiert, um möglichst glatte und senkrechte Seitenwände der Resonatoren zu erreichen. Dies reduziert Streu- und Beugungsverluste an den Seitenwänden der Mikroresonatoren und verbessert deren optischen Einschluss. Des Weiteren wurde der epitaktische Schichtaufbau der Resonatoren sowie die Wachstumsparameter der einzelnen Halbleiterschichten optimiert. Somit konnte der Q-Faktor der Resonatoren zum Beispiel durch die Verwendung von Spiegeln mit einer höheren Reflektivität und einem angepassten V/III-Verhältnis bei den verschiedenen Epitaxieschichten weiter erhöht werden. Für einen aktiven Mikroresonator mit 26 (30) Spiegelpaaren im oberen (unteren) DBR und einem Durchmesser von 4 µm wurden somit Rekordwerte für den Q-Faktor von ca. 90000 erreicht. Parallel hierzu wurden Analysen zum Wachstum von selbstorganisierten GaInAs-Quantenpunkten auf GaAs-Substraten angestellt. Hierbei war sowohl die Entstehung der dreidimensionalen Wachstumsinseln als auch deren optische Eigenschaften Gegenstand der Untersuchungen. Die morphologischen Eigenschaften der Quantenpunkte wurde mittels Transmissions- und Rasterelektronenmikroskopie analysiert, womit die optischen Eigenschaften durch Photolumineszenz- und Photoreflexionsmessungen untersucht wurden. Die optischen und vor allem die geometrischen Eigenschaften der selbstorganisiert gewachsenen GaInAs-Quantenpunkte konnten entscheidend verbessert werden. Durch die Verwendung von einer gering verspannten Nukleationsschicht mit einem Indiumgehalt von 30 % konnte die Flächendichte der Quantenpunkte auf 6 - 9 x 10^9 cm^-2 verringert und ihre geometrischen Abmessungen auf typische Längen von 50 - 100 nm und Breiten von ca. 30 nm erhöht werden. Durch den reduzierten Indiumgehalt wird die Gitterfehlanpassung zwischen den Quantenpunkten und der umgebenden Matrix verkleinert. Die verringerte Verspannung beim Quantenpunktwachstum führt zu einer erhöhten Migrationslänge der abgeschiedenen Atome auf der Oberfläche, was wiederum zur Bildung von größeren Quantenpunkten mit geringerer Flächendichte führt. Schließlich wurden die gewonnenen Erkenntnisse über das MBE-Wachstum von Mikroresonatoren, ihre Prozessierung und das selbstorganisierte Inselwachstum von GaInAs auf GaAs als Basis für die Herstellung weiterer Proben verwendet. Es wurden nun beide Bereiche miteinander verknüpft und gering verspannte GaInAs-Quantenpunkte in die Mikroresonatoren eingewachsen. Die hohen Güten der realisierten Mikrokavitäten in Kombination mit Quantenpunkten mit vergrößerten Abmessungen und geringen Dichten machen diese Strukturen zu idealen Kandidaten für die Grundlagenforschung im Bereich der Quantenelektrodynamik. Als Höhepunkt ermöglichten diese Strukturen zum ersten Mal den Nachweis einer starken Wechselwirkung zwischen Licht und Materie in einem Halbleiter. Für den Fall der gering verspannten vergrößerten Quantenpunkte im Regime der starken Kopplung konnte eine Vakuum-Rabi-Aufspaltung von ca. 140 µeV zwischen der Resonatormode und dem Quantenpunkt-Exziton beobachtet werden. Durch die verbesserten Güten der Kavitäten konnte das Regime der starken Wechselwirkung ebenfalls für kleinere Quantenpunkte erreicht werden. Eine Rabi-Aufspaltung von ca. 60 µeV wurde zum Beispiel für kreisrunde GaInAs-Quantenpunkte mit einem Indiumgehalt von 43 % und Durchmessern zwischen 20 und 25 nm gemessen. Das Regime der starken Kopplung ermöglicht es weiterhin, Rückschlüsse auf die Oszillatorstärke der eingewachsenen Quantenpunkte zu ziehen. So konnte zum Beispiel für die vergrößerten Quantenpunktstrukturen eine Oszillatorstärke von ca. 40 - 50 abgeschätzt werden. Dagegen weisen die leicht verkleinerten Quantenpunkte mit einem Indiumgehalt von 43 % nur eine Oszillatorstärke von ca. 15 - 20 auf. Des Weiteren wurden für einen späteren elektrischen Betrieb der Bauteile dotierte Mikroresonatoren hergestellt. Die hohen Güten der dotierten Türmchen ermöglichten ebenso die Beobachtung von klaren quantenelektrodynamischen Effekten im elektrischen Betrieb. Die untersuchten elektrisch gepumpten Mikroresonatoren mit kleinen GaInAs-Quantenpunkten in der aktiven Schicht operierten im Regime der schwachen Kopplung und zeigten einen deutlichen Purcell-Effekt mit einem Purcell-Faktor von ca. 10 im Resonanzfall. Durch den Einsatz von vergrößerten GaInAs-Quantenpunkten konnte ebenfalls im elektrischen Betrieb das Regime der starken Wechselwirkung mit einer Rabi-Aufspaltung von 85 µeV erreicht werden. N2 - At the beginning, we improved the three dimensional optical confinement of the micropillars. A higher Q factor could be achieved mainly due to a further development of the fabrication process. The etching for the pillars was optimized in order to obtain very smooth and vertical sidewalls of the resonators. This reduces the losses due to scattering at the sidewalls of the micropillars und improves their optical confinement. Furthermore, the sample design of the cavities as well as the growth parameters of every single semiconductor layer was optimized. Thus, the quality factor of the pillars could be increased by the use of higher reflectivity mirrors and a matched V/III ratio for the different epitaxial layers. Hence, a record quality factor of about 90000 was achieved for an active micropillar with 26 (30) mirror pairs in the top (bottom) DBR and a diameter of 4 µm. In parallel to this, we made studies on the growth of self-assembled GaInAs quantum dots on GaAs substrates. Here, the nucleation of three dimensional islands as well as their optical properties were object of the investigation. The morphological properties of the dots were analyzed by transmission and scanning electron microscopy, and the optical properties were investigated by photoluminscence and photoreflectance measurements. The optical and particularly the morphological properties of the self-assembled GaInAs quantum dots were essentially improved. Due to a low strain nucleation layer with an indium content of 30 %, the dot density could be reduced to 6 - 9 x 10^9 cm^-2 and their geometric dimensions were increased to typical lengths between 50 and 100 nm and widths of about 30 nm. The lattice mismatch between the quantum dots and the surrounding matrix is decreased due to the reduced indium content. The minimized strain during the dot growth leads to an enhanced migration length of the deposited atoms on the surface, which again leads to the formation of enlarged quantum dots with a reduced density. Finally, the obtained findings of the MBE growth of microcavities, their fabrication and the self-assembled island growth of GaInAs on GaAs were used for the realization of further samples. Both fields were now combined and low strain GaInAs quantum dots were embedded into the microresonators. The high quality factor of the realized cavities in combination with enlarged quantum dots with a low dot density make these structures ideal candidates for fundamental research in the field of cavity quantum electrodynamics. As a highlight, these structures allowed for the first time the observation of strong coupling between light and matter in a semiconductor. In case of the low strain quantum dots with enlarged dimensions in the strong coupling regime, a vacuum Rabi-splitting of about 140 µeV between the cavity mode and the exciton could be observed. Due to an improved optical confinement of the microresonators, we were able to reach the strong coupling regime also for smaller quantum dots. For example a Rabi-splitting of about 60 µeV was measured for circular GaInAs dots with an indium content of 43 % and diameters between 20 and 25 nm. The strong coupling regime furthermore allows the estimation of the oscillator strength of the embedded quantum dots. Thus we could conclude an oscillator strength of approximately 40 - 50 for the enlarged quantum dot structures. In contrast to that, the slightly smaller dots with an indium content of 43 % only show an oscillator strength of about 15 - 20. Furthermore, doped microcavities were realized with regard to electrically driven devices. The high quality of the doped pillars allowed us the observation of pronounced quantum electrodynamic effects also for electrically pumped structures. The investigated electrically driven mircocavities with embedded GaInAs quantum dots were operating in the weak coupling regime and showed a clear Purcell effect with a Purcell factor in resonance of about 10. Due to the use of enlarged GaInAs quantum dots, we were able to reach the strong coupling regime with a vacuum Rabi-splitting of 85 µeV also for electrically driven micropillars. KW - Quantenpunkt KW - Optischer Resonator KW - Quantenelektrodynamik KW - Molekularstrahlepitaxie KW - Licht-Materie-Wechselwirkung KW - Light-Matter-Interaction Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30323 ER - TY - THES A1 - Scheibner, Ralf T1 - Thermoelectric Properties of Few-Electron Quantum Dots T1 - Thermoelektrische Eigenschaften von Quantenpunkten N2 - This thesis presents an experimental study of the thermoelectrical properties of semiconductor quantum dots (QD). The measurements give information about the interplay between first order tunneling and macroscopic quantum tunneling transport effects in the presence of thermal gradients by the direct comparison of the thermoelectric response and the energy spectrum of the QD. The aim of the thesis is to contribute to the understanding of the charge and spin transport in few-electron quantum dots with respect to potential applications in future quantum computing devices. It also gives new insight into the field of low temperature thermoelectricity. The investigated QDs were defined electrostatically in a two dimensional electron gas (2DEG) formed with a GaAs/(Al,Ga)As heterostructure by means of metallic gate electrodes on top of the heterostructure. Negative voltages with respect to the potential of the 2DEG applied to the gate electrodes were used to deplete the electron gas below them and to form an isolated island of electron gas in the 2DEG which contains a few ten electrons. This QD was electrically connected to the 2DEG via two tunneling barriers. A special electron heating technique was used to create a temperature difference between the two connecting reservoirs across the QD. The resulting thermoelectric voltage was used to study the charge and spin transport processes with respect to the discrete energy spectrum and the magnetic properties of the QD. Such a two dimensional island usually exhibits a discrete energy spectrum, which is comparable to that of atoms. At temperatures below a few degrees Kelvin, the electrostatic charging energy of the QDs exceeds the thermal activation energy of the electrons in the leads, and the transport of electrons through the QD is dominated by electron-electron interaction effects. The measurements clarify the overall line shape of thermopower oscillations and the observed fine structure as well as additional spin effects in the thermoelectrical transport. The observations demonstrate that it is possible to control and optimize the strength and direction of the electronic heat flow on the scale of a single impurity and create spin-correlated thermoelectric transport in nanostructures, where the experimenter has a close control of the exact transport conditions. The results support the assumption that the performance of thermoelectric devices can be enhanced by the adjustment of the QD energy levels and by exploiting the properties of the spin-correlated charge transport via localized, spin-degenerate impurity states. Within this context, spin entropy has been identified as a driving force for the thermoelectric transport in the spin-correlated transport regime in addition to the kinetic contributions. Fundamental considerations, which are based on simple model assumptions, suggest that spin entropy plays an important role in the presence of charge valence fluctuations in the QD. The presented model gives an adequate starting point for future quantitative analysis of the thermoelectricity in the spin-correlated transport regime. These future studies might cover the physics in the limit of single electron QDs or the physics of more complex structures such as QD molecules as well as QD chains. In particular, it should be noted that the experimental investigations of the thermopower of few-electron QDs address questions concerning the entropy transport and entropy production with respect to single-bit information processing operations. These questions are of fundamental physical interest due to their close connection to the problem of minimal energy requirements in communication, and thus ultimately to the so called "Maxwell's demon" with respect to the second law of thermodynamics. N2 - Diese Dissertation präsentiert eine experimentelle Studie über die thermoelektrischen Eigenschaften von Halbleiterquantenpunkten. Das thermoelektrische Verhalten der Quantenpunkte wird unter besonderer Berücksichtigung ihrer jeweiligen Energiespektren und magnetischen bzw Spin-Eigenschaften diskutiert. Die durchgeführten Messungen geben Aufschluss über das Zusammenspiel von Einzelelektronentunnelprozessen erster und höherer Ordnung unter dem Einfluss thermischer Gradienten. Somit trägt diese Dissertation zum Verständnis des Ladungs- und Spintransports in potentiellen, zukünftigen Bausteinen für die Quanteninformationsverarbeitung bei und ermöglicht neue Einblicke in das Themengebiet der Thermoelektrizität bei sehr tiefen Temperaturen. Die untersuchten Quantenpunkte wurden in einem zweidimensionalen Elektronengas (2DEG) mittels nanostrukturierter, metallischer "gates" erzeugt, die auf der Oberfläche einer GaAs/AlGaAs Heterostrukturoberfläche aufgebracht wurden. Durch das Anlegen negativer Spannungen in Bezug auf das Potential des 2DEGs, wurde das Elektronengas unter den gates verdrängt, so dass eine isolierte Insel entstand, die bis zu ca. 30 Elektronen zählte. Zwei Tunnelbarrieren dienten als elektrische Verbindung dieses Quantenpunkts zu den Zuleitungen. Unter Verwendung einer speziellen Stromheizungstechnik wurde eine Temperaturdifferenz zwischen den zwei Zuleitungsreservoirs über dem Quantenpunkt erzeugt. Die Untersuchung von Ladungs- und Spintransportprozessen erfolgte über den direkten Vergleich der resultierenden thermoelektrischen Spannung mit den jeweiligen Energiespektren der Quantenpunkte. Im Allgemeinen weist eine solche zweidimensionale Insel ein diskretes Energiespektrum auf, das vergleichbar mit dem einzelner Atome ist. Unterhalb einer Temperatur von wenigen Grad Kelvin, ist die elektrostatische Aufladungsenergie des Quantenpunkts größer als die thermische Anregungsenergie der Elektronen in den Zuleitungen. Als Folge bestimmen Elektron-Elektron-Wechselwirkungseffekte den Transport von Elektronen durch den Quantenpunkt. Die durchgeführten Messungen erklären den Verlauf der Thermokraft als Funktion des Quantenpunktpotentials einschließlich der aufgeprägten Feinstruktur sowie zusätzliche thermoelektrische Effekte, die von den Spin-Eigenschaften des Quantenpunkts hervorgerufen werden. Die Beobachtungen beweisen, dass es möglich ist Stärke und Richtung des elektronischen Wärmeflusses auf der Größenskala einzelner Verunreinigungen zu kontrollieren und gegebenenfalls zu optimieren sowie Spin-korrelierten thermoelektrischen Transport in künstlich hergestellten Nanostrukturen zu verwirklichen, welche eine gezielte Kontrolle der Transportbedingungen erlauben. Die Ergebnisse untermauern die Annahmen einer möglichen Verbesserung der Effizienz thermoelektrisch aktiver Materialien durch die Anpassung der energetischen Lage entsprechender Quantenpunktzustände und durch die Ausnutzung der thermoelektrischen Effekte im Spin-korrelierten Ladungstransport durch energetisch entartete, lokalisierte Zustände. In diesem Rahmen wurde erläutert, dass Spinentropie neben den kinetischen Beiträgen eine weitere treibende Kraft des thermoelektrischen Transports durch Quantenpunkte darstellt. Grundlegende Überlegungen, die auf einfachen Modellannahmen beruhen, lassen erwarten, dass die Beiträge der Spinentropie zum thermoelektischen Transport bei vorhandenen Fluktuationen der Anzahl der Ladungen auf dem Quantenpunkt eine signifikante Rolle spielen. Das vorgestellte Modell bietet hierzu einen geeigneten Ausgangspunkt für weitere quantitative Analysen der Thermoelektrizität im Spin-korrelierten Transportregime. Insbesondere sei darauf hingewiesen, dass die experimentelle Untersuchung der Thermokraft von Quantenpunktstrukturen, wie sie hier verwendet wurden, den Entropietransport und die Entropieerzeugung in Bezug zu Ein-Bit-Rechenoperationen setzen. Fragestellungen dieser Art sind von fundamentalem physikalischen Interesse aufgrund ihrer engen Verknüpfung mit der Frage nach dem minimalen Energieaufwand, der eine Kommunikation ermöglicht. Dieses Problem wird häufig mittels des so genannten Maxwell'schen Dämon diskutiert und hinterfragt in ihrem Ursprung den zweiten Hauptsatz der Thermodynamik. KW - Quantenpunkt KW - Thermokraft KW - Thermoelektrizität KW - Wärmeübertragung KW - Coulomb-Blockade KW - Resonanz-Tunneleffekt KW - Kondo-Effekt KW - Magnetowiderstand KW - Einzelelektronentransistor KW - Spinentropie KW - mesoskopisch KW - Quantentransport KW - single electron transistor KW - SET KW - thermopower KW - spin entropy KW - heat transfer KW - mesoscopic Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26699 ER - TY - THES A1 - Schliemann, Andreas Ulrich T1 - Untersuchung von miniaturisierten GaAs/AlGaAs Feldeffekttransistoren und GaAs/InGaAs/AlGaAs Flash-Speichern T1 - Study of miniaturised GaAs/AlGaAs field effect transistors and GaAs/InGaAs/AlGaAs flash memories N2 - Im Rahmen dieser Arbeit wurden elektronische Bauelemente wie Feldeffekttransistoren, elektronische Speicherelemente sowie resonante Tunneldioden hinsichtlich neuartiger Transporteigenschaften untersucht, die ihren Ursprung in der Miniaturisierung mit Ausdehnungen kleiner als charakteristische Streulängen haben. Die Motivation der vorliegenden Arbeit lag darin, die Physik nanoelektronischer Bauelemente durch einen neuen Computercode: NANOTCAD nicht nur qualitativ sondern auch quantitativ beschreiben zu können. Der besondere Schwerpunkt der Transportuntersuchungen lag im nicht-linearen Transportbereich für Vorwärtsspannungen, bei denen die Differenz der elektrochemischen Potentiale im aktiven Bereich der Bauelemente bei Weitem größer als die thermische Energie der Ladungsträger ist, da nur im nicht-linearen Transportbereich die für eine Anwendung elektronischer Bauelemente notwendige Gleichrichtung und Verstärkung auftreten kann. Hierzu war es notwendig, eine detaillierte Charakterisierung der Bauelemente durchzuführen, damit möglichst viele Parameter zur genauen Modellierung zur Verfügung standen. Als Ausgangsmaterial wurden modulationsdotierte GaAs/AlGaAs Heterostrukturen gewählt, da sie in hervorragender struktureller Güte mit Hilfe der Molekularstrahllithographie am Lehrstuhl für Technische Physik mit angegliedertem Mikrostrukturlabor hergestellt werden können. Im Rahmen dieser Arbeit wurde zunächst ein Verfahren zur Bestimmung der Oberflächenenergie entwickelt und durchgeführt, das darauf beruht, die Elektronendichte eines nahe der Oberfläche befindlichen Elektronengases in Abhängigkeit unterschiedlicher Oberflächenschichtdicken zu bestimmen. Es zeigte sich, dass die so bestimmte Oberflächenenergie, einen äußerst empfindlichen Parameter zur Beschreibung miniaturisierter Bauelemente darstellt. Um die miniaturisierte Bauelemente zu realisieren, kamen Herstellungsverfahren der Nanostrukturtechnik wie Elektronenstrahllithographie und diverse Ätztechniken zum Einsatz. Durch Elektronmikroskopie wurde die Geometrie der nanostrukturierten Bauelemente genau charakterisiert. Transportmessungen wurden durchgeführt, um die Eingangs- und Ausgangskennlinien zu bestimmen, wobei die Temperatur zwischen 1K und Raumtemperatur variiert wurde. Die temperaturabhängigen Analysen erlaubten es, die Rolle inelastischer Streuereignisse im Bereich des quasi-ballistischen Transports zu analysieren. Die Ergebnisse dieser Arbeit wurden dazu verwendet, um die NANOTCAD Simulationswerkzeuge soweit zu optimieren, dass quantitative Beschreibungen von stark miniaturisierten, elektronischen Bauelementen durch einen iterativen Lösungsalgorithmus der Schrödingergleichung und der Poissongleichung in drei Raumdimensionen möglich sind. Zu Beginn der Arbeit wurden auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen eine Vielzahl von Quantenpunktkontakten, die durch Verarmung eines zweidimensionalen Elektronengases durch spitz zulaufende Elektrodenstrukturen realisiert wurden, untersucht. Variationen der Splitgate-Geometrien wurden statistisch erfasst und mit NanoTCADSimulationen verglichen. Es konnte ein hervorragende Übereinstimmung in der Schwellwertcharakteristik von Quantenpunktkontakten und Quantenpunkten gefunden werden, die auf der genauen Beschreibung der Oberflächenzustände und der Erfassung der realen Geometrie beruhen. Ausgehend von diesen Grundcharakterisierungen nanoelektronischer Bauelemente wurden 3 Klassen von Bauelementen auf der Basis des GaAs/AlGaAs Halbleitersystems detailliert analysiert. N2 - In this thesis electronic devices such as field effect transistors, electronic memory devices and resonant tunnelling have been examined with regard to new transport characteristics that have their origin in the miniaturization with extensions smaller than characteristic lengths. The motivation for this thesis was to be able to describe the physics of nanoelectronic devices via a new computer code: NANOTCAD not only by quality but also by quantity. The special emphasis of the transport examinations was on the non-linear transport regime for bias voltages with which the difference of the electro-chemical potentials in the active section of the devices is by far bigger than the thermic energy of the charges, for only in the non-linear transport regime we find the rectification and intensification necessary for the application of electronic devices. To achieve this it was necessary to characterize the devices in detail to have as many parameters for exact modelling as possible. Modulation-doped GaAs/AlGaAs heterostructures were chosen as basic material, for they can be produced in excellent structural quality with the help of molecular beam lithography at the Technical Physics department with attached microstructure laboratory. In this thesis first a method to determine the surface potential was developed and put into operation, a method that is based on the determination of the electron density of an electron gas near the surface in dependence of differently thick surface layers.We can see that the surface energy determined that way is an extremely sensible parameter for the description of miniaturized devices. To realize the miniaturized devices processing techniques of the nanostructure technology such as electron beam lithography and different etching techniques were used.With the electron microscopy the geometry of the nano-structured devices was exactly characterized. Transport measurements had been made to determine the input- and output characteristics with a temperature varying between 1 Kelvin and room temperature. The temperature-dependent analysis allow to analyze the role of inelastic scattering events in the sector of quasi-ballistic transport. The results of this thesis had been used to optimize the NANOTCAD simulation tools in a way that quantitative descriptions of strongly miniaturized electronic devices via an iterative solution algorithm of the Schroedinger equation and the Poisson equation in three dimensions are possible. The thesis starts with an examination of many quantum dot contacts which had been realized by a depletion of an two-dimensional electron gas via tapered electrode structures. Variations of the split gate geometries had been registered statistically and then been compared to NANOTCAD simulations. An excellent accordance in the threshold characteristics of quantum dot contacts and quantum dots could be found which are based on the exact description of surface states and the registration of the real geometry that had been determined with the analysis of electron-microscopic recordings of the structures. From these basic characteristics of nanoelectronic devices three classes of devices on the basis of the GaAs/AlGaAs semiconductor systems had been analyzed in detail. KW - Galliumarsenid KW - Indiumarsenid KW - Aluminiumarsenid KW - Feldeffekttransistor KW - Flash-Speicher KW - AlGaAs KW - Quantenpunkt KW - Speicher KW - ballistisches Transport Regime KW - nanoelectronics KW - AlGaAs KW - quantum dot KW - memory KW - ballistic transport KW - nanoelectronics Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20503 ER - TY - THES A1 - Scheibner, Michael T1 - Über die Dynamik lokal wechselwirkender Spinträger T1 - About the dynamics of locally interacting spin carriers N2 - In dieser Arbeit wurde die Dynamik spintragender Teilchen (Elektronen, Löcher, Exzitonen) in selbstorganisierten Cd(Mn)Se/ZnSe Quantenpunkten sowie leicht dotiertem GaAs untersucht. Die unterschiedlichen Materialgruppen boten die Möglichkeit verschiedene Einflüsse auf Spinzustände zu studieren. Die Injektion definierter Spinzustände in die Halbleiterstrukturen erfolgte ausschließlich auf optischem Weg. Ebenfalls optisch wurde auch die zeitliche Entwicklung der Spinzustände detektiert. Die Anwendung von zeitaufgelöster Photolumineszenzspektroskopie sowie zeitaufgelöster Kerr-Rotation, ermöglichte den Zugriff sowohl auf longitudinale wie auch transversale Spinrelaxationsprozesse. Desweiteren wurde eine Kopplung der Quantenpunkten über ihr Strahlungsfeld diskutiert. N2 - In this thesis the dynamics of spin carrying particles like electrons, holes and excitons in self-organized Cd(Mn)Se/ZnSe quantum dots and lightly doped GaAs has been studied. The different materials offered the possibility to investigate various influences on spin states. The injection of defined spin states into the semiconductor structures was achieved exclusively by optical means. Likewise, the temporal evolution of the spin states was detected optically. The application of time resolved photoluminescence spectroscopy and time resolved Kerr rotation gave access to longitudinal as well as transverse spin relaxation processes. In addition a coupling of the quantum dots through their radiation field was discussed. KW - Quantenpunkt KW - Spindynamik KW - Quantenpunkte KW - Spindynamik KW - Magneto-optik KW - semimagnetisch KW - Halbleiter KW - zeitafgelöst KW - Strahlungskopplung KW - CdSe KW - GaAs KW - Quantum dots KW - spindynamics KW - magneto optics KW - semi-magnetic KW - semiconductor KW - time resolved KW - radiative coupling KW - CdSe KW - GaAs Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20127 ER - TY - THES A1 - Schömig, Herbert Richard T1 - Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik T1 - Nanooptics on wide-bandgap semiconductor nanostructures for spintronics and optoelectronics N2 - Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. N2 - This work treats three topics from the research on nanostructured semiconductors in the field of spintronics and optoelectronics. 1) Single semimagnetic quantum dots Semiconductors doped with Mn, so-called diluted magnetic semiconductors, exhibit an intense sp-d exchange interaction between free carrier spins and localized Mn spins. Due to this coupling an exciton, optically injected into the DMS semiconductor, acquires an exchange energy proportional to the Mn magnetization within the exciton volume. If the exciton localizes in a quantum dot it can be employed as a probe monitoring the magnetization in the nanoenvironment. However, this requires the spectroscopic selection of single quantum dots. In this work single CdSe/ZnMnSe quantum dots could be addressed with the help of an opaque metal mask on top of the semiconductor with nanoapertures prepared by electron lithography. The PL emission from such nanoapertures shows individual PL lines corresponding to single quantum dots. By means of magneto-PL-spectroscopy the magnetic moment of single quantum dots of only some tens of Bohrmagnetons is addressed, including its thermal fluctuations. The temperature as well as magnetic field dependence of the exciton-Mn coupling is consistently described in the frame of a modified Brillouin model. 2) Ferromagnet-DMS-Hybrids A local manipulation of spins in a semiconductor can be realized by a preparation of ferromagnetic structures on the surface of a semiconductor. Magnetic fringe fields, emerging from nanostructured ferromagnets (FM) are capable of bending the spin bands of a buried quantum well on a mesoscopic length scale. This is especially valid for a semimagnetic quantum well like the ZnCdMnSe/ZnSe heterostructure used in the following experiments. Due to the drastic enhancement of the exciton g factor by the coupling to the Mn spins, huge spin splittings become possible. Magnetostatic calculations performed for ferromagnetic dysprosium (Dy) wire structures show, that fringe fields in the range of 0.1 to 1 T can be achieved in a perpendicular magnetization configuration. Magneto-PL measurements with a high spatial resolution actually demonstrate an influence of nanostructured ferromagnets on the excitonic spin bands in the quantum well and even provide some information about the magnetic characteristics of the FM nanoelements. 3) Single localization centers in a InGaN/GaN quantum well The localization of charge carriers in nm-sized islands has a strong influence on the optical properties of InGaN/GaN quantum wells. A detailed analysis of these effects require a reproduceable, spectroscopic access to single localization centers. This prerequisite has been fulfilled by depositing a mask with nanoapertures on the semiconductor surface. PL spectra measured on these nanoapertures at a temperature of 4 K reveal individual, spectrally narrow emission lines with a halfwidth down to 0.8 meV. Such a single PL line can be attributed to the emission from a single localization center. The optical access to single centers has been demonstrated here for the first time. As the following experiments showed, there is a profound difference between the behavior of such single PL lines and the inhomogenous PL signal from a large ensemble of centers. This gives a clear picture of the impact of some mechanisms relevant for the PL characteristics of InGaN quantum films, that have been the subject of a controversial debate. The most influential factors are the internal piezo electric field, the bandfilling effect and the formation of multiexcitons. KW - Cadmiumselenid KW - Zinkselenid KW - Manganselenide KW - Semimagnetischer Halbleiter KW - Quantenpunkt KW - Halbleiteroberfläche KW - Ferromagnetische Schicht KW - Nanostruktur KW - Spin KW - Indiumnitrid KW - Galliumnitrid KW - Ferromagnete KW - Photolumineszenz KW - Quantum dots KW - semimagnetic semiconductors KW - gallium nitride KW - ferromagnets KW - photoluminescence Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15188 N1 - Aus datenschutzrechtlichen Gründen wurde der Zugriff auf den Volltext zu diesem Dokument gesperrt. Eine inhaltlich identische neue Version ist erhältlich unter: http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126558 ER -