TY - JOUR A1 - Gabbert, Lydia A1 - Dilling, Christina A1 - Meybohm, Patrick A1 - Burek, Malgorzata T1 - Deletion of Protocadherin Gamma C3 Induces Phenotypic and Functional Changes in Brain Microvascular Endothelial Cells In Vitro JF - Frontiers in Pharmacology N2 - Inflammation of the central nervous system (CNS) is associated with diseases such as multiple sclerosis, stroke and neurodegenerative diseases. Compromised integrity of the blood-brain barrier (BBB) and increased migration of immune cells into the CNS are the main characteristics of brain inflammation. Clustered protocadherins (Pcdhs) belong to a large family of cadherin-related molecules. Pcdhs are highly expressed in the CNS in neurons, astrocytes, pericytes and epithelial cells of the choroid plexus and, as we have recently demonstrated, in brain microvascular endothelial cells (BMECs). Knockout of a member of the Pcdh subfamily, PcdhgC3, resulted in significant changes in the barrier integrity of BMECs. Here we characterized the endothelial PcdhgC3 knockout (KO) cells using paracellular permeability measurements, proliferation assay, wound healing assay, inhibition of signaling pathways, oxygen/glucose deprivation (OGD) and a pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) treatment. PcdhgC3 KO showed an increased paracellular permeability, a faster proliferation rate, an altered expression of efflux pumps, transporters, cellular receptors, signaling and inflammatory molecules. Serum starvation led to significantly higher phosphorylation of extracellular signal-regulated kinases (Erk) in KO cells, while no changes in phosphorylated Akt kinase levels were found. PcdhgC3 KO cells migrated faster in the wound healing assay and this migration was significantly inhibited by respective inhibitors of the MAPK-, β-catenin/Wnt-, mTOR- signaling pathways (SL327, XAV939, or Torin 2). PcdhgC3 KO cells responded stronger to OGD and TNFα by significantly higher induction of interleukin 6 mRNA than wild type cells. These results suggest that PcdhgC3 is involved in the regulation of major signaling pathways and the inflammatory response of BMECs. KW - blood-brain barrier KW - protocadherin gamma C3 KW - inflammation KW - oxygen/glucose deprivation KW - stroke KW - tumor necrosis factor-α KW - proliferation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219828 SN - 1663-9812 VL - 11 ER - TY - JOUR A1 - Curtaz, Carolin J. A1 - Reifschläger, Leonie A1 - Strähle, Linus A1 - Feldheim, Jonas A1 - Feldheim, Julia J. A1 - Schmitt, Constanze A1 - Kiesel, Matthias A1 - Herbert, Saskia-Laureen A1 - Wöckel, Achim A1 - Meybohm, Patrick A1 - Burek, Malgorzata T1 - Analysis of microRNAs in exosomes of breast cancer patients in search of molecular prognostic factors in brain metastases JF - International Journal of Molecular Sciences N2 - Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use. KW - breast cancer KW - breast cancer metastases KW - blood-brain barrier KW - patient serum KW - exosomes KW - microRNA KW - gene expression KW - prognostic marker Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284476 SN - 1422-0067 VL - 23 IS - 7 ER - TY - JOUR A1 - Curtaz, Carolin J. A1 - Kiesel, Ludwig A1 - Meybohm, Patrick A1 - Wöckel, Achim A1 - Burek, Malgorzata T1 - Anti-hormonal therapy in breast cancer and its effect on the blood-brain barrier JF - Cancers N2 - Simple Summary Anti-hormonal therapie regimes are well established in oncological treatments in breast cancer. In contrast there is limited knowledge of their effects on metastatic brain metastases in advanced breast cancer and their ability to cross the blood brain-barrier. In this review, we point out the usual antihormonal therapy options in the primary disease, but also in metastatic breast cancer. In addition, we explain the epidemiological facts of brain metastases, as well as the basics of the blood-brain barrier and how this is overcome by metastase. Last but not least, we deal with the known anti-hormonal therapy options and present clinical studies on their intracerebral effect, as well as the known basics of their blood-brain barrier penetration. Not all common anti-hormonal therapeutics are able to penetrate the CNS. It is therefore important for the treating oncologists to use substances that have been proven to cross the BBB, despite the limited data available. Aromataseinhibitors, especially letrozole, probably also tamoxifen, everolimus and CDK4/6 inhibitors, especially abemaciclib, appear to act intracerebrally by overcoming the blood-brain barrier. Nevertheless, further data must be obtained in basic research, but also health care research in relation to patients with brain metastases. Abstract The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2−negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer. KW - anti-hormonal therapy KW - brain-metastasis KW - blood-brain barrier KW - breast cancer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290320 SN - 2072-6694 VL - 14 IS - 20 ER - TY - JOUR A1 - Sun, Aili A1 - Blecharz-Lang, Kinga G. A1 - Małecki, Andrzej A1 - Meybohm, Patrick A1 - Nowacka-Chmielewska, Marta M. A1 - Burek, Malgorzata T1 - Role of microRNAs in the regulation of blood-brain barrier function in ischemic stroke and under hypoxic conditions in vitro JF - Frontiers in Drug Delivery N2 - The blood-brain barrier (BBB) is a highly specialized structure that separates the brain from the blood and allows the exchange of molecules between these two compartments through selective channels. The breakdown of the BBB is implicated in the development of severe neurological diseases, especially stroke and traumatic brain injury. Oxygen-glucose deprivation is used to mimic stroke and traumatic brain injury in vitro. Pathways that trigger BBB dysfunction include an imbalance of oxidative stress, excitotoxicity, iron metabolism, cytokine release, cell injury, and cell death. MicroRNAs are small non-coding RNA molecules that regulate gene expression and are emerging as biomarkers for the diagnosis of central nervous system (CNS) injuries. In this review, the regulatory role of potential microRNA biomarkers and related therapeutic targets on the BBB is discussed. A thorough understanding of the potential role of various cellular and linker proteins, among others, in the BBB will open further therapeutic options for the treatment of neurological diseases. KW - blood-brain barrier KW - microRNA KW - stroke KW - traumatic brain injury KW - tight junctions KW - transporter Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291423 SN - 2674-0850 VL - 2 ER -