TY - JOUR A1 - Frantz, Stefan A1 - Klaiber, Michael A1 - Baba, Hideo A. A1 - Oberwinkler, Heinz A1 - Völker, Katharina A1 - Gaßner, Birgit A1 - Bayer, Barbara A1 - Abeßer, Marco A1 - Schuh, Kai A1 - Feil, Robert A1 - Hofmann, Franz A1 - Kuhn, Michaela T1 - Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I JF - European Heart Journal N2 - Aims: Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results: To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the \([Ca^{2+}]_i\)-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte \(Ca^{2+}_i\) homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, \(Ca^{2+}_i\)-handling, and contractility via cGKI. Conclusion: These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte \(Ca^{2+}_i\) handling and contractility. KW - cyclic KW - GMPcGMP-dependent protein kinase I KW - cardiac hypertrophy KW - natriuretic peptide KW - Ca2+i handling Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134693 VL - 34 ER - TY - JOUR A1 - Werner, Franziska A1 - Kojonazarov, Baktybek A1 - Gaßner, Birgit A1 - Abeßer, Marco A1 - Schuh, Kai A1 - Völker, Katharina A1 - Baba, Hideo A. A1 - Dahal, Bhola K. A1 - Schermuly, Ralph T. A1 - Kuhn, Michaela T1 - Endothelial actions of atrial natriuretic peptide prevent pulmonary hypertension in mice JF - Basic Research in Cardiology N2 - The cardiac hormone atrial natriuretic peptide (ANP) regulates systemic and pulmonary arterial blood pressure by activation of its cyclic GMP-producing guanylyl cyclase-A (GC-A) receptor. In the lung, these hypotensive effects were mainly attributed to smooth muscle-mediated vasodilatation. It is unknown whether pulmonary endothelial cells participate in the homeostatic actions of ANP. Therefore, we analyzed GC-A/cGMP signalling in lung endothelial cells and the cause and functional impact of lung endothelial GC-A dysfunction. Western blot and cGMP determinations showed that cultured human and murine pulmonary endothelial cells exhibit prominent GC-A expression and activity which were markedly blunted by hypoxia, a condition known to trigger pulmonary hypertension (PH). To elucidate the consequences of impaired endothelial ANP signalling, we studied mice with genetic endothelial cell-restricted ablation of the GC-A receptor (EC GC-A KO). Notably, EC GC-A KO mice exhibit PH already under resting, normoxic conditions, with enhanced muscularization of small arteries and perivascular infiltration of inflammatory cells. These alterations were aggravated on exposure of mice to chronic hypoxia. Lung endothelial GC-A dysfunction was associated with enhanced expression of angiotensin converting enzyme (ACE) and increased pulmonary levels of Angiotensin II. Angiotensin II/AT(1)-blockade with losartan reversed pulmonary vascular remodelling and perivascular inflammation of EC GC-A KO mice, and prevented their increment by chronic hypoxia. This experimental study indicates that endothelial effects of ANP are critical to prevent pulmonary vascular remodelling and PH. Chronic endothelial ANP/GC-A dysfunction, e.g. provoked by hypoxia, is associated with activation of the ACE-angiotensin pathway in the lung and PH. KW - Atrial natriuretic peptide KW - Endothelium KW - Guanylyl cyclase-A KW - Cyclic GMP KW - Pulmonary hypertension Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-190664 VL - 111 IS - 2 ER - TY - JOUR A1 - Hepbasli, Denis A1 - Gredy, Sina A1 - Ullrich, Melanie A1 - Reigl, Amelie A1 - Abeßer, Marco A1 - Raabe, Thomas A1 - Schuh, Kai T1 - Genotype- and Age-Dependent Differences in Ultrasound Vocalizations of SPRED2 Mutant Mice Revealed by Machine Deep Learning JF - Brain Sciences N2 - Vocalization is an important part of social communication, not only for humans but also for mice. Here, we show in a mouse model that functional deficiency of Sprouty-related EVH1 domain-containing 2 (SPRED2), a protein ubiquitously expressed in the brain, causes differences in social ultrasound vocalizations (USVs), using an uncomplicated and reliable experimental setting of a short meeting of two individuals. SPRED2 mutant mice show an OCD-like behaviour, accompanied by an increased release of stress hormones from the hypothalamic–pituitary–adrenal axis, both factors probably influencing USV usage. To determine genotype-related differences in USV usage, we analyzed call rate, subtype profile, and acoustic parameters (i.e., duration, bandwidth, and mean peak frequency) in young and old SPRED2-KO mice. We recorded USVs of interacting male and female mice, and analyzed the calls with the deep-learning DeepSqueak software, which was trained to recognize and categorize the emitted USVs. Our findings provide the first classification of SPRED2-KO vs. wild-type mouse USVs using neural networks and reveal significant differences in their development and use of calls. Our results show, first, that simple experimental settings in combination with deep learning are successful at identifying genotype-dependent USV usage and, second, that SPRED2 deficiency negatively affects the vocalization usage and social communication of mice. KW - SPRED KW - SPRED2 KW - mice KW - neural networks KW - ultrasound vocalizations KW - DeepSqueak Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248525 SN - 2076-3425 VL - 11 IS - 10 ER -