TY - JOUR A1 - Kaya-Zeeb, Sinan A1 - Delac, Saskia A1 - Wolf, Lena A1 - Marante, Ana Luiza A1 - Scherf-Clavel, Oliver A1 - Thamm, Markus T1 - Robustness of the honeybee neuro-muscular octopaminergic system in the face of cold stress JF - Frontiers in Physiology N2 - In recent decades, our planet has undergone dramatic environmental changes resulting in the loss of numerous species. This contrasts with species that can adapt quickly to rapidly changing ambient conditions, which require physiological plasticity and must occur rapidly. The Western honeybee (Apis mellifera) apparently meets this challenge with remarkable success, as this species is adapted to numerous climates, resulting in an almost worldwide distribution. Here, coordinated individual thermoregulatory activities ensure survival at the colony level and thus the transmission of genetic material. Recently, we showed that shivering thermogenesis, which is critical for honeybee thermoregulation, depends on octopamine signaling. In this study, we tested the hypothesis that the thoracic neuro-muscular octopaminergic system strives for a steady-state equilibrium under cold stress to maintain endogenous thermogenesis. We can show that this applies for both, octopamine provision by flight muscle innervating neurons and octopamine receptor expression in the flight muscles. Additionally, we discovered alternative splicing for AmOARβ2. At least the expression of one isoform is needed to survive cold stress conditions. We assume that the thoracic neuro-muscular octopaminergic system is finely tuned in order to contribute decisively to survival in a changing environment. KW - honeybees KW - thermogenesis KW - cold stress KW - octopamine KW - octopamine receptors KW - gene expression Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288753 SN - 1664-042X VL - 13 ER - TY - JOUR A1 - Hamann, Catharina S. A1 - Bankmann, Julian A1 - Mora Maza, Hanna A1 - Kornhuber, Johannes A1 - Zoicas, Iulia A1 - Schmitt-Böhrer, Angelika T1 - Social fear affects limbic system neuronal activity and gene expression JF - International Journal of Molecular Sciences N2 - Social anxiety disorder (SAD) is a highly prevalent and comorbid anxiety disorder with rather unclear underlying mechanisms. Here, we aimed to characterize neurobiological changes occurring in mice expressing symptoms of social fear and to identify possible therapeutic targets for SAD. Social fear was induced via social fear conditioning (SFC), a validated animal model of SAD. We assessed the expression levels of the immediate early genes (IEGs) cFos, Fosl2 and Arc as markers of neuronal activity and the expression levels of several genes of the GABAergic, serotoninergic, oxytocinergic, vasopressinergic and neuropeptide Y (NPY)-ergic systems in brain regions involved in social behavior or fear-related behavior in SFC+ and SFC− mice 2 h after exposure to a conspecific. SFC+ mice showed a decreased number and density of cFos-positive cells and decreased expression levels of IEGs in the dorsal hippocampus. SFC+ mice also showed alterations in the expression of NPY and serotonin system-related genes in the paraventricular nucleus of the hypothalamus, basolateral amygdala, septum and dorsal raphe nucleus, but not in the dorsal hippocampus. Our results describe neuronal alterations occurring during the expression of social fear and identify the NPY and serotonergic systems as possible targets in the treatment of SAD. KW - social anxiety KW - fear expression KW - social avoidance KW - gene expression KW - Npy KW - Npyr1 KW - Npyr2 KW - Htr1a KW - Htr2a KW - Htr2c Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284274 SN - 1422-0067 VL - 23 IS - 15 ER - TY - JOUR A1 - Curtaz, Carolin J. A1 - Reifschläger, Leonie A1 - Strähle, Linus A1 - Feldheim, Jonas A1 - Feldheim, Julia J. A1 - Schmitt, Constanze A1 - Kiesel, Matthias A1 - Herbert, Saskia-Laureen A1 - Wöckel, Achim A1 - Meybohm, Patrick A1 - Burek, Malgorzata T1 - Analysis of microRNAs in exosomes of breast cancer patients in search of molecular prognostic factors in brain metastases JF - International Journal of Molecular Sciences N2 - Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use. KW - breast cancer KW - breast cancer metastases KW - blood-brain barrier KW - patient serum KW - exosomes KW - microRNA KW - gene expression KW - prognostic marker Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284476 SN - 1422-0067 VL - 23 IS - 7 ER -