TY - THES A1 - Ritschel, Benedikt Tobias T1 - Lewis-Basen-stabilisierte Bor–Bor-Mehrfachbindungssysteme – Reaktivitätsstudien an Diboracumulenen und Dicyanodiborenen T1 - Lewis base-stabilized boron-boron multiple bonds - reactivity studies on diboracumulenes and dicyanodiborenes N2 - Die vorliegende Arbeit umfasst im Wesentlichen Studien über die Reaktivität von Diboracumulenen sowie Dicyanodiborenen gegenüber diversen Substraten verschiedener Substanzklassen, wie z. B. Acetylenen, Aminen, Aziden, Nitrilen, Isonitrilen und Übergangsmetallen. Auf diese Weise sollen zunächst Einblicke in das unterschiedliche Reaktionsverhalten der niedervalenten Borverbindungen ermöglicht sowie ein Verständnis für die erhaltenen, teils neuartigen, Bindungsmodi und Substanzklassen etabliert werden. Die jeweiligen MecAAC- und CycAAC-stabilisierten Verbindungen wurden hierbei auf den Einfluss des sterischen Anspruchs der Liganden in Bezug auf die Reaktivität untersucht. Die aufgeführten Kapitel beziehen sich daher auf die Reaktivität der Diboracumulene wie auch die der Dicyanodiborene gegenüber Verbindungen jeweils einer bestimmten Substanzklasse. Die erhaltenen Produkte werden, soweit möglich, miteinander verglichen. N2 - The present work mainly comprises studies on the reactivity of diboracumulenes as well as dicyanodiborenes towards diverse substrates of different substance classes, such as acetylenes, amines, azides, nitriles, isonitriles and transition metals. In this way, insights into the different reaction behavior of the low-valent boron compounds of the obtained, partly novel, binding modes and substance classes should be established. In this context, the respective MecAAC- and CycAAC-stabilized compounds were examined towards the influence of the steric requirement of the ligands with respect to the reactivity. Therefore, the chapters refer to the reactivity of the diboroacumulenes as well as that of the dicyanodiborenes towards compounds of a particular substance class in each case. Where possible, the products obtained are compared with each other. KW - Bor KW - Reaktivitätsstudien KW - reacitvity studies KW - Mehrfachbindung KW - Hauptgruppenelementverbindungen KW - Diboren KW - Diboracumulen KW - diborene KW - diboracumulene Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-243306 ER - TY - THES A1 - Hermann, Alexander T1 - Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme T1 - Integration of B-B Double Bonds in conjugated p-Systems N2 - Der erste Teil dieser Arbeit beschäftigt sich mit der "Synthese und Reaktivität sterisch anspruchsvoller Iminoborane". Dabei war es möglich, ausgehend von einem Terphenylamin geeignete Aminoborane zu synthetisieren, welche anschließend mit starken, nicht-nukleophilen Basen umgesetzt wurden. Mittels formaler HCl-Eliminierung mit LiTmp gelang auf diese Weise die Darstellung sterisch anspruchsvoller Iminoborane. Der zweite Teil dieser Arbeit befasst sich mit der "Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme". Durch die Verwendung von sterisch wenig anspruchsvollen Liganden oder Boryl-Substituenten war es möglich planare Diboren-Systeme zu generieren und darüberhinaus Divinyldiborene darzustellen. N2 - The first part of this work deals with the "Synthesis and Reactivity of Sterically Demanding Iminoboranes". Starting with a terphenylamine, it was possible to synthesize aminoboranes, which were then reacted with strong, non-nucleophilic bases. Formal HCl elimination mit LiTmp thus enabled the preparation of sterically demanding iminoboranes. The second part of this thesis focuses on the "Integration of B-B Double Bonds in conjugated p-Systems". By using sterically low damanding ligands or boryl-substituents it was possible to generate planar diborene structures and to synthesize divinyldiborenes. KW - Konjugation KW - Hauptgruppenelementverbindungen KW - Diborene KW - Hauptgruppenelementchemie KW - Conjugation KW - Diborene KW - Main Group Chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204592 ER - TY - THES A1 - Krahfuß, Mirjam Julia T1 - N-Heterocyclic Silylenes as ambiphilic Reagents in Main Group Chemistry and as Ligands in Transition Metal Chemistry T1 - N-Heterocyclische Silylene als ambiphile Reagenzien in der Hauptgruppenchemie und als Liganden in der Übergangsmetallchemie N2 - This thesis reports on the applications of a particular N-heterocyclic silylene, Dipp2NHSi (1), as an ambiphilic reagent in main group chemistry and as a ligand in transition metal chemistry. One focus of the work lies in the evaluation of the differences in the reactivity of N-heterocyclic silylenes in main group element and transition metal chemistry in comparison with the in these areas nowadays ubiquitous N-heterocyclic carbenes. The first chapter gives an insight into the reactivity of Dipp2NHSi with respect to different types of main group element compounds. Silylene 1 was reacted with group 13 compounds. Adduct formation was observed with AlI3, Al(C6F5)3 and B(C6F5)3 which led to isolation of Dipp2NHSi·AlI3 (2), Dipp2NHSi·Al(C6F5)3 (3) and Dipp2NHSi·B(C6F5)3 (4). Furthermore, the reactivity of Dipp2NHSi (1) with respect to different elementhalide bonds was investigated. The reaction with elemental bromine and iodine leads to the dihalosilanes Dipp2NHSiBr2 (5) and Dipp2NHSiI2 (6). Utilizing methyl iodide, benzyl chloride and benzyl bromide, the insertion products Dipp2NHSi(I)(Me) (10), Dipp2NHSi(Cl)(benzyl) (11) and Dipp2NHSi(Br)(benzyl) (12) are obtained. Thus, insertion is preferred to reductive coupling with formation of RH2C–CH2R (R = H, Ph) and the corresponding dihalosilane. The reaction of 1 with Me3SnCl leads to the diazabutene {(Me3Sn)N(Dipp)CH}2 (9). The reaction of 1 with Ph2SnCl2 gives exclusively Dipp2NHSiCl2 (8) and cyclic polystannanes (Ph2Sn)n. The reactivity of 1 towards selected 1,3-dipolar compounds was also examined and Dipp2NHSi was reacted with azides of different size. The reaction with adamantyl azide led to the formation of the tetrazoline 13. For the reaction with the sterically less demanding trimethylsilyl azide the azido silane Dipp2NHSi(N(SiMe3)2)(N3) (14) and the degradation product 14* was isolated. The cyclosilamine 15 was formed from the reaction of 1 with 2,6-(diphenyl)phenyl azide. The bonding situation and ligation properties of Dipp2NHSi in transition metal complexes was assessed in the second part of the thesis by means of theoretical calculations and experimental investigations. Calculations on the main electronic features of Me2Im/Me2NHSi and Dipp2NHSi/Dipp2Im revealed significant differences in the frontier orbital region of these compounds, which affect the ligation properties of NHSis in general. It was demonstrated that NHSis show significantly different behaviour concerning their coordination chemistry. In particular, one energetically low lying π-acceptor orbital seems to determine the coordination chemistry of these ligands. To provide experimental support for these calculations, the silylene complexes [M(CO)5(Dipp2NHSi)] (M = Cr 16, Mo 17, W 18) were synthesized from Dipp2NHSi and [M(CO)6] (M = Cr, Mo, W) and the tungsten NHSi complex 18 was compared to the NHC complexes [W(CO)5(iPr2Im)] (19), [W(CO)5(iPr2ImMe)] (20) and [W(CO)5(Me2ImMe)] (21). The bonding of Me2Im and Me2NHSi (= L) to transition metal complexes has been assessed with DFT calculations for the model systems [Ni(L)], [Ni(CO)3(L)], and [W(CO)5(L)]. These studies revealed some common features in the difference between M–NHSi and M–NHC bonding which largely affect the bonding situation in transition metal complexes. NHSis show a propensity for bridging two metal atoms which was demonstrated on three different examples. Dipp2NHSi reacts with [Ni(CO)4] to form the dinuclear silylene-bridged complex [{Ni(CO)2(μ-Dipp2NHSi)}2] (22) upon CO elimination. The reduction of [Ni(η5-C5H5)2] with lithium naphthalenide in the presence of Dipp2NHSi yielded the NHSi-bridged Ni(I) dimer [{(η5 C5H5)Ni(µ-Dipp2NHSi)}2] (23). The dimeric half-sandwich complex [{(η5-C5H5)Fe(CO)2}2] led upon reaction with Dipp2NHSi to the formation of the dinuclear, NHSi-bridged complex [{(η5-C5H5)Fe(CO)}2(µ-CO)(µ-Dipp2NHSi)] (24). The insertion of Dipp2NHSi into metal halide bonds was investigated in a series of manganese complexes [Mn(CO)5(X)] (X = Cl, Br, I). The reaction of Dipp2NHSi with [Mn(CO)5(I)] led to substitution of two carbonyl ligands with Dipp2NHSi (1) to afford the tricarbonyl complex [Mn(CO)3(Dipp2NHSi)2(I)] (25). In 25, the iodide ligand is aligned in the {Mn(CO)3} plane, located between both NHSi silicon atoms. Treatment of [Mn(CO)5(Br)] with two equivalents of Dipp2NHSi afforded the complex [Mn(CO)3(Dipp2NHSi)2(Br)] (26), in which the bromide ligand is distorted towards one of the NHSi ligands. The reaction of the silylene ligand with [Mn(CO)5(Cl)] at room temperature afforded a mixture of two products, [Mn(CO)3(Dipp2NHSi)2(Cl)] (27*) and the insertion product [Mn(CO)4(Dipp2NHSi)(Dipp2NHSi-Cl)] (27). Complete transfer of a halide to the silylene was achieved for the reaction of Dipp2NHSi with [(η5-C5H5)Ni(PPh3)(Cl)] to yield [Ni(PPh3)(η5-C5H5)(Dipp2NHSi-Cl)] (28). Similarly, the reaction with [(η5-C5H5)Fe(CO)2(I)] led to the formation of [(η5 C5H5)Fe(CO)2(Dipp2NHSi-I)] (29). N2 - Diese Arbeit beschäftigt sich mit den Anwendungen des N-heterocyclischen Silylens Dipp2NHSi (1) als ambiphiles Reagenz in der Hauptgruppenchemie und als Ligand in der Übergangsmetallchemie. Ein Schwerpunkt dieser Arbeit ist die Beurteilung der Unterschiede in der Reaktivität von N-heterocyclischen Silylenen in der Hauptgruppen- und Übergangsmetallchemie im Vergleich zu den heutzutage allgegenwärtigen N heterocyclischen Carbenen. Im Verlauf dieser Studie wurde Silylen 1 mit Verbindungen der Gruppe 13 umgesetzt und die Addukte Dipp2NHSi·AlI3 (2), Dipp2NHSi·Al(C6F5)3 (3) und Dipp2NHSi·B(C6F5)3 (4) isoliert. Weiterhin wurde die Reaktivität von Dipp2NHSi (1) in Bezug auf ElementHalogen-Bindungen verschiedener Hauptgruppenelement-Verbindungen untersucht. Die Umsetzung mit elementarem Brom und Iod führt zu den Dihalogensilanen Dipp2NHSiBr2 (5) und Dipp2NHSiI2 (6). Unter Verwendung von Methyliodid, Benzylchlorid und Benzylbromid konnten die Insertionsprodukte Dipp2NHSi(I)(Me) (10), Dipp2NHSi(Cl)(benzyl) (11) und Dipp2NHSi(Br)(benzyl) (12) gebildet werden. Die Insertion ist gegenüber der reduktiven Kupplung unter Ausbildung von RH2C–CH2R (R = H, Ph) und dem Dihalosilan bevorzugt. Die Umsetzung von 1 mit dem Zinnchlorid Me3SnCl führt Bildung des Diazabutens {(Me3Sn)N(Dipp)CH}2 (9). Die Reaktion mit Ph2SnCl2 hingegen ergibt das Dichlorsilan Dipp2NHSiCl2 (8) sowie cyclische Polystannane der Form (Ph2Sn)n. Außerdem wurde Dipp2NHSi mit Aziden unterschiedlichen sterischen Anspruchs umgesetzt. Die Reaktion mit Adamantylazid führt zur Bildung des Tetrazolins 13. Das sterisch weniger anspruchsvolle Trimethylsilylazid reagiert mit Dipp2NHSi unter Bildung des Silylazids Dipp2NHSi(N(SiMe3)2)(N3) (14). Das Cyclosilamin 15 wird durch die Reaktion von 1 mit 2,6-(Diphenyl)phenylazid gebildet. Im zweiten Teil der Arbeit wurden die Bindungssituation und die Ligandeneigenschaften von Dipp2NHSi (1) in Übergangsmetallkomplexen mithilfe von theoretischen Rechnungen und experimentellen Untersuchungen beleuchtet. DFT-Rechnungen zu den grundlegenden elektronischen Eigenschaften von Me2Im/Me2NHSi und Dipp2Im/Dipp2NHSi ergaben signifikante Unterschiede im Bereich der Grenzorbitale, welche die Bindungssituation von NHSis im Allgemeinen beeinflussen. Insbesondere ein energetisch tiefliegendes π-Orbital scheint die Koordinationschemie dieser Liganden zu bestimmen. Zur Unterstützung der theoretischen Befunde wurden die Silylen-Komplexe M(CO)5(Dipp2NHSi)] (M = Cr 16, Mo 17, W 18) durch Umsetzung von Dipp2NHSi und [M(CO)6] (M= Cr, Mo, W) dargestellt und der Wolframkomplex 18 mit den NHC-Komplexen [W(CO)5(iPr2Im)] (19), [W(CO)5(iPr2ImMe)] (20) und [W(CO)5(Me2ImMe)] (21) verglichen. Die Bindung von Me2Im und Me2NHSi (= L) und Übergangsmetallkomplexen wurde für die verschiedenen Modellverbindungen [Ni(L)], [Ni(CO)3(L)] und [W(CO)5(L)] mittels DFT Rechnungen untersucht, wobei einige Unterschiede zwischen den M–NHSi und M–NHC Bindungen festgestellt wurden, welche die Bindungssituation in Übergangsmetallkomplexen stark beeinflussen. Im Unterschied zu NHCs zeigen N-heterocyclische Silylene eine Neigung zur Verbrückung zweier Metallzentren und dieses Verhalten konnte anhand dreier Beispielen belegt werden. Dipp2NHSi (1) reagiert mit [Ni(CO)4] zum Silylen-verbrückten Nickelkomplex [{Ni(CO)2(μ-Dipp2NHSi)}2] (22). Die Reduktion von Nickelocen mit Lithiumnaphthalid in der Gegenwart von Dipp2NHSi (1) führt zur Bildung des NHSi verbrückten, Ni(I)-Dimers [(η5-C5H5)Ni(µ-Dipp2NHSi)]2 (23). Ähnlich hierzu reagiert der dimere Komplex {[(η5-C5H5)Fe(CO)2]2} mit Dipp2NHSi zum Silylen-verbrückten dinuklearen Komplex [{(η5 C5H5)Fe(CO)}2(µ-CO)(µ-Dipp2NHSi)] (24). Weiterhin wurde die Insertion von Dipp2NHSi (1) in MetallHalogen-Bindungen anhand einer Reihe von Mangankomplexen der Form [Mn(CO)5(X)] (X = Cl, Br, I) untersucht. Die Reaktion von zwei Äquivalenten des Silylens 1 mit dem Iodokomplex [Mn(CO)5(I)] führt zur Bildung des Tricarbonylkomplexes [Mn(CO)3(Dipp2NHSi)2(I)] (25), in dem der Iodidligand symmetrisch zwischen den beiden Siliciumatomen der Silylenliganden in der {Mn(CO)3}-Ebene liegt. Ähnlich hierzu wird der Bis-Silylenkomplex [Mn(CO)3(Dipp2NHSi)2(Br)] (26) durch Umsetzung von [Mn(CO)5(Br)] mit 1 erhalten, wobei eine Wechselwirkung des Bromidliganden mit einem Silylenliganden beobachtet wird. Die Reaktion von Dipp2NHSi 1 mit [Mn(CO)5(Cl)] bei Raumtemperatur resultiert in der Bildung zweier Reaktionsprodukte, dem Bis-Silylenkomplex [Mn(CO)3(Dipp2NHSi)2(Cl)] (27*) und dem Insertionsprodukt [Mn(CO)4(Dipp2NHSi)(Dipp2NHSi-Cl)] (27). Die vollständige Übertragung des Halogenidoliganden auf das Siliciumatom von 1 kann auch für den Halb-Sandwich-Komplex [(η5-C5H5)Ni(PPh3)(Cl)] beobachtet werden, wobei der Komplex [Ni(PPh3)(η5-C5H5)(Dipp2NHSi-Cl)] (28) isoliert wird. Ähnlich hierzu führt die Reaktion von [(η5-C5H5)Fe(CO)2(I)] mit dem Silylen 1 ebenfalls zur Bildung des Insertionsproduktes [(η5 C5H5)Fe(CO)2(Dipp2NHSi-I)] (29). KW - Silandiylverbindungen KW - Übergangsmetallkomplexe KW - Hauptgruppenelementverbindungen KW - N-heterocyclic silylenes KW - Diaminosilylenes KW - Transition metal silylene complexes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-217246 ER -