TY - THES A1 - Renner, Tobias T1 - Neue adhäsive mineral-organische Knochenzemente auf Basis von Phosphoserin und Magnesiumphosphaten bzw. -oxiden T1 - Novel adhesive mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides N2 - Heutige chirurgische Situationen können zeitweise den Einsatz eines Knochenkleber erfordern, welcher sich jedoch noch nicht in der klinischen Praxis etablieren konnte. In jüngster Vergangenheit haben mit Phosphoserin modifizierte Zemente (PMC) auf der Grundlage von Verbindungen zwischen o-Phosphoserin (OPLS) und Calciumphosphaten wie Tetracalciumphosphat (TTCP) oder α-Tricalciumphosphat (α-TCP) an Popularität gewonnen. Ebenso bekommen chelatbildende Magnesiumphosphatzemente als mineralische Knochenadhäsive mehr Zuspruch. In dieser Arbeit wurden neue mineralorganische Knochenzemente auf der Basis von Phosphoserin und Magnesiumphosphaten oder -oxiden untersucht, die hervorragende Hafteigenschaften besitzen. Diese wurden mittels Röntgenbeugung, Fourier-Infrarot-Spektroskopie und Elektronenmikroskopie analysiert und mechanischen Tests unterzogen, um die Haftfestigkeit am Knochen nach Alterung unter physiologischen Bedingungen zu bestimmen. Die neuartigen biomineralischen Klebstoffe zeigen eine ausgezeichnete Haftfestigkeit an Knochen mit etwa 6,6-7,3 MPa unter Scherbelastung. Die Adhäsive sind auch aufgrund ihres kohäsiven Versagensmusters und ihres duktilen Charakters vielversprechend. In diesem Zusammenhang sind die neuen adhäsiven Zemente den derzeit vorherrschenden Knochenadhäsiven überlegen. Ergänzend wurde versucht, dieses neue System mit unterschiedlichen Additiven zu modifizieren. Dabei wurde Mannit erfolgreich als Porogen verwendet. Dreiarmiges sternförmiges NCO-sP(EO-stat-PO) sollte die adhäsiven Eigenschaften und das Leistungspotenzial unter Wasser verbessern. Zuletzt wurden mit Glycerol präfabrizierte Pasten hergestellt, welche gelagert werden können und bei Kontakt mit Wasser aushärten. Generell ist zu betonen, dass künftige Bemühungen um Knochenklebstoffe aus Phosphoserin und Mg2+ sehr lohnenswert erscheinen. N2 - Present surgical situations require a bone adhesive which has not yet been developed for use in clinical applications. Recently, phosphoserine modified cements (PMC) based on mixtures of o-phosphoserine (OPLS) and calcium phosphates, such as tetracalcium phosphate (TTCP) or α-tricalcium phosphate (α-TCP) as well as chelate setting magnesium phosphate cements have gained increasing popularity for their use as mineral bone adhesives. Here, we investigated new mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides, which possess excellent adhesive properties. These were analyzed by X-ray diffraction, Fourier infrared spectroscopy and electron microscopy and subjected to mechanical tests to determine the bond strength to bone after ageing at physiological conditions. The novel biomineral adhesives demonstrate excellent bond strength to bone with approximately 6.6–7.3 MPa under shear load. The adhesives are also promising due to their cohesive failure pattern and ductile character. In this context, the new adhesive cements are superior to currently prevailing bone adhesives. In addition, an attempt was made to modify this new system with different additives. Mannite was successfully used as a porogen. Three-armed star-shaped NCO-sP(EO-stat-PO) should improve the adhesive properties and performance potential under water. Last glycerol-prefabricated pastes were prepared, which could be stored and cure upon contact with water. In general, it should be emphasized that future efforts on bone adhesives from phosphoserine and Mg2+ seem very worthwhile. KW - Phosphoserin KW - Klebstoff KW - Magnesiumphosphate KW - Knochenzement KW - Magnesiumoxid KW - bone adhesive KW - bone glue KW - magnesium phosphate cement KW - organophosphates KW - bone cement Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323210 ER - TY - JOUR A1 - Brückner, Theresa A1 - Meininger, Markus A1 - Groll, Jürgen A1 - Kübler, Alexander C. A1 - Gbureck, Uwe T1 - Magnesium Phosphate Cement as Mineral Bone Adhesive JF - Materials N2 - Mineral bone cements were actually not developed for their application as bone-bonding agents, but as bone void fillers. In particular, calcium phosphate cements (CPC) are considered to be unsuitable for that application, particularly under moist conditions. Here, we showed the ex vivo ability of different magnesium phosphate cements (MPC) to adhere on bovine cortical bone substrates. The cements were obtained from a mixture of farringtonite (Mg\(_3\)(PO\(_4\))\(_2\)) with different amounts of phytic acid (C\(_6\)H\(_{18}\)O\(_{24}\)P\(_6\), inositol hexaphosphate, IP6), whereas cement setting occurred by a chelation reaction between Mg\(^{2+}\) ions and IP6. We were able to show that cements with 25% IP6 and a powder-to-liquid ratio (PLR) of 2.0 g/mL resulted in shear strengths of 0.81 ± 0.12 MPa on bone even after 7 d storage in aqueous conditions. The samples showed a mixed adhesive–cohesive failure with cement residues on the bone surface as indicated by scanning electron microscopy and energy-dispersive X-ray analysis. The presented material demonstrated appropriate bonding characteristics, which could enable a broadening of the mineral bone cements’ application field to bone adhesives KW - magnesium phosphate cement KW - phytic acid KW - bone adhesive Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193052 SN - 1996-1944 VL - 12 IS - 23 ER - TY - THES A1 - Brückner [geb. Christel], Theresa T1 - Novel application forms and setting mechanisms of mineral bone cements T1 - Neuartige Anwendungsformen und Abbindemechanismen mineralischer Knochenzemente N2 - Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications. Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 % was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting. While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes. Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength. Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications. The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes. N2 - Calciumphosphatzemente (CPC) stellen ein bedeutsames Knochenersatzmaterial dar, da sie selbstabbindend, biokompatibel, osteokonduktiv und der anorganischen Komponente humanen Knochens ähnlich sind. Durch ihre Lagerstabilität, neutrale Abbindereaktion und da Wasser zum Abbinden ausreicht, werden Hydroxylapatit (HA) bildende Zemente in dual abbindenden, Ca2+ chelatisierenden und vorgefertigten Zementen, verarbeitet. Bei dual abbindenden Formulierungen findet die Lösungs-Fällungs-Reaktion zeitgleich zur Polymerisation wasserlöslicher Monomere zu einem Hydrogel statt. Chelatbildner können mit aus dem Rohpulver freigesetzten Ca2+ Komplexe bilden. Vorgefertigte Zemente enthalten eine nicht-wässrige Trägerflüssigkeit, welche die Abbindereaktion bis zur Anwendung des Zements im feuchten Milieu verzögert. In der vorliegenden Arbeit wurden zwei dieser Reaktionsmechanismen zur Entwicklung HA basierter Anwendungsformen eingesetzt. Bohrbare Zemente sind von klinischem Interesse, da die Qualität einer Schrauben- oder Plattenosteosynthese durch Augmentation mit Zement verbessert werden kann. Bei einem bohrbaren, dual abbindenden Komposit aus HA und einem Poly-2-Hydroxyethylmethacrylat Hydrogel wurde der Einfluss des Monomergehalts und des Pulver-zu-Flüssigkeits-Verhältnisses auf die Abbindekinetik und mechanischen Eigenschaften untersucht. Während die Umwandlung zu HA und das Kristallwachstum mit zunehmendem Monomergehalt reduziert wurden, war eine minimale Konzentration von 50 % nötig, um signifikante Verbesserungen des Bruchverhaltens im Sinne eines niedrigen Biegemoduls und einer hohen Bruchenergie bei gesteigerter Biegefestigkeit nachzuweisen. Wurde der Flüssigkeitsgehalt erhöht, so konnte die Paste injiziert und nach 10 min des Abbindens gebohrt werden. Während klassische Knochenwachsformulierungen Infektionen, Entzündungen, gehinderte Knochenneubildung und mangelhafte Bioabbaubarkeit vorweisen, zeigt die hier dargestellte Formulierung überlegene Eigenschaften. Sie bestand aus HA-Rohpulvern und einer nicht-wässrigen, mit Wasser mischbaren Trägermasse aus Polyethylenglycol (PEG). Es wurde gezeigt, dass das Wachs kohäsiv und knetbar ist und Blutdruckbedingungen standhält. Bei Kontakt mit einer wässrigen Phase wurde das PEG diffusiv mit Wasser ausgetauscht, so dass ein poröser, nanokristalliner HA präzipitierte. Die Einbettung eines Modell-Antibiotikums bestätigte zudem die Eignung des neuartigen Wachses als Wirkstoffdepot. Als eine mögliche Behandlung von 2-dimensionalen, gekrümmten Defekten der Schädeldecke wurden präfabrizierte Laminate aus lagerstabiler, Carbonatapatit bildender Zementpaste und Polycaprolakton-Fasermatten mit definierter Porenarchitektur vorgestellt. Diese sind bis zu ihrer Anwendung flexibel und wurden durch einen schichtweisen Aufbau aus beiden Komponenten erzeugt, so dass der Polymerscaffold den Zement am Zerfließen hindert. Es wurde gezeigt, dass die Herstellung makroporöser Fasermatten durch Elektrospinnen aus der Lösung mittels eines perforierten Kollektors geeignet war, da der hohe Faservolumengehalt und angemessene Grenzflächeneigenschaften die erfolgreiche Herstellung mechanisch verstärkter Laminate ermöglichte. Bei milder Behandlung der Scaffolds mit alkalischer Lösung wurden die Grenzflächeneigenschaften weiter verbessert, was zu einer Steigerung der Biegefestigkeit führte. Seit einigen Jahren geht der Trend der Knochenzementforschung immer stärker in Richtung von Magnesiumphosphatzementen (MPC), da diese verglichen mit CPC ein erhöhtes Degradationspotential, eine hohe initiale Festigkeit, sowie die Freisetzung biologisch wertvoller Mg2+ aufweisen. Jedoch stellen gängige Systeme hohe Anforderungen bei der Verwendung in nicht-klassischen Zementen wie z.B. der Bedarf an Fremdionen und die saure sowie schnelle Abbindereaktion. Dennoch war es möglich, einen chelatisierenden MPC zu entwickeln, welcher ein breites Spektrum an möglichen Anwendungsformen bot. In einer Machbarkeitsstudie wurde untersucht, ob das Abbindeprinzip funktioniert. Die Paste bestand aus Farringtonit und unterschiedlich konzentrierter Phytinsäure. Diese sollte mit freigesetzten Mg2+ komplexieren. Durch Anpassung der Phytinsäurekonzentration und Zugabe von Magnesiumoxid als Abbindemodulator wurden bohrbare Formulierungen erhalten. Neben der Bohrbarkeit sind auch adhäsive Eigenschaften der Zemente im feuchten Milieu von klinischem Interesse, wobei kommerziell erhältliche Systeme meist nicht bioabbaubar sind. Daher wurde die ex vivo Klebehaftung dieses MPC nach 7 d unter nassen Bedingungen auf Knochen analysiert, wobei sich eine Abscherfestigkeit von 0.8 MPa ergab. Des Weiteren zeigten diese Zemente einen Masseverlust von 2 Gew.% innerhalb von 24 d in wässriger Umgebung, sowie die Freisetzung von 0.17 mg/g an osteogenen Mg2+ pro Tag. Zusammen mit der bestätigten Zytokompatibilität bezüglich humaner fetaler Osteoblasten ist dieses System vielversprechend für die Anwendung als abbaubarer Biozement für unterschiedliche klinische Zwecke. KW - Knochenzement KW - Calciumphosphat KW - Magnesiumphosphate KW - Verbundwerkstoff KW - Chelatbildner KW - dual setting KW - dual abbindend KW - premixed KW - präfabriziert KW - bone wax KW - Knochenwachs KW - drillable KW - bohrbar KW - bone adhesive KW - Knochenkleber Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157045 ER - TY - THES A1 - Renner, Tobias T1 - In vitro Testverfahren zur Qualifizierung von Knochenklebstoffen T1 - In vitro testing methods for the qualification of bone glues N2 - Knochenklebstoffe, welche eine unkonventionelle Möglichkeit im Bereich der chirurgischen Frakturversorgung darstellen, müssen bereits in vitro eine Reihe an klinischen Anforderungen erfüllen. Hinsichtlich entsprechender Prüfverfahren wurde noch keine Normierungsarbeit geleistet, weswegen Ergebnisse verschiedener Arbeiten schwierig vergleichbar sind. Ziel der Arbeit war es daher Prüfverfahren vorzustellen, welche die Besonderheiten des „Werkstoffes Knochen“ berücksichtigen. In diesem Rahmen werden zwei neuartigen Klebstoffsysteme, ein in situ härtender Knochenzement aus Trimagnesiumphosphat, Magnesiumoxid und organischer Phytinsäure und ein lichthärtender Knochenklebstoff aus Polyethylenglycoldimethacrylat, NCO-sP(EO-stat-PO), Campherchinon und anorganischen Newberyit-Füllern, vorgestellt. Neben diesen sind drei kommerziell erhältliche Klebstoffe Gegenstand der Untersuchung. Dies sind zum einen Histoacryl® und TruGlue® Gewebekleber, zwei Klebstoffe auf Cyanoacrylat-Basis mit unterschiedlich langer Alkyl-Seitenkette, zum anderen Bioglue®, ein Gewebekleber aus Albumin und Glutaraldehyd. Bei den Klebstoffen wurde die Zug- und Scherfestigkeit unter Einfluss der physiologischen Klebstoffalterung, der Variation der Klebefugenbreite, der Variation von komplementären Fügeteilen, sowie Fügeteiloberflächen inspiziert. Makro- und mikroskopische, sowie elektronenmikroskopischen Untersuchung der Bruchflächen auf mikrostrukturelle Besonderheiten und Versagemechanismus wurden angestellt. Die neuartigen Klebstoffsysteme unterliegen zwar den konventionellen Cyanoacrylaten hinsichtlich mechanischer Parameter, weisen aber dennoch adäquate Klebefestigkeiten auf bei zugleich zahlreichen Vorteilen gegenüber konventionellen Systemen im Umgang mit Knochen. Gerade der Magnesiumphosphatzement scheint auf Grund mechanischer Parameter und Vorzügen wie der guten Biokompatibilität und biologischen Abbaubarkeit, Osteoinduktivität, Osteokonduktivität, der einfachen Applizierbarkeit, einem hohen Kosten-Nutzen-Faktor oder dem günstigen Verhalten in wässrigen Milieu vielversprechend. N2 - Bone adhesives are an alternative for surgical fracture treatment, which have to meet clinical requirements already in vitro. Concerning testing methods of bone adhesives, there is no standardization, what leads to the fact, that results of authors, who did research to this topic, are hard to compare. The aim of this research was to present testing methods, which consider the characteristics of the “material bone”. In this connection two novel bone adhesive systems are presented. These are first an in situ hardening bone cement consisting of trimagnesium phosphate, magnesium oxide and organic phytic acid and second a photocurable bone adhesive consisting of polyethylene glycol dimethacrylate, NCO-sP(EO-stat-PO), camphorquinone and a mineral ceramic newberyite-filler. Besides these two novel adhesive systems, three commercialized adhesives are examined. These are on the one hand Histoacryl® and TruGlue® tissue adhesives, two adhesives based on cyanoacrylate with a different size of the alkyl side chain, on the other hand Bioglue®, a tissue adhesive based on albumin and glutaraldehyde. In the case of these adhesives shear strength and tensile bonding strength, as well as the influence of factors like the physiological aging of the adhesive, the variation of the width of the bonded joint, the variation of the complementary adherend or the adherend surface, were investigated. Macro- and microscopic analysis as well as scanning electron microscope analysis of the area of fracture was executed to determine microstructural characteristics and the mechanism of failure. Indeed, the novel bonding systems succumb to the conventional cyanoacrylates concerning mechanical parameters, but nevertheless they exhibit adequate bonding strength for a clinical use. Additionally, they have numerous advantages when it comes to the “material bone” in contrast to conventional adhesives. Especially the magnesium phosphate cement seems to be promising due to its good biocompatibility, biological degradation, osteoinductivity, osteoconductivity, the simple application, an economic cost-benefit-ratio and its favorable performance under wet conditions. KW - bone KW - cement KW - adhesive KW - testing KW - Knochenkleber KW - bone adhesive KW - testing methods KW - bone cement KW - Knochenzement Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161546 ER -