TY - JOUR A1 - Zimmermann, U. A1 - Stopper, Helga T1 - Elektrofusion und Elektropermeabilisierung von Zellen N2 - No abstract available. KW - Elektrofusion KW - Elektroporation KW - Zelle Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86865 ER - TY - CHAP A1 - Zimmermann, U. A1 - Stopper, Helga T1 - Electrofusion and electropermeabilization of cells N2 - No abstract available. KW - Elektrofusion KW - Elektroporation KW - Zelle Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73065 ER - TY - JOUR T1 - Blick - das Magazin der Julius-Maximilians-Universität Würzburg. Ausgabe 1/1994. Schwerpunktthema: Biomedizinische Grundlagenforschung N2 - Inhaltsübersicht zum Schwerpunktthema: - Die Zelle: Signale, Membranen und Moleküle - Charakterisierung der Durchlässigkeit von Membranfiltern - Kernporen: Transportkanäle für den Kern-Cytoplasma Austausch - Zelltransformation: Verlust der Ordnung - G-Proteine: Zentrale Schaltstellen für Wirkungen von Hormonen und Arzneimitteln - Beteiligung genetischer Faktoren an Tumorprozessen - Wachstum und Anpassung von Pflanzen u.a. KW - Würzburg KW - Universität KW - Zeitschrift KW - Zelle KW - Genetik Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44891 VL - 1/1994 ER - TY - JOUR T1 - Blick - das Magazin der Julius-Maximilians-Universität Würzburg. Ausgabe 2/1994. Schwerpunktthema: Genexpression in Vertebraten-Zellen N2 - Inhaltsübersicht zum Schwerpunktthema: - Genexpression in Vertebraten-Zellen - Funktionsanalyse von Genen mittels gezielter Keimbahn-Mutagenese in Mäusen - Zellkooperation bei der Immunreaktion - Die transkriptionelle Kontrolle von Lymphokin-Genen - Selenocystein-tRNA und die Funktion von Selen in menschlichen Zellen - Start und Stopp der DNA-Replikation: Wie Gene kontrolliert verdoppelt werden - Antigenerkennung durch T-Lymphozyten - Genexpression und Tumorentstehung: Zuviel des Guten? - Molekularbiologie humaner Coronaviren - Molekulare Mechanismen persistierender Masernvirusinfektionen - Polyomavirus-Infektionen im zentralen Nervensystem - Molekulare Mechanismen von intrazellulären Bakterien - Über "simple" und "komplexe" Retroviren - Hilfe für die Zelle im Kampf mit dem AIDS-Virus u.a. KW - Würzburg KW - Universität KW - Zeitschrift KW - Genetik KW - Zelle KW - Melanom KW - Molekularbiologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44902 VL - 2/1994 ER - TY - THES A1 - Friedrich, Uwe T1 - Elektroporation von Säugerzellen T1 - Electroporation of mammalian cells N2 - Ziel der Arbeit war es, die wissenschaftlichen und technischen Voraussetzungen zu schaffen, um eine effiziente Elektroporation von großen aber auch kleinen Zellzahlen zu erreichen. Ein großer Teil der Arbeit diente der Entwicklung eines neuen Elektroporationsgerätes, des Multiporators. Die synergetischen Effekte dieser Technik tragen dazu bei, dass sehr hohe Ausbeuten bei der Elektrotransfektion von Zellen erzielt werden. Damit konnte zum ersten Mal der Gentransfer durch künstliche Säugerzell-Chromosomen (MACs) nachgewiesen werden. Eine weitere Anwendung der Elektroporation liegt in der Transfektion von primären Zellen. Dabei ist der entscheidende Punkt für eine hohe Transfektionseffizienz der Zellzyklus. Des Weiteren wurde in dieser Arbeit ein Konzept entwickelt, das als Basis für ein neues Elektroporationssystem benutzt werden kann. N2 - The aim of this work was the establishment of the scientific and technical supposition for an efficient electroporation of a large and small number of cells. A part of this work was used for the development of a new electroporation instrument, the Multiporator. The synergy of the instrument and the components enable the electrotransfection of eukaryotic cells with high efficiency. With this technique the gene transfer by mammalian artificial chromosomes (MACs) was demonstrated for the first time. Another application is the transfection of primary cells. The main point for the high yields is the cell cycle. Further, a concept for a new electroporation system was evolved. KW - Säugetiere KW - Zelle KW - Elektroporation KW - Elektroporation KW - Säugerzellen KW - primäre Zellen KW - künstliche Chromosomen KW - Dielektrophorese KW - Electroporation KW - mammalian cells KW - primary cells KW - artificial chromosomes KW - dielectrophoresis Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-1241 ER - TY - JOUR T1 - Blick - das Magazin der Julius-Maximilians-Universität Würzburg. Ausgabe 1/2002. Schwerpunktthema: Forschung über Membranproteine an der Uni Würzburg N2 - Inhaltsübersicht zum Schwerpunktthema: - Membranproteine: Neue Wege zu Arzneimitteln - Von der atomaren Analyse zum neuen Medikament - IL 4 - Das Hormon, das uns allergisch macht - Proteine lassen Knochen zehnmal schneller wachsen u.a. KW - Würzburg KW - Universität KW - Zeitschrift KW - Membranprotein KW - Signalverarbeitung KW - Zelle Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45058 VL - 1/2002 ER - TY - JOUR T1 - Blick - das Magazin der Julius-Maximilians-Universität Würzburg. Ausgabe 1/2006. Schwerpunktthema: Die Sprache die das Leben spricht. Neue Antworten auf eine alte Frage. Zukunft und Forschung im Biozentrum N2 - Inhaltsübersicht zum Schwerpunkthema: - Das Biozentrum, eine Erfolgsgeschichte - In der Lehre wird das Maximum herausgeholt - Wenn die Nerven versagen - Wie Pilze Pflanzen erkennen - Auf der Suche nach Wörtern in der Sprache des Lebens - Im Erbgut der Ratte lag die Antwort - Wandernde Zellen hüllen unreife Herzen ein - Fyn lässt Melanom-Zellen wandern und sich teilen - Von der Farbmakierung zum RFID-Chip u. a. KW - Würzburg KW - Universität KW - Zeitschrift KW - Biologie KW - Leben KW - Zelle Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44794 VL - 1/2006 ER - TY - THES A1 - Kampfinger, Katja T1 - Nachweis einer Mismatch-Reparatur-Defizienz in L5178Y Tk+/--3.7.2C-Mauslymphomzellen T1 - Evidence of a mismatch repair deficiency in L5178Y Tk+/--3.7.2C mouse lymphoma cells N2 - Die Entwicklung und Zulassung von Arzneimitteln sowie die Bewertung von Xenobio-tika erfordern eine Reihe von Testsystemen zur Toxizitätsermittlung. Für die Überprüfung der Gentoxizität stehen eine Vielzahl etablierter Testsysteme zur Verfügung, die oft auf Krebszelllinien basieren. Krebszelllinien haben jedoch die Eigenschaft, neben den für die Testung notwendigen Veränderungen weitere Veränderungen zu tragen, die zu Reaktionen führen können, wie sie in den Primärzellen des Organismus nicht auftreten. Daher ist die Kenntnis des genetischen Hintergrunds der verwendeten Krebszelllinien wertvoll, um Testergebnisse bewerten und gentoxische Risikopotentiale abschätzen zu können. Die Mauslymphomzelllinie L5178Y nimmt unter den auf Krebszellen basierenden Testsystemen eine besondere Stellung ein, da sie die weltweit in der Gentoxizi-tätsprüfung am häufigsten eingesetzte Zelllinie ist. In der vorliegenden Arbeit wurde in dieser Zellllinie eine Veränderung nachgewiesen, die das Mismatch-Reparatur-System (MMR-System) betrifft. Bei der MMR handelt es sich um einen Mechanismus, der daran beteiligt ist, die Integrität des Genoms zu gewährleisten. In MMR-profizienten Zellen werden Fehler in der DNA, die bei der Replikation, der homologen Rekombination oder durch äußere gentoxische Einwirkungen entstehen, entweder erkannt und repariert, oder die geschädigten Zellen werden durch die Induktion von Apoptosen eliminiert. Im Gegensatz dazu überleben MMR-defiziente Zellen trotz gravierender DNA-Schäden und akkumulieren diese. In der vorliegenden Arbeit wurde die Akkumulierung von Genomschäden bei L5178Y-Zellen als Reaktion auf Behandlung mit alkylierenden Agenzien beobachtet, während andere Vergleichszelllinien Apoptosen induzierten. Dieses Verhalten der L5178Y-Zellen, das in der Literatur bei MMR-defizienten Zellen für alkylierende Agenzien beschrieben ist, führte zu der Vermutung, dass die L5178Y-Zellen einen MMR-defizienten Phänotyp aufweisen. Dieser MMR-defiziente Phänotyp wurde durch gezielte Behandlung von L5178Y-Zellen und Zellen mit bekanntem MMR-Status mit dem alkylierenden Agenz MNNG und dem anschließenden Vergleich der Reaktionen geprüft und bestätigt. Der Ver-gleich erfolgte durch den Nachweis gentoxischer Effekte im Mikrokern-Test und im Comet Assay. Auf Proteinebene konnte für den gezeigten MMR-defizienten Phänotyp bei den drei wichtigsten, in die MMR involvierten Proteine, MLH1, MSH2 und MSH6 keine Ursa-che gefunden werden: Alle untersuchten Proteine zeigten eine Expression, die mit denen der MMR-profizienten Kontrollzelllinien vergleichbar war. Auf DNA-Ebene wurde durch die Analyse aller bekannter, in die MMR involvierter Gene durch die Sequenzierung der kodierenden Bereiche als wichtigste Verände-rung eine Insertions-Mutation (964(insC)) in pms2 gefunden. Diese führt nach 260 Aminosäuren zu einer Leserasterverschiebung und nach 313 Aminosäuren zu einem Abbruch der Aminosäuresequenz aufgrund eines Stop-Codons. Zwar ist somit die Information für den N-terminalen Bereich von PMS2, der die DNA-Bindedomäne und die ATP-ase aktiven Stellen beinhaltet, vorhanden, die für den C-Terminus hingegen, der für die Dimerisierung mit dem MMR-Protein MLH1 und damit für die Funktion essentiell ist, fehlt. Insgesamt wurde in dieser Arbeit gezeigt, dass die L5178Y-Zelllinie MMR-defizient ist. Mit der Insertions-Mutation (964(insC)) in pms2 wurde eine molekulare Ursache gefunden, die diese Defizienz erklären kann. Daraus folgt für den Einsatz der L5178Y-Zelllinie in Gentoxizitätstests, dass die Berücksichtigung ihrer MMR-Defizienz die Möglichkeit der Bewertung von Testergebnissen erheblich erweitern kann. N2 - The development and approval of pharmaceuticals as well as the evaluation of xenobiotics require several test systems for the detection of genotoxicity. There is a number of established genotoxicity test systems, which are often based on cancer cell lines. In addition to mutations that are essential for genotoxicity testing, cancer cell lines may also carry mutations that might cause reactions not occurring in the primary cells of the organism. Therefore the knowledge of the genetic background of the cell line used is important for the evaluation of test results and the subsequent genotoxicity risk assessment. Among test systems that are based on cancer cells the mouse lymphoma cell line L5178Y adopts a very prominent position due to its worldwide application for genotoxicity testing. The dissertation on hand provides evidence that there are mutations in the L5178Y cell line that are related to the mismatch-repair system (MMR system). MMR participates in safeguarding the genomic integrity. In MMR-proficient cells, DNA defects that arise during replication, homologous recombination or as a result of genotoxic effects are either recognized and repaired or the genetically altered cells are eliminated by induction of apoptosis. MMR-deficient cells, however, survive despite serious DNA defects and accumulate them. The accumulation of DNA damage as result of treatment with alkylating agents had been observed in L5178Y cells while other cell lines had reacted with an induction of apoptosis. The induction of apoptosis after treatment with alkylating agents is described in the literature as a typical behaviour for MMR-deficient cells. From this the hypothesis was established, that L5178Y-cells might exhibit a MMR-deficient phenotype. This MMR-deficient phenotype was proven by selective treatment of L5178Y cells and cells with known MMR status with the alkylating agent MNNG followed by the subsequent comparison of the different reactions. The comparison was carried out by the detection of genotoxic effects using the micronucleus test and the comet assay. On the protein level there was not an indication that the observed MMR-deficiency was related to the the three most important MMR-proteins MSH2, MLH1 and MSH6: All proteins demonstrated expression levels that were comparable to the levels of the MMR-proficient control cells. On the DNA level, however, several mutations were detected by sequence analysis of the coding regions of all genes known to be involved in MMR. The most important among these mutations was an insertion mutation (964(insC)) in pms2, that caused a frameshift after 260 amino acids. By this frameshift, a stop-codon was introduced, leading to an interruption of the sequence after 313 amino acids. While the information of the N-terminal region of pms2 containing the DNA-binding domain as well as the ATPase active sites is still present, the information of the C-terminus is lost. This region is responsible for the dimerisation with the MMR-protein MLH1. Therefore, the MMR-function that is due to this complex, is missing. In conclusion, a MMR-deficiency of L5178Y cells was demonstrated. This MMR-deficiency is explained by an insertion-mutation in pms2 (964(insC)). Consideration of this MMR-deficiency enhances the meaningfulness of the evaluation of test results with L5178Y mouse lymphoma cells in risk assessment. KW - Maus KW - Zelle KW - L5178Y-Zellen KW - MMR-Reparatur KW - pms2 KW - Genotoxizität KW - Alkylantien KW - L5178Y cells KW - mismatch repair KW - pms2 KW - genotoxicity KW - alkylating agent Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26023 ER - TY - THES A1 - Schmitt, Kathrin T1 - Identification and Characterization of GAS2L3 as a Novel Mitotic Regulator in Human Cells T1 - Die Identifizierung und Charakterisierung von GAS2L3 als neuer Regulator der Mitose in humanen Zellen N2 - Precise control of mitotic progression is vital for the maintenance of genomic integrity. Since the loss of genomic integrity is known to promote tumorigenesis, the identification of knew G2/M regulatory genes attracts great attention. LINC, a human multiprotein complex, is a transcriptional activator of a set of G2/M specific genes. By depleting LIN9 in MEFs, a core subunit of LINC, Gas2l3 was identified as a novel LINC target gene. The so far uncharacterized Gas2l3 gene encodes for a member of the family of growth arrest specific 2 (GAS2) proteins, which share a highly conserved putative actin binding CH and a putative microtubule binding GAS2 domain. In the present study GAS2L3 was identified as a LINC target gene also in human cells. Gene expression analysis revealed that GAS2L3 transcription, in contrast to all other GAS2 family members, is highly regulated during the cell cycle with highest expression in G2/M. The GAS2L3 protein showed a specific localization pattern during the M phase: In metaphase, GAS2L3 localized to the mitotic spindle, relocated to the spindle midzone microtubules in late anaphase and concentrated at the midbody in telophase where it persisted until the end of cytokinesis. Overexpression of a set of different GAS2L3 deletion mutants demonstrated that the localization to the mitotic microtubule network is dependent on the C-terminus, whereas the midbody localization is dependent on full length GAS2L3 protein. Additionally, exclusive overexpression of the CH domain induced the formation of actin stress fibers, suggesting that the CH domain is an actin binding domain. In contrast, the GAS2 domain was neither needed nor sufficient for microtubule binding, indicating that there must be an additional so far unknown microtubule binding domain in the C-terminus. Interestingly, immunoblot analysis also identified the C-terminus as the domain responsible for GAS2L3 protein instability, partially dependent on proteasomal degradation. Consistent with its specific localization pattern, GAS2L3 depletion by RNAi demonstrated its responsibility for proper mitosis and cytokinesis. GAS2L3 depletion in HeLa cells resulted in the accumulation of multinucleated cells, an indicator for chromosome mis-segregation during mitosis. Also the amount of cells in cytokinesis was enriched, indicating failures in completing the last step of cytokinesis, the abscission. Strikingly, treatment with microtubule poisons that lead to the activation of the spindle assembly checkpoint (SAC) indicated that the SAC was weakened in GAS2L3 depleted cells. Although the exact molecular mechanism is still unknown, fist experiments support the hypothesis that GAS2L3 might be a regulator of the SAC master kinase BUBR1. In conclusion, this study provides first evidence for GAS2L3 as a novel regulator of mitosis and cytokinesis and it might therefore be an important guardian against tumorigenesis. N2 - Der korrekte Verlauf durch die Mitose des Zellzyklus trägt entscheidend zur Aufrechterhaltung der genomischen Integrität bei. Da ein Verlust der genomischen Integrität die Tumorentstehung begünstigt, ist die Identifizierung neuer G2/M regulatorischer Gene ein Forschungsbereich, der großes Interesse weckt. Der humane Multiproteinkomplex LINC ist für die transkriptionelle Aktivierung einer Vielzahl G2/M spezifischer Gene verantwortlich. Durch die Depletion von LIN9 in MEFs, einer Kernkomponente von LINC, wurde Gas2l3 als ein neues Zielgen von LINC identifiziert. Das bisher uncharakterisierte Gas2l3 Gen codiert für ein der GAS2 (growth arrest specific 2) Familie zugehöriges Protein, deren Mitglieder sich durch eine hoch konservierte putative Aktin-bindende Domäne (CH) und eine putative Mikrotubuli-bindende Domäne (GAS2) auszeichnen. In der vorliegenden Arbeit konnte gezeigt werden, dass GAS2L3 auch in humanen Zellen ein Zielgen von LINC ist. Die Transkription von GAS2L3 wies, im Gegensatz zu allen anderen GAS2 Familienmitgliedern, eine starke Regulation während des Zellzyklus auf, wobei die höchste Genexpression in der G2/M Phase vorlag. Das GAS2L3 Protein zeigte eine spezifische Lokalisation während der M Phase: In der Metaphase findet sich GAS2L3 an der mitotischen Spindel, wandert von dort an die Mikrotubuli der zentralen Spindel der Anaphase und konzentriert sich in der Telophase am Midbody, wo es bis zum Ende der Zytokinese verweilt. Der Einsatz unterschiedlicher Deletionsmutanten demonstrierte, dass die Lokalisation an die mitotischen Mikrotubuli vom C-Terminus abhängig ist, wohingegen die Lokalisation am Midbody von der gesamten Proteinsequenz abhängt. Die Ausbildung von Aktin-Streß-Filamenten nach alleiniger Überexpression der CH Domäne deutete darauf hin, dass die CH Domäne eine Aktin-bindende Domäne ist. Die GAS2 Domäne hingegen wurde weder für die Interaktion mit Mikrotubuli gebraucht, noch war sie alleine für diese ausreichend. Alle Daten weisen darauf hin, dass GAS2L3 eine bisher unbekannte Mikrotubuli-bindende Domäne im C-Terminus trägt. Interessanterweise ist der C-Terminus auch für die hohe Instabilität des GAS2L3 Proteins, die teilweise durch den Abbau im Proteasom verursacht wird, verantwortlich. Entsprechend der spezifischen Lokalisation zeigte die Depletion von GAS2L3 durch siRNA Transfektion dessen Wichtigkeit für den korrekten Verlauf der M Phase. GAS2L3 depletierte HeLa Zellen zeigten eine Anreicherung von multinukleären Zellen, welche ein Indikator für die fehlerhafte Verteilung der Chromosomen in der Mitose sind. Ein Hinweis auf Probleme im Beenden der Zytokinese stellte die erhöhte Anzahl von Zellen dar, die sich in der Zytokinese befanden. Eines der auffallendsten Merkmale war ein geschwächter mitotischer Spindelkontrollpunkt, den GAS2L3 depletierte Zellen nach der Behandlung mit den Kontrollpunkt aktivierenden Mikrotubuli-Giften aufwiesen. Auch wenn der exakte molekulare Mechanismus hierbei noch unbekannt ist, deuten erste Experimente darauf hin, dass GAS2L3 die Aktivität von BUBR1, einer essentiellen Kinase des mitotischen Spindelkontrollpunkts, beeinflusst. Alle Daten dieser Arbeit verdeutlichen die Wichtigkeit von GAS2L3 als einen neuen Regulator der Mitose und Zytokinese. Somit ist anzunehmen, dass die korrekte Funktion von GAS2L3 entscheidend zum Schutz vor Tumorentstehung beiträgt. KW - Mensch KW - Zelle KW - Mitose KW - Kernspindel KW - Kontrolle KW - Genregulation KW - Spindelkontrollpunkt KW - Zytokinese KW - Midbody KW - GAS2L3 KW - LIN9 KW - Zellzyklus KW - LIN9 KW - GAS2L3 KW - mitosis KW - cytokinesis KW - spindle assembly checkpoint Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52704 ER - TY - THES A1 - May, Frauke T1 - The role of the (hem)ITAM-coupled receptors C-type lectin-like receptor 2 (CLEC-2) and Glycoprotein (GP) VI for platelet function: in vitro and in vivo studies in mice T1 - Die Rolle der (hem)ITAM-gekoppelten Rezeptoren C-type lectin-like receptor 2 (CLEC-2) und Glykoprotein (GP) VI in der Thrombozytenfunktion: in vitro- und in vivo-Studien in Mäusen N2 - Die Thrombozytenaktivierung und –adhäsion sowie die nachfolgende Thrombusbildung ist ein essentieller Prozess in der primären Hämostase, der aber auch irreversible Gefäßverschlüsse und damit Herzinfarkt oder Schlaganfall verursachen kann. Erst kürzlich wurde beschrieben, dass der C-type lectin-like receptor 2 (CLEC-2) auf der Thrombozytenoberfläche exprimiert wird, jedoch wurde für diesen Rezeptor noch keine Funktion in den Prozessen der Hämostase und Thrombose gezeigt. In der vorliegenden Arbeit wurde die Rolle von CLEC-2 in der Thrombozytenfunktion und Thrombusbildung im Mausmodel untersucht. In dem ersten Teil dieser Arbeit konnte gezeigt werden, dass die Behandlung von Mäusen mit dem neu generierten monoklonalen Antikörper INU1, der gegen murines CLEC-2 gerichtet ist, zu dem vollständigen und hochspezifischen Verlust des Rezeptors in zirkulierenden Thrombozyten führte, ein Prozess, der als „Immundepletion“ bezeichnet wird. Die CLEC-2-defizienten Thrombozyten waren nicht mehr durch den CLEC-2-spezifischen Agonisten Rhodozytin aktivierbar, während die Aktivierung durch alle anderen getesteten Agonisten nicht beeinträchtigt war. Dieser selektive Defekt führte unter Flussbedingungen ex vivo zu stark verminderter Aggregatbildung der Thrombozyten. Außerdem zeigten in vivo-Thrombosestudien, dass die gebildeten Thromben instabil waren und vermehrt embolisierten. Infolgedessen war die CLEC-2 Defizienz mit einem deutlichen Schutz vor arterieller Thrombose verbunden. Außerdem ließ die in INU1-behandelten Mäusen beobachtete variable Verlängerung der Blutungszeit auf einen moderaten hämostatischen Defekt schließen. Diese Ergebnisse zeigen zum ersten Mal, dass CLEC-2 in vitro und in vivo signifikant zur Thrombusstabilität beiträgt und eine essentielle Rolle in der Hämostase und arteriellen Thrombose spielt. Daher stellt CLEC-2 eine potentiell neue antithrombotische Zielstruktur dar, die in vivo inaktiviert werden kann. Diese in vivo-Herabregulierung von Thrombozytenoberflächenrezeptoren könnte einen vielversprechenden Ansatz für zukünftige antithrombotische Therapien darstellen. Der zweite Teil dieser Arbeit behandelte den Effekt einer Doppelimmundepletion der immunoreceptor tyrosine-based activation motiv (ITAM)- und hemITAM-gekoppelten Rezeptoren Glykoprotein (GP) VI und CLEC-2 auf Hämostase und Thrombose mittels einer Kombination der GPVI- beziehungsweise CLEC-2-spezifischen Antikörper JAQ1 und INU1. Eine Einzeldepletion von GPVI oder CLEC-2 in vivo beeinträchtigte nicht die Expression und Funktion des jeweils anderen Rezeptors. Eine gleichzeitige Behandlung mit beiden Antikörpern führte jedoch zu dem nachhaltigen Verlust der GPVI- und CLEC-2-vermittelten Signale in Thrombozyten, während andere Signalwege nicht betroffen waren. Im Gegensatz zu den Einzeldefizienzen, wiesen die GPVI/CLEC-2 doppeldefizienten Mäuse einen schwerwiegenden Blutungsphänotyp auf. Außerdem führte die Behandlung zu einer starken Beeinträchtigung der arteriellen Thrombusbildung, die die Effekte der Einzeldefizienzen weit übertraf. Von Bedeutung ist auch, dass gleiche Ergebnisse in Gp6-/- Mäusen gefunden wurden, die mittels INU1-Behandlung CLEC-2-depletiert wurden. Dies veranschaulicht, dass der Blutungsphänotyp nicht durch Sekundäreffekte der kombinierten Antikörperbehandlung hervorgerufen wurde. Diese Daten deuten darauf hin, dass GPVI und CLEC-2 sowohl unabhängig voneinander als auch gleichzeitig in vivo von der Thrombozytenoberfläche herabreguliert werden können und lassen unerwartete redundante Funktionen der beiden Rezeptoren in Hämostase und Thrombose erkennen. Da beide Rezeptoren, GPVI und CLEC-2, als neue antithrombotische Zielstrukturen diskutiert werden, könnten diese Ergebnisse wichtige Auswirkungen auf die Entwicklung von anti-GPVI oder anti-CLEC-2-basierenden Antithrombotika haben. N2 - Platelet activation and adhesion results in thrombus formation that is essential for normal hemostasis, but can also cause irreversible vessel occlusion leading to myocardial infarction or stroke. The C-type lectin-like receptor 2 (CLEC-2) was recently identified to be expressed on the platelet surface, however, a role for this receptor in hemostasis and thrombosis had not been demonstrated. In the current study, the involvement of CLEC-2 in platelet function and thrombus formation was investigated using mice as a model system. In the first part of the thesis, it was found that treatment of mice with a newly generated monoclonal antibody against murine CLEC-2 (INU1) led to the complete and highly specific loss of the receptor in circulating platelets (a process termed “immunodepletion”). CLEC-2-deficient platelets were completely unresponsive to the CLEC-2-specific agonist rhodocytin, whereas activation induced by all other tested agonists was unaltered. This selective defect translated into severely decreased platelet aggregate formation under flow ex vivo; and in vivo thrombosis models revealed impaired stabilization of formed thrombi with enhanced embolization. Consequently, CLEC-2 deficiency profoundly protected mice from occlusive arterial thrombus formation. Furthermore, variable bleeding times in INU1-treated mice indicated a moderate hemostatic defect. This reveals for the first time that CLEC-2 significantly contributes to thrombus stability in vitro and in vivo and plays a crucial role in hemostasis and arterial thrombosis. Thus, CLEC-2 represents a potential novel anti-thrombotic target that can be functionally inactivated in vivo. This in vivo down-regulation of platelet surface receptors might be a promising approach for future anti-thrombotic therapy. The second part of the work investigated the effect of double-immunodepletion of the immunoreceptor tyrosine-based activation motif (ITAM)- and hemITAM-coupled receptors, platelet glycoprotein (GP) VI and CLEC-2, on hemostasis and thrombosis using a combination of the GPVI- and CLEC-2-specific antibodies, JAQ1 and INU1, respectively. Isolated targeting of either GPVI or CLEC-2 in vivo did not affect expression or function of the respective other receptor. However, simultaneous treatment with both antibodies resulted in the sustained loss of GPVI and CLEC-2 signaling in platelets, while leaving other activation pathways intact. In contrast to single deficiency of either receptor, GPVI/CLEC-2 double-deficient mice displayed a dramatic hemostatic defect. Furthermore, this treatment resulted in profound impairment of arterial thrombus formation that far exceeded the effects seen in single-depleted animals. Importantly, similar results were obtained in Gp6-/- mice that were depleted of CLEC-2 by INU1-treatment, demonstrating that this severe bleeding phenotype was not caused by secondary effects of combined antibody treatment. These data suggest that GPVI and CLEC-2 can be independently or simultaneously down-regulated in platelets in vivo and reveal an unexpected functional redundancy of the two receptors in hemostasis and thrombosis. Since GPVI and CLEC-2 have intensively been discussed as potential anti-thrombotic targets, these results may have important implications for the development of novel, yet save anti-GPVI or anti-CLEC-2-based therapies. KW - Thrombozyt KW - Rezeptor KW - Thrombose KW - Biologie KW - Zelle KW - Biology KW - Cell Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65383 ER - TY - THES A1 - Ahles, Andrea T1 - Analyse der Aktivierung β-adrenerger Rezeptoren T1 - Analysis of β-adrenergic receptor activation N2 - Die Funktionalität β1- und β2-adrenerger Rezeptoren wird durch Polymorphismen in ihrer kodierenden Region moduliert. Wir haben uns die Technik des Fluoreszenz-Resonanz- Energie-Transfers (FRET) zu Nutze gemacht, um den Einfluss der am häufigsten vorkommenden Polymorphismen (Ser49Gly und Gly389Arg im β1AR, Arg16Gly und Gln27Glu im β2AR) auf die Rezeptorkonformation nach Aktivierung zu untersuchen. Dafür wurden FRET-Sensoren für die beiden βAR-Subtypen mit einem gelb-fluoreszierenden Protein (YFP) sowie einem cyan-fluoreszierenden Protein (CFP oder Cerulean) in der dritten intrazellulären Schleife bzw. am C-Terminus verwendet. Nach Stimulierung der βARSensoren konnte die Aktivierung der polymorphen Rezeptorvarianten in lebenden Zellen in Echtzeit untersucht werden. Dabei behielten die FRET-Sensoren sowohl die Bindungsaffinitäten der nativen Rezeptoren als auch eine intakte Funktionalität hinsichtlich der Bildung von sekundären Botenstoffen. Der Vergleich der Aktivierungskinetiken der verschieden polymorphen Varianten des β1AR und β2AR ergab keine signifikanten Unterschiede nach einer einmaligen Stimulation. Es zeigte sich jedoch, dass Rezeptorpolymorphismen die Aktivierungskinetik vorstimulierter βAR erheblich beeinflussen. So konnten wir im Vergleich zur ersten Aktivierung eine schnellere Aktivierung der Gly16-Varianten des β2AR sowie des Gly49Arg389-β1AR feststellen, während die Arg16-β2AR-Variante und der Ser49Gly389-β1AR dagegen bei einer wiederholten Stimulation langsamer aktiviert wurden. Diese Ergebnisse lassen auf ein "Rezeptorgedächtnis" schließen, das spezifisch für bestimmte polymorphe Rezeptorvarianten ist und eine βAR-Subtyp-spezische Ausprägung zeigt. Die Ausbildung der unterschiedlichen Aktivierungskinetiken hing von der Interaktion des Rezeptors mit löslichen intrazellulären Faktoren ab und bedurfte einer Phosphorylierung intrazellulärer Serin- und Threonin-Reste durch G-Protein-gekoppelte Rezeptorkinasen. Die Interaktion mit löslichen intrazellulären Faktoren scheint für den β1AR weniger stark ausgeprägt zu sein als für den β2AR. Die cAMP-Produktion war für die schneller werdenden, “hyperfunktionellen” Gly16-β2ARVarianten signifikant um mehr als 50% höher im Vergleich zur “hypofunktionellen” Arg16- Variante. Die unterschiedliche Funktionalität spiegelte sich im Therapieausgang bei Tokoysepatientinnen wider, dessen Erfolg mit dem Arg16Gly Polymorphismus verknüpft war. Die Daten implizieren eine intrinsische, polymorphismusabhängige Eigenschaft der βAR, die die Aktivierungskinetik der Rezeptoren bei wiederholten Stimulationen determiniert. Diese könnte auch für die zwischen Individuen variierende Ansprechbarkeit auf β-Agonisten und β-Blocker mitverantwortlich sein. N2 - Signaling through G protein-coupled receptors is known to be influenced by receptor polymorphisms, yet the molecular basis for the functional differences is unclear. To investigate the impact of the most frequent polymorphic sites of the β1- and the β2– adrenergic receptor (Ser49Gly and Gly389Arg for β1AR, Arg16Gly and Gln27Glu for β2AR) on receptor conformation we used a fluorescence resonance energy transfer (FRET) based approach. We made use of βAR-FRET sensors with a yellow fluorescent protein (YFP) inserted into the third intracellular loop and a cyan fluorescent protein (CFP or Cerulean) fused to the C-terminal tail of the βAR. These sensors retained key pharmacological and functional characteristics of the native receptors. Upon stimulation of the sensors we determined the activation characteristics of the polymorphic receptors in real time and in living cells and found that βAR respond to repeated activation with a change of their activation kinetics during subsequent stimulations. This phenomenon differed between polymorphic variants of the βAR. The “hyperfunctional” Gly16-β2AR variants as well as the Gly49Arg389-β1AR became faster in their activation kinetics, while the “hypofunctional” Arg16-β2AR and the Ser49Gly389-β1AR became slower compared to their initial activation. These differences depended on the interaction with soluble cytosolic factors that occurred after the initial activation, and on the phosphorylation of agonist-bound receptors through G protein-coupled receptor kinases. The “memory“ of previous activation is formed already after a first stimulation of only five seconds, whereas the β1AR memory necessitates prestimulation for five minutes and seems to be based on a less stable interaction with intracellular proteins compared to the β2AR. Assuming short-lived and repetitive receptor-ligand interaction under native conditions, we hypothesized that faster activation during single ligand-receptor interaction represents the basis for more effective signaling to downstream effectors. Indeed, the extent of cAMP formation was enhanced by 50% upon stimulation of the Gly16-β2AR compared to the Arg16 variant. The different functionality reflected the outcome of tocolysis treatment with the β2-agonist fenoterol whose success correlated with the Arg16Gly genotype of the patients. Our findings suggest an intrinsic, polymorphism-specific property of the βAR that alters activation kinetics upon continued stimulation and that might account for individual drug responses. KW - Beta-1-Rezeptor KW - Beta-2-Rezeptor KW - cell KW - biology KW - Polymorphismus KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Aktivierung KW - Zelle KW - Biologie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85577 ER - TY - THES A1 - Busch, Martin T1 - Aortic Dendritic Cell Subsets in Healthy and Atherosclerotic Mice and The Role of the miR-17~92 Cluster in Dendritic Cells T1 - Subsets dendritischer Zellen in der Aorta gesunder und atherosklerotischerMäuse und die Rolle des miR-17~92 Clusters in dendritischen Zellen N2 - Atherosclerosis is accepted to be a chronic inflammatory disease of the arterial vessel wall. Several cellular subsets of the immune system are involved in its initiation and progression, such as monocytes, macrophages, T and B cells. Recent research has demonstrated that dendritic cells (DCs) contribute to atherosclerosis, too. DCs are defined by their ability to sense and phagocyte antigens, to migrate and to prime other immune cells, such as T cells. Although all DCs share these functional characteristics, they are heterogeneous with respect to phenotype and origin. Several markers have been used to describe DCs in different lymphoid and non-lymphoid organs; however, none of them has proven to be unambiguous. The expression of surface molecules is highly variable depending on the state of activation and the surrounding tissue. Furthermore, DCs in the aorta or the atherosclerotic plaque can be derived from designated precursor cells or from monocytes. In addition, DCs share both their marker expression and their functional characteristics with other myeloid cells like monocytes and macrophages. The repertoire of aortic DCs in healthy and atherosclerotic mice has just recently started to be explored, but yet there is no systemic study available, which describes the aortic DC compartment. Because it is conceivable that distinct aortic DC subsets exert dedicated functions, a detailed description of vascular DCs is required. The first part of this thesis characterizes DC subsets in healthy and atherosclerotic mice. It describes a previously unrecognized DC subset and also sheds light on the origin of vascular DCs. In recent years, microRNAs (miRNAs) have been demonstrated to regulate several cellular functions, such as apoptosis, differentiation, development or proliferation. Although several cell types have been characterized extensively with regard to the miRNAs involved in their regulation, only few studies are available that focus on the role of miRNAs in DCs. Because an improved understanding of the regulation of DC functions would allow for new therapeutic options, research on miRNAs in DCs is required. The second part of this thesis focuses on the role of the miRNA cluster miR- 17~92 in DCs by exploring its functions in healthy and atherosclerotic mice. This thesis clearly demonstrates for the first time an anti-inflammatory and atheroprotective role for the miR17-92 cluster. A model for its mechanism is suggested. N2 - Atherosklerose ist eine chronisch-entzündliche Erkrankung der arteriellen Gefäßwand und zahlreiche Zellen des Immunsystems, wie zum Beispiel Monozyten, Makrophagen, T und B Zellen sind an der Entstehung und Entwicklung beteiligt. Aktuelle Forschungsergebnisse haben gezeigt, dass auch dendritische Zellen (DCs) zur Atherosklerose beitragen. DCs sind durch ihre Fähigkeit gekennzeichnet, Antigene zu erkennen, aufzunehmen, zu migrieren und andere Immunzellen, wie zum Beispiel T Zellen, zu aktivieren. Auch wenn alle DCs diese funktionellen Merkmale teilen, so sind sie in Bezug auf ihren Phänotyp oder Ursprung eine eher heterogene Gruppe. Zahlreiche Oberflächenmoleküle wurden in der Vergangenheit genutzt, um DCs in lymphatischen und nicht-lymphatischen Geweben zu beschreiben. Allerdings hat sich keines dieser Moleküle als spezifisch und unverwechselbar erwiesen. Die Expression von Oberflächenmolekülen ist sehr variabel und hängt nicht nur vom Aktivierungszustand der DCs, sondern auch vom umliegenden Gewebe ab. Dazu kommt, dass DCs in der Aorta, beziehungsweise im atherosklerotischen Plaque, von designierten Vorläuferzellen, aber auch von Monozyten abstammen können und DCs das Profil ihrer Oberflächenmoleküle, sowie ihre funktionellen Eigenschaften, mit anderen myeloiden Zellen wie Monozyten und Makrophagen teilen. Neuere Arbeiten haben damit begonnen das Repertoire an DCs in der Aorta von gesunden und atherosklerotischen Mäusen zu untersuchen. Da es naheliegt, dass verschiedene DC Untergruppen ganz bestimmte Funktionen ausüben, wird eine detaillierte Beschreibung vaskulärer DCs in der Forschung benötigt. Weil es hierzu allerdings bislang kaum Studien gibt, untersucht der erste Teil dieser Arbeit zum ersten Mal systematisch die in gesunden und atherosklerotischen Mäusen vorkommenden Gruppen an DCs. Sie beschreibt außerdem eine zuvor nicht beachtete DC-Untergruppe und gibt Aufschluss über den Ursprung vaskulärer DCs. In den letzten Jahren wurde gezeigt, dass microRNAs (mirRNAs) zahlreiche zelluläre Vorgänge wie Apoptose, Differenzierung, Entwicklung und Proliferation regulieren. Obwohl viele Zelltypen in Bezug auf die in ihrer Regulation eingebundenen mirRNAs charakterisiert wurden, gibt es nur wenige Studien, die sich mit der Rolle von mirRNAs in DCs beschäftigen. Der zweite Teil dieser Arbeit konzentriert sich auf die Rolle der miRNA Gruppe miR-17~92 in DCs und untersucht deren Rolle in gesunden und atherosklerotischen Mäusen. Diese Arbeit zeigt erstmals eine deutliche anti-inflammatorische und protektive Rolle dieser miRNA und schlägt ein Modell für die entdeckten Mechanismen vor. KW - Aorta KW - Maus KW - Zelle KW - Cluster KW - miRNS KW - Dendritische Zelle KW - Arteriosklerose KW - miR-17~92 KW - dendritic cells KW - atherosclerosis KW - mice KW - murine Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71683 ER - TY - THES A1 - Andronic, Joseph T1 - Volumenregulatorische Transportwege von anorganischen und organischen Osmolyten in Säugetierzellen T1 - Volume ragulatory pathways of anorganic and organic osmolytes in mammalian cells N2 - Die Aufrechterhaltung des Zellvolumens unter variablen osmotischen Bedingungen stellt für nahezu alle tierischen Zellen eine essenzielle Aufgabe dar. Um regulatorische Volumenanpassungen vorzunehmen besitzen sie daher effektive Mechanismen, mit deren Hilfe der zelluläre Gehalt an organischen und anorganischen Osmolyten erhöht (= regulatorische Volumenzunahme; RVI) oder gesenkt (= regulatorische Volumenabnahme; RVD) werden kann. Trotz langjähriger Forschung auf diesem Gebiet konnten die hieran beteiligten Transportwege für Osmolyte bisher nur unvollständig aufgeklärt werden. Insbesondere bei T-Lymphozyten sind wichtige Zellfunktionen wie die Proliferation, Migration und die T-Zell-Aktivierung eng mit volumenregulatorischen Mechanismen verbunden. Bei all diesen Prozessen sind u. a. unterschiedliche Kaliumkanäle beteiligt, die insbesondere für die pharmakologische Manipulation von Immunsystemprozessen von wissenschaftlichem Interesse sind. Bisherige Modelle der hypotonen Volumenregulation von T-Lymphozyten berücksichtigen lediglich den spannungsabhängigen KV1.3 sowie den Ca2+-aktivierten IKCa1-Kanal, die zur Klasse der 6TM/P-K+-Kanäle gehören. Im ersten Teil der vorliegenden Arbeit wurde eine potentielle Rolle von kürzlich entdeckten Zwei-Poren Domänen Kaliumkanälen (K2P) am RVD von murinen und humanen primären CD4+-T-Lymphozyten untersucht. In einem kombinierten genetischen und pharmakologischen Ansatz mittels knockout-Tiermodellen und dem Einsatz kanalspezifischer Inhibitoren konnte mithilfe zellvolumetrischer Analysen gezeigt werden, dass die K2P-Vertreter TASK1, TASK2, TASK3 und TRESK maßgeblich am schwellungsaktivierten Efflux von K+ beteiligt sind. Beurteilt an den Ergebnissen dieser Untersuchung sind der spannungsabhängige TASK2- und der Ca2+-aktivierte TRESK-Kanal für die hypotone Volumenregulation in T-Zellen deutlich bedeutender als TASK1 und TASK3. Der Beitrag der Kanäle TASK2 und TRESK am RVD-Prozess war über dies vergleichbar mit dessen des bisher bekannten KV1.3-Kanals. In dieser Arbeit wurde damit erstmals eine Beteiligung der K2P-Kanäle am RVD muriner und humaner CD4+-Lymphozyten identifiziert. Aufgrund der engen Verbindung zwischen T-Zell-Funktion und der Volumenregulation können Zwei-Poren Domänen K+-Kanäle damit in den engeren Kreis potentieller immunmodulierende Angriffspunkte aufgefasst werden. Im zweiten und umfangreicheren Teil dieser Arbeit wurden darüber hinaus die schwellungsaktivierten Transportwege für organische Osmolyte (small organic osmolytes; SOOs) untersucht. SOOs stellen chemisch inerte Verbindungen dar, zu denen vor allem Polyole (Sorbitol, myo-Inositol), Methylamine (Betain, α-Glycerophosphocholin) sowie Aminosäuren (α- bzw. β-Alanin und Prolin) und deren Derivate (Taurin) zählen. Da SOOs weder die zelluläre Struktur noch die Funktion von Makromolekülen beeinträchtigen, sind sie wichtige Instrumente der Volumenregulation, die sich in hohen Konzentrationen im Zytosol nahezu aller Zellen wiederfinden. Werden tierische Zellen mit hypotonen Bedingungen konfrontiert, dann ist bei nahezu allen Zellen die Freisetzung organischer Osmolyte zu beobachten, wodurch die zelluläre Osmolarität unabhängig von Elektrolyten angepasst werden kann. Trotz der wichtigen Funktion der SOOs in der Osmoregulation tierischer Zellen konnte die molekulare Identität beteiligter Effluxwege (Kanäle bzw. Transporter) bisher nicht aufgeklärt werden. Ungeachtet der molekularen Identität der SOO-Effluxwege war es aus zahlreichen biotechnologischen Anwendungen zu Beginn dieser Arbeit bekannt, dass die schwellungsaktivierten Transportwege für organische Osmolyte eine größenselektive Permeabilität für eine Reihe monomerer Zucker und verwandter Verbindungen aufweisen. Um diese Größenselektivität näher zu charakterisieren, wurde im ersten Schritt die schwellungsaktivierte Membranpermeabilität für eine Reihe strukturell homogener Polyethylenglykole unterschiedlicher Polymerlänge (PEG200–1500; hydrodynamische Radien zwischen ~0,5-1,5 nm) unter iso- und hypotonen Bedingungen in Jurkat-Lymphozyten untersucht. Unter milden hypotonen Bedingungen (200 mOsm) war die Plasmamembran der untersuchten Lymphozyten für PEG300-1500 undurchlässig, was aus der Fähigkeit der Zellen zur hypotonen Volumenregulation geschlossen werden konnte. Darüber hinaus wurde RVD in stark hypotonen Lösungen (100 mOsm) mit PEG600-1500 beobachtet, während PEG300-400 unter vergleichbaren osmotischen Bedingungen die Volumenregulation der Zellen inhibierten. Dieses Ergebnis deutet darauf hin, dass starkes hypotones Zellschwellen der Lymphozyten zur Permeabilisierung der Plasmamembran für PEG300-400, nicht jedoch für PEG600-1500, führt. Anhand der hydrodynamischen Radien Rh der verwendeten PEGs konnte ein cutoff-Radius von ~0,74 nm für schwellungsaktivierte Transportwege organischer Osmolyte bestimmt werden. Da diese schwellungsaktivierten Transportwege vielfältig für Zellbeladungstechniken verwendet werden, könnte dieses Ergebnis für zahlreiche biotechnologische und biomedizinische Anwendungen von Interesse sein. Im zweiten Schritt wurde der Versuch unternommen, potentielle Transportwege für organische Osmolyte im RVD-Prozess molekular zu identifizieren. Da es grundlegend ungeklärt war, wie viele unterschiedliche Transporter bzw. Kanäle am Efflux der zahlreichen organischen Osmolyte beteiligt sind, erfolgte zunächst die vergleichende Analyse des schwellungsaktivierten Membrantransports strukturell verschiedener SOOs einschließlich der Aminosulfonsäure Taurin und des Polyols myo-Inositol. Hierbei wurde erstmals gezeigt, dass die schwellungsaktivierten Transportwege für Taurin und myo-Inositol deutlich unterschiedliche Aktivitätsprofile aufweisen. Während der Taurintransport bereits unter milden hypotonen Bedingungen, d.h. nach einer geringen Absenkung der Osmolalität von 300 auf ~230 mOsm, aktiviert wurde, erfolgte die Aktivierung der Membranpermeabilität für myo-Inositol bei einer viel niedrigeren Osmolalität von ~150 mOsm. Darüber hinaus wiesen die beiden Transportwege unter vergleichbarem hypotonen Stress von 100 mOsm deutlich unterschiedliche Aktivitätsdauern auf (Transport von Taurin ~95 min und myo-Inositol ~40 min). Somit deuteten diese Ergebnisse erstmals auf substrat-spezifische Transportwege für SOOs hin, die voneinander stark abweichende osmotische Aktivierungsprofile besitzen. Als aussichtsreiche Kandidaten für diese Transportwege wurden zwei Mitglieder der Gruppe der Solute Carrier (SLC) untersucht, die klare Übereinstimmungen mit den gesuchten Transportern für SOOs aufweisen. Daher wurde im Weiteren eine RVD-Beteiligung dieser Transportergruppe mit einer Kombination aus molekularbiologischer und konventioneller bzw. hochaufgelöster mikroskopischen Techniken überprüft. Die semiqantitativen RT-PCR-Ergebnisse dieser Arbeit zeigen dabei, dass die Gentranskription der potentiellen SOO-Transporter SLC5A3 und SLC6A6 in den untersuchten Zelllinien Jurkat, HEK wie auch HepG2-Zellen durch hypotone Bedingungen deutlich verstärkt wird. Hierbei nimmt der zelluläre mRNA-Gehalt der Gene SLC5A3 zwischen 20-60% und SLC6A6 um 30-100% innerhalb von 10-20 min zu, was auf eine potentielle RVD-Beteiligung von SLC-Transportern hindeutet. Ausgehend von diesem Ergebnis wurde daraufhin die zelluläre Lokalisation des SLC5A3-Transporters unter isotonen und hypotonen Bedingungen mikroskopisch untersucht. Wie anhand der konfokalen lasermikroskopischen Untersuchung zu erkennen ist, findet unter hypotoner Stimulation eine zelluläre Umverteilung des mit EGFP fluoreszenzmarkierten Proteins SLC5A3 statt. Innerhalb von 10 min wird der Transporter dabei von intrazellulären Regionen in Richtung Plasmamembran verlagert. Darüber hinaus konnte mit Hilfe der hochauflösenden Mikroskopie-Technik dSTORM gezeigt werden, dass der Transporter SLC5A3 unter hypotoner Stimulation verstärkt mit der Plasmamembran assoziiert vorliegt. Diese verstärkte Membranassoziation des SLC5A3-Proteins deutet damit auf einen schwellungsinduzierten exozytotischen Einbau des Transporters hin. Die Ergebnisse dieser Arbeit zeigen damit erstmals, dass SLC-Transporter wie SLC5A3, SLC6A6 und vermutlich andere Vertreter der SLC-Superfamilie potentiell am Mechanismus der hypotonen Volumenregulation beteiligt sind. Da SLC-Transporter als wichtige Transportsysteme für Therapeutika angesehen werden und die Mechanismen der Volumenregulation bereits in zahlreichen biotechnologischen Anwendungen implementiert sind, könnte der hier aufgedeckte Zusammenhang einen Erkenntnisgewinn für zahlreiche biomedizinische Forschungsgebiete darstellen. N2 - Cell volume homeostasis is critically important for the functional and structural integrity of mammalian cells. To counteract osmotically induced volume perturbations, cells possess efficient mechanisms that control the intracellular osmolyte composition. The volume regulatory mechanisms operating under hyper- and hypotonic conditions are known, respectively, as regulatory volume increase (RVI) and decrease (RVD). During both, RVI and RVD, cells adjust the cellular content of inorganic ions (most notably Na+, K+ and Cl-) and organic solutes in order to gain or lose osmotically obligated water. These mechanisms counteract osmotic cell damage and enable the adaptation of cells to a wide range of extracellular osmolarities. Despite decades of research in this field, many aspects of the mechanisms underlying RVD and RVI remain poorly understood. In case of T lymphocytes, various cellular functions, including proliferation, migration and T cell activation are closely associated with the cell volume regulatory machinery. Among other mechanisms, all these processes are tightly linked by a network of potassium channels. The identification of this network is of great biomedical interest as it provides a key to pharmacological manipulation of the immune system. Current models of hypotonic volume regulation (RVD) in T-lymphocytes consider primarily the voltage-gated KV1.3 and the calcium-activated IKCa1 channel. The first part of this thesis explores the potential role of two-pore domain (K2P) potassium channels in RVD in murine and human primary CD4+-T lymphocytes. Using a combined genetic and pharmacological approach, time-resolved cell volume analysis revealed an important role of the K2P channels TASK1, TASK2, TASK3 and TRESK in swelling activated K+ efflux from hypotonically swollen T cells. Based on the analysis carried out here, the voltage-gated TASK2 as well as the calcium-activated TRESK channel were found as the most important K2P channels involved in the RVD of both naïve and stimulated T cells. The importance of TASK2 and TRESK in the RVD process was comparable to that of KV1.3. In summary, the data provide first evidence that hypotonic volume regulation of murine and human CD4+-T lymphocytes relies on K2P channels. With respect to the close relationship of T-cell function and volume regulatory mechanisms K2P channels may thus be considered as potential targets for immunomodulation. In the second and major part of this thesis, the swelling-activated transport pathways for small organic osmolytes (SOOs) were investigated. Nearly all eukaryotic cells possess a considerable reservoir of SOOs, such as polyols (e.g. sorbitol, myo-inositol), methylamines (e.g. betaine, α-glycerophosphoryl choline) and small amino acids (e.g. α-/β- alanine, proline and the derivate taurine), which are synthesized within the cells or accumulated from the extracellular medium. Since SOOs do not interfere with the integrity of macromolecules and the membrane potential, cells tolerate great cytosolic fluctuations of these solutes without negative effects on cellular structure or function. Due to these properties, small organic osmolytes are important tools for cell volume regulatory mechanisms, by which the intracellular osmolarity can be adjusted independently of electrolytes. Although the importance of SOOs for hypotonic volume regulation has been known for long time, the molecular identity of participating membrane efflux pathways is far from being clear. Regardless of the involved transporters, swelling-activated pathways have been reported to exhibit a size selective permeability for a wide range of sugars and related compounds. To gain a deeper insight into this issue, in a first step the impact of the molecular size on the permeation of low-molecular-weight polyethylene glycols (PEG200–1500) through the plasma membrane of Jurkat cells under iso- and hypotonic conditions was analyzed. Upon moderate swelling in slightly hypotonic solutions (200 mOsm), the lymphocyte membrane was found to remain impermeable to PEG300–1500, which allowed the cells to accomplish regulatory volume decrease. RVD also occurred in strongly hypotonic solutions (100 mOsm) of PEG600–1500, whereas 100 mOsm solutions of PEG300–400 inhibited RVD. These findings suggest that extensive hypotonic swelling rendered the cell membrane highly permeable to PEG300–400, but not to PEG600–1500. Using the values of hydrodynamic radii Rh for PEGs, the observed size-selectivity of membrane permeation yielded an estimate of ∼0.74 nm for the cut-off radius of the swelling-activated pathway for organic osmolytes. This result may be of interest for many biotechnological and biomedical applications, where swelling-activated SOO-pathways are widely used for cell-loading techniques. As a second step, an attempt was made to elucidate the molecular identity of transporters for organic osmolytes potentially involved in RVD. Since it was not clear whether RVD-related efflux of SOOs is mediated by one common or several distinct transporter(s), at first, the plasma membrane permeability profiles for two structurally dissimilar SOOs, including the amino sulfonic acid taurine and the polyol myo-inositol were analyzed. The results of the time resolved volumetric measurements clearly showed that the membrane permeability to taurine was activated upon moderate cell swelling (by ~15%) in mildly hypotonic solutions (~230 mOsm). In sharp contrast, the membrane permeability to myo-inositol was activated after a much larger swelling (~50%) in strongly hypotonic media (<150 mOsm). Moreover, the swelling-activated permittivity to taurine during RVD in 100 mOsm medium persisted for about twice as long as that for myo-inositol (taurine ~95 min, myo-inositol ~40 min). These findings clearly showed that, taurine and myo-inositol utilized separate, apparently substrate-specific pathways, which were activated at different hypotonic thresholds. Since many members of SLC-family proteins (Solute Carrier) are known for their substrate selectivity and also for their contribution to osmoregulatory mechanisms a participation of SLCs was investigated in the context of RVD. To this end, a combination of molecular biological (semiquantitative RT-PCR) and fluorescence microscopy techniques (confocal and super-resolution microscopy) was used. The semiquantitative RT-PCR data showed a transcriptional upregulation for the SLC proteins SLC5A3 (myo-inositol transporter; SMIT) and SLC6A6 (taurine transporter TauT) in hypotonically stressed Jurkat lymphocytes, HEK293, and HepG2 cells. In all three human cell lines strongly hypotonic solutions (100 mOsm) increased the mRNA level of the genes SLC5A3 and SLC6A6 between 20-60% and 30-100%, respectively, suggesting a potential participation of SLC transporters in RVD. In addition, confocal microscopy images clearly showed the intracellular displacement of EGFP-tagged SLC5A3 expressed in HEK293 cells following strongly hypotonic stress (100 mOsm). Within 10 min the fluorescence of EGFP was shifted from intracellular regions towards the plasma membrane. Furthermore, super-resolution microscopy by means of dSTORM revealed a considerably increased membrane association of SLC5A3 in strongly hypotonic stressed (100 mOsm) HEK293 and Jurkat cells. This finding suggests that SLC5A3 is integrated into the plasma membrane by swelling-induced exocytosis. Taken together, the results of this investigation provided first evidence that transporters such as SLC5A3, SLC6A6 and probably other SLC-proteins participate in the mechanism of hypotonic volume regulation. Due to the relevance of SLC-proteins as potential drug delivery systems the possible role of these transporters might be of great interest for many biomedical research areas. KW - Säugetiere KW - Osmoregulation KW - Zelle KW - Regulatory Volume Decrease KW - Transporter SLC5A3 KW - Transporter SLC6A6 KW - small organic osmolytes KW - Zwei-Poren Domänen Kaliumkanäle KW - two-pore domain potassium channels KW - Zellvolumen KW - Volumenregulation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-103255 ER - TY - THES A1 - Kibe, Anuja T1 - Translational landscape and regulation of recoding in virus-infected cells T1 - Translationslandschaft und Regulierung der Rekodierung in virusinfizierten Zellen N2 - RNA viruses rely entirely on the host machinery for their protein synthesis and harbor non-canonical translation mechanisms, such as alternative initiation and programmed –1 ribosomal frameshifting (–1PRF), to suit their specific needs. On the other hand, host cells have developed a variety of defensive strategies to safeguard their translational apparatus and at times transiently shut down global translation. An infection can lead to substantial translational remodeling in cells and translational control is critical during antiviral response. Due to their sheer diversity, this control is likely unique to each RNA virus and the intricacies of post-transcriptional regulation are unclear in certain viral species. Here, we explored different aspects of translational regulation in virus-infected cells in detail. Using ribosome profiling, we extensively characterized the translational landscape in HIV-1 infected T cells, uncovering novel features of gene regulation in both host and virus. Additionally, we show that substantial pausing occurs prior to the frameshift site indicating complex regulatory mechanisms involving upstream viral RNA elements that can act as cis- regulators of frameshifting. We also characterized the mechanistic details of trans- modulation of frameshifting by host- and virus-encoded proteins. Host antiviral protein ZAP-S binds to the SARS-CoV-2 frameshift site and destabilizes the stimulatory structure, leading to frameshift inhibition. On the other hand, EMCV 2A protein stabilizes the viral frameshift site, thereby, activating EMCV frameshifting. While both proteins were shown to be antagonistic in their mechanism, they interact with the host translational machinery. Furthermore, we showed that frameshifting can be regulated not just by proteins, but also by small molecules. High-throughput screening of natural and synthetic compounds identified two potent frameshift inhibitors that also impeded viral replication, namely trichangion and compound 25. Together, this work largely enhances our understanding of gene regulation mechanisms in virus-infected cells and further validates the druggability of viral –1 PRF site. N2 - RNA-Viren sind bei der Proteinsynthese vollständig auf die Maschinerie des Wirts angewiesen und verfügen über nicht-kanonische Translationsmechanismen wie alternative Initiation und –1 programmiertes ribosomales Frameshifting (–1PRF), um ihre spezifischen Bedürfnisse zu erfüllen. Auf der anderen Seite haben die Wirtszellen eine Vielzahl von Abwehrstrategien entwickelt, um ihren Translationsapparat zu schützen und die globale Translation gegebenenfalls vorübergehend abzuschalten. Eine Infektion kann zu einer erheblichen Umgestaltung der Translation in den Zellen führen und die Kontrolle der Translation ist für die antivirale Reaktion von entscheidender Bedeutung. Aufgrund ihrer großen Vielfalt ist diese Kontrolle wahrscheinlich für jedes RNA-Virus einzigartig, und die Feinheiten der posttranskriptionellen Regulierung sind bei bestimmten Virusarten noch unklar. Hier haben wir verschiedene Aspekte der Translationsregulation in virusinfizierten Zellen im Detail untersucht. Mithilfe von Ribosomen-Profiling haben wir die Translationslandschaft in HIV-1-infizierten T-Zellen umfassend charakterisiert und dabei neue Merkmale der Genregulation sowohl im Wirt als auch im Virus aufgedeckt. Darüber hinaus konnten wir zeigen, dass Ribosomen vor der Frameshift-Stelle zu einem erheblichen Maße pausieren, was auf komplexe Regulationsmechanismen hinweist, an denen vorgelagerte virale RNA-Elemente beteiligt sind, die als cis-Regulatoren des Frameshifting wirken können. Darüber hinaus haben wir die mechanistischen Details der trans-Modulation des Frameshifting durch vom Wirt und vom Virus kodierte Proteine charakterisiert. Das antivirale Wirtsprotein ZAP-S bindet an die SARS-CoV-2 Frameshift-Stelle und destabilisiert die stimulierende Struktur, was zu einer Hemmung des Frameshifting führt. Auf der anderen Seite stabilisiert das EMCV-2A-Protein die virale Frameshift-Stelle und aktiviert dadurch das EMCV-Frameshifting. Obwohl sich beide Proteine in ihrem Mechanismus als antagonistisch erwiesen haben, interagieren sie mit der Translationsmaschinerie des Wirts. Darüber hinaus haben wir gezeigt, dass das Frameshifting nicht nur durch Proteine, sondern auch durch kleine Moleküle reguliert werden kann. Durch ein Hochdurchsatz-Screening natürlicher und synthetischer Verbindungen wurden zwei potente Frameshift-Inhibitoren identifiziert, die auch die virale Replikation behinderten, nämlich Trichangion und Compound 25. Zusammengenommen verbessert diese Arbeit unser Verständnis der Mechanismen der Genregulierung in virusinfizierten Zellen und bestätigt die Medikamentenfähigkeit der viralen -1 PRF-Seite. KW - Zelle KW - RNA virus KW - translation KW - ribosome profiling KW - programmed ribosomal frameshifting KW - RNS-Viren Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-310993 ER -