TY - JOUR A1 - Hutin, Stephanie A1 - Ling, Wai Li A1 - Tarbouriech, Nicolas A1 - Schoehn, Guy A1 - Grimm, Clemens A1 - Fischer, Utz A1 - Burmeister, Wim P. T1 - The vaccinia virus DNA helicase structure from combined single-particle cryo-electron microscopy and AlphaFold2 prediction JF - Viruses N2 - Poxviruses are large DNA viruses with a linear double-stranded DNA genome circularized at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal polypeptide (res. 323–785) with confirmed nucleotide hydrolase and DNA-binding activity but an elusive helicase activity. We determined its structure by single-particle cryo-electron microscopy. It displays an AAA+ helicase core flanked by N- and C-terminal domains. Model building was greatly helped by the predicted structure of D5 using AlphaFold2. The 3.9 Å structure of the N-terminal domain forms a well-defined tight ring while the resolution decreases towards the C-terminus, still allowing the fit of the predicted structure. The N-terminal domain is partially present in papillomavirus E1 and polyomavirus LTA helicases, as well as in a bacteriophage NrS-1 helicase domain, which is also closely related to the AAA+ helicase domain of D5. Using the Pfam domain database, a D5_N domain followed by DUF5906 and Pox_D5 domains could be assigned to the cryo-EM structure, providing the first 3D structures for D5_N and Pox_D5 domains. The same domain organization has been identified in a family of putative helicases from large DNA viruses, bacteriophages, and selfish DNA elements. KW - DNA replication KW - helicase KW - Pfam domain KW - poxvirus KW - cryo-electron microscopy KW - structure prediction KW - SF3 helicase KW - orthopoxvirus KW - DNA helicase Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290523 SN - 1999-4915 VL - 14 IS - 10 ER - TY - JOUR A1 - Peissert, Stefan A1 - Sauer, Florian A1 - Grabarczyk, Daniel B. A1 - Braun, Cathy A1 - Sander, Gudrun A1 - Poterszman, Arnaud A1 - Egly, Jean-Marc A1 - Kuper, Jochen A1 - Kisker, Caroline T1 - In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair JF - Nature Communications N2 - The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction. More importantly, mutagenesis of the Arch domain revealed that these residues are essential for the regulation of (i) NER activity by either impairing XPD helicase activity or the interaction of XPD with XPG; (ii) the phosphorylation of the RNA polymerase II and RNA synthesis. Our results reveal how MAT1 shields these functionally important residues thereby providing insights into how XPD is regulated by MAT1 and defining the Arch domain as a major mechanistic player within the XPD scaffold. KW - nucleotide excision repair KW - nuclear receptors KW - helicase KW - transactivation KW - fluorescence KW - recognition KW - subunit KW - binding KW - sulfur KW - kinease Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229857 VL - 11 IS - 1 ER - TY - THES A1 - Ivanov, Konstantin T1 - Charakterisierung der Helikase- und Endonukleaseaktivitäten des Humanen Coronavirus 229E und des SARS-Coronavirus T1 - Characterization of the helicase and the endonuclease activities from HCoV 229E and SARS-CoV N2 - Humane Coronaviren sind wichtige Pathogene, die vor allem mit respiratorischen (z.B. SARS) und enteralen Erkrankungen assoziiert sind. Coronaviren besitzen das größte gegenwärtig bekannte RNA-Genom aller Viren (ca. 30 Kilobasen). Die Replikation des Genoms und die Synthese zahlreicher subgenomischer RNAs, die die viralen Strukturproteine und einige akzessorische, vermutlich virulenzassoziierte, Proteine kodieren, erfolgt durch die virale Replikase. Die coronavirale Replikase ist ein Multienzym-Komplex, der durch die proteolytische Prozessierung großer Vorläuferproteine (Polyproteine pp1a und pp1ab) entsteht und 16 virale Nichtstrukturproteine (nsp), aber auch einige zelluläre Proteine, beinhaltet. Obwohl die Charakterisierung der Funktionen der einzelnen Proteine und das Verständnis der molekularen Grundlagen der coronaviralen Replikation noch in ihren Anfängen stecken, ist bereits jetzt klar, dass die an der Replikation beteiligten Mechanismen deutlich komplexer sind als bei den meisten anderen RNA-Viren. Man hofft, dass aus der Untersuchung der einzelnen an der Replikation beteiligten Proteine Erkenntnisse zu den Besonderheiten des Lebenszyklus dieser ungewöhnlich großen RNA-Viren abgeleitet werden können und dass sich daraus auch Ansatzpunkte für die Entwicklung von Inhibitoren einzelner Proteine/Enzyme ergeben, die für eine zukünftige antivirale Therapie genutzt werden könnten. In der vorliegenden Arbeit wurden zwei enzymatische Aktivitäten von Coronaviren, eine Helikase und eine Endonuklease, die Teil der coronaviralen Nichtstrukturproteine nsp13 bzw. nsp15 sind, in vitro untersucht. Zur Etablierung allgemeingültiger Prinzipien coronaviraler Enzymaktivitäten wurden die homologen Proteine von HCoV-229E und SARS-CoV, also von Vertretern unterschiedlicher serologischer und genetischer Coronavirus-Gruppen, parallel untersucht und ihre Eigenschaften miteinander verglichen. Die nsp13-Helikase des SARSCoronavirus wurde als bakterielles Fusionsprotein exprimiert, und die nsp13-Helikase des humanen Coronavirus 229E wurde in Insektenzellen mittels baculoviraler Vektoren exprimiert. Beide Proteine zeigten Polynukleotid-stimulierbare NTPase- und 5'-3'-Helikase-Aktivitäten. Darüber hinaus besaßen sie vergleichbare Hydrolyseaktivitäten gegenüber den 8 getesteten Ribound Desoxyribonukleosidtriphosphaten. Die Anwesenheit von poly(U) führte zu einer 3-fachen Erhöhung der katalytischen Effizienz (kcat/Km) und einer etwa 100-fachen Steigerung der Hydrolysegeschwindigkeit (kcat). Es wurde am Beispiel von HCoV-229E-nsp13 gezeigt, dass Nukleinsäuresubstrate mit hoher Affinität (K50 ≈ 10-8 M), jedoch ohne erkennbare Präferenz für einzel- oder doppelsträngige DNA- oder RNA-Substrate gebunden werden. Solch eine feste Bindung ist typisch für Enzyme, die prozessiv mit Nukleinsäuren interagieren. Sie korreliert darüber hinaus mit der beobachteten effizienten Entwindung (Trennung) von RNA- und DNADuplexen mit langen, doppelsträngigen Bereichen von 500 Basenpaaren und mehr. Dies legt eine Funktion als replikative Helikase nahe, wie sie beispielweise bei der effektiven Entwindung doppelsträngiger replikativer Intermediate benötigt werden könnte. In dieser Arbeit wurde darüber hinaus eine neue enzymatische Aktivität coronaviraler Helikasen entdeckt. Die gefundene RNA-5'-Triphosphatase-Aktivität nutzt das aktive Zentrum der NTPase-Aktivität und katalysiert wahrscheinlich die erste Reaktion innerhalb der Synthese der Cap-Struktur am 5’- Ende viraler RNAs. Die sehr ähnlichen biochemischen Eigenschaften der HCoV-229E- und SARS-CoV-Helikasen lassen vermuten, dass die Enzymologie der viralen RNA-Synthese (trotz relativ geringer Sequenzidentität der beteiligten Enzyme) unter den Vertretern unterschiedlicher Gruppen von Coronaviren konserviert ist. Der zweite Teil der Arbeit beschäftigte sich mit der biochemischen Charakterisierung des Nichtstrukturproteins nsp15, für das eine Endonuklease-Aktivität vorhergesagt worden war. Auch in diesem Fall wurden die entsprechenden Proteine von HCoV-229E und SARS-CoV charakterisiert. Beide (bakteriell exprimierten) Enzyme zeigten identische enzymatische Eigenschaften. In-vitro-Experimente bestätigten, dass diese Proteine eine Mn2+-abhängige RNA- (jedoch nicht DNA-) Endonukleaseaktivität besitzen. Sie spalten doppelsträngige RNA deutlich effektiver und spezifischer als einzelsträngige RNA. Die Enzyme spalten an Uridylat-Resten und erzeugen Produkte mit 2', 3'-Zyklophosphat-Enden. Bei doppelsträngigen RNA-Substraten wurde eine Spezifität für 5'-GU(U)-3' gefunden. Die Tatsache, dass diese Sequenz in den nidoviralen transkriptionsregulierenden Sequenzen (TRS) der Minusstränge konserviert ist und auch die Endonuklease bei allen Nidoviren konserviert ist, unterstützt die Hypothese, dass die Endonukleaseaktivität eine spezifische Funktion innerhalb der coronaviralen (nidoviralen) diskontinuierlichen Transkription besitzt. N2 - Human coronaviruses are important pathogens that are mainly associated with respiratory (e.g. SARS) and enteric diseases. With genome sizes of about 30 kilobases, coronaviruses are the largest RNA viruses currently known. The replication of the genome RNA and the synthesis of multiple subgenomic (sg) RNAs, which encode structural and accessory (probably virulenceassociated) proteins, is mediated by the viral replicase. The coronaviral replicase is a multienzyme complex, which is produced from viral precursor polyproteins (pp1a and pp1ab) that are autoproteolytically processed into 16 nonstructural proteins (nsp). It also involves several cellular proteins. Although the functional characterization of most of these proteins and, more generally, the understanding of the molecular mechanisms involved in coronavirus replication are still at an early stage, it is already clear that these mechanisms are much more complex than those used by most other RNA viruses. The investigation of the proteins involved in virus replication is anticipated to result in a better understanding of the specific features of the replication cycle of these unusually large RNA viruses, potentially providing novel approaches to the development of enzyme (protein) inhibitors that, in the long run, may be developed into drugs suitable for antiviral therapy. In this work, two coronavirus enzymatic activities, a helicase and an endonuclease, residing in the coronavirus nonstructural proteins nsp13 and nsp15, respectively, were investigated in vitro. In order to establish potentially existing common principles of coronavirus enzymatic activities, the homologous proteins of HCoV-229E and SARS-CoV, which belong to different serological and genetic coronavirus groups, were studied in parallel and their properties were compared with each other. The SARS-CoV helicase was expressed in bacteria as a fusion protein and the helicase of HCoV-229E was expressed in insect cells using baculovirus vectors. Both proteins were shown to have polynucleotide-stimulated NTPase and 5’-to-3’ helicase activities. Furthermore, they had comparable hydrolysis activities with all eight (natural) ribo- and deoxyribonucleoside triphosphates. The presence of poly(U) led to a 3-fold increase of the catalytic efficiency (kcat/Km) and an about 100-fold acceleration of the hydrolysis rate (kcat). Using HCoV-229E nsp13 as an example, it was shown that the coronavirus helicase has a high binding affinity for nucleic acids (K50 ≈ 10-8 M). No preference for single-stranded (ss) versus double-stranded (ds) substrates could be established for this protein. Such a tight binding is typical for enzymes acting highly processively on nucleic acids (e.g., polymerases). Furthermore, coronavirus helicases proved to be able to unwind long RNA and DNA duplexes (of 500 bp and more) highly effectively. Together, these data support the idea that coronavirus nsp13s are “replicative helicases” that are involved in the unwinding of long double-stranded replicative intermediates. In this study, yet another enzymatic activity, namely an RNA-5’-triphosphatase activity, was established for coronaviral helicases. The activity, which employs the NTPase active site, probably mediates the first step in the formation of the 5’-cap structures present on coronaviral RNAs. The HCoV-229E and SARS-CoV helicases were found to have very similar biochemical features, suggesting that, despite the relatively low sequence identity among these enzymes, the enzymology involved in viral RNA synthesis is well conserved among members of different coronavirus groups. The second part of the study was devoted to the biochemical characterization of coronavirus nsp15, a protein with predicted endonuclease activity. Also in this case, the homologous proteins from HCoV-229E and SARS-CoV were studied in parallel. Bacterially expressed forms of both enzymes showed essentially identical enzymatic properties. In vitro experiments confirmed that nsp15 possesses a Mn2+-dependent RNA (but not DNA) endonuclease activity. The proteins cleaved double-stranded RNAs much more effectively and specifically than ssRNA substrates. Cleavage was shown to occur at uridylates, generating products with 2’,3’-cyclophosphates. In the case of dsRNA substrates, nsp15 was confirmed to be specific for 5’-GU(U)-3’ sequences. The fact that (i) the GUU sequence is conserved among the negative-strand complements of coronavirus transcription-regulating sequences and (ii) the endonuclease domain is conserved among all nidoviruses supports the hypothesis that the endonuclease activity has a specific function in coronavirus (nidovirus) discontinuous transcription. KW - Coronaviren KW - RNS KW - Helicase KW - Endonucleasen KW - Coronavirus KW - RNA KW - Helikase KW - Endonuklease KW - Coronavirus KW - RNA KW - helicase KW - endonuclease Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15863 ER -