TY - THES A1 - Steininger, Michael T1 - Deep Learning for Geospatial Environmental Regression T1 - Deep Learning für Regressionsmodelle mit georäumlichen Umweltdaten N2 - Environmental issues have emerged especially since humans burned fossil fuels, which led to air pollution and climate change that harm the environment. These issues’ substantial consequences evoked strong efforts towards assessing the state of our environment. Various environmental machine learning (ML) tasks aid these efforts. These tasks concern environmental data but are common ML tasks otherwise, i.e., datasets are split (training, validatition, test), hyperparameters are optimized on validation data, and test set metrics measure a model’s generalizability. This work focuses on the following environmental ML tasks: Regarding air pollution, land use regression (LUR) estimates air pollutant concentrations at locations where no measurements are available based on measured locations and each location’s land use (e.g., industry, streets). For LUR, this work uses data from London (modeled) and Zurich (measured). Concerning climate change, a common ML task is model output statistics (MOS), where a climate model’s output for a study area is altered to better fit Earth observations and provide more accurate climate data. This work uses the regional climate model (RCM) REMO and Earth observations from the E-OBS dataset for MOS. Another task regarding climate is grain size distribution interpolation where soil properties at locations without measurements are estimated based on the few measured locations. This can provide climate models with soil information, that is important for hydrology. For this task, data from Lower Franconia is used. Such environmental ML tasks commonly have a number of properties: (i) geospatiality, i.e., their data refers to locations relative to the Earth’s surface. (ii) The environmental variables to estimate or predict are usually continuous. (iii) Data can be imbalanced due to relatively rare extreme events (e.g., extreme precipitation). (iv) Multiple related potential target variables can be available per location, since measurement devices often contain different sensors. (v) Labels are spatially often only sparsely available since conducting measurements at all locations of interest is usually infeasible. These properties present challenges but also opportunities when designing ML methods for such tasks. In the past, environmental ML tasks have been tackled with conventional ML methods, such as linear regression or random forests (RFs). However, the field of ML has made tremendous leaps beyond these classic models through deep learning (DL). In DL, models use multiple layers of neurons, producing increasingly higher-level feature representations with growing layer depth. DL has made previously infeasible ML tasks feasible, improved the performance for many tasks in comparison to existing ML models significantly, and eliminated the need for manual feature engineering in some domains due to its ability to learn features from raw data. To harness these advantages for environmental domains it is promising to develop novel DL methods for environmental ML tasks. This thesis presents methods for dealing with special challenges and exploiting opportunities inherent to environmental ML tasks in conjunction with DL. To this end, the proposed methods explore the following techniques: (i) Convolutions as in convolutional neural networks (CNNs) to exploit reoccurring spatial patterns in geospatial data. (ii) Posing the problems as regression tasks to estimate the continuous variables. (iii) Density-based weighting to improve estimation performance for rare and extreme events. (iv) Multi-task learning to make use of multiple related target variables. (v) Semi–supervised learning to cope with label sparsity. Using these techniques, this thesis considers four research questions: (i) Can air pollution be estimated without manual feature engineering? This is answered positively by the introduction of the CNN-based LUR model MapLUR as well as the off-the-shelf LUR solution OpenLUR. (ii) Can colocated pollution data improve spatial air pollution models? Multi-task learning for LUR is developed for this, showing potential for improvements with colocated data. (iii) Can DL models improve the quality of climate model outputs? The proposed DL climate MOS architecture ConvMOS demonstrates this. Additionally, semi-supervised training of multilayer perceptrons (MLPs) for grain size distribution interpolation is presented, which can provide improved input data. (iv) Can DL models be taught to better estimate climate extremes? To this end, density-based weighting for imbalanced regression (DenseLoss) is proposed and applied to the DL architecture ConvMOS, improving climate extremes estimation. These methods show how especially DL techniques can be developed for environmental ML tasks with their special characteristics in mind. This allows for better models than previously possible with conventional ML, leading to more accurate assessment and better understanding of the state of our environment. N2 - Umweltprobleme sind vor allem seit der Verbrennung fossiler Brennstoffe durch den Menschen entstanden. Dies hat zu Luftverschmutzung und Klimawandel geführt, was die Umwelt schädigt. Die schwerwiegenden Folgen dieser Probleme haben starke Bestrebungen ausgelöst, den Zustand unserer Umwelt zu untersuchen. Verschiedene Ansätze des maschinellen Lernens (ML) im Umweltbereich unterstützen diese Bestrebungen. Bei diesen Aufgaben handelt es sich um gewöhnliche ML-Aufgaben, z. B. werden die Datensätze aufgeteilt (Training, Validation, Test), Hyperparameter werden auf den Validierungsdaten optimiert, und die Metriken auf den Testdaten messen die Generalisierungsfähigkeit eines Modells, aber sie befassen sich mit Umweltdaten. Diese Arbeit konzentriert sich auf die folgenden Umwelt-ML-Aufgaben: In Bezug auf Luftverschmutzung schätzt Land Use Regression (LUR) die Luftschadstoffkonzentration an Orten, an denen keine Messungen verfügbar sind auf Basis von gemessenen Orten und der Landnutzung (z. B. Industrie, Straßen) der Orte. Für LUR werden in dieser Arbeit Daten aus London (modelliert) und Zürich (gemessen) verwendet. Im Zusammenhang mit dem Klimawandel ist eine häufige ML-Aufgabe Model Output Statistics (MOS), bei der die Ausgaben eines Klimamodells so angepasst werden, dass sie mit Erdbeobachtungen besser übereinstimmen. Dadurch werden genauere Klimadaten erzeugt. Diese Arbeit verwendet das regionale Klimamodell REMO und Erdbeobachtungen aus dem E-OBS-Datensatz für MOS. Eine weitere Aufgabe im Zusammenhang mit dem Klima ist die Interpolation von Korngrößenverteilungen. Hierbei werden Bodeneigenschaften an Orten ohne Messungen auf Basis von wenigen gemessenen Orten geschätzt, um Klimamodelle mit Bodeninformationen zu versorgen, die für die Hydrologie wichtig sind. Für diese Aufgabe werden in dieser Arbeit Bodenmessungen aus Unterfranken herangezogen. Solche Umwelt-ML-Aufgaben haben oft eine Reihe von Eigenschaften: (i) Georäumlichkeit, d. h. ihre Daten beziehen sich auf Standorte relativ zur Erdoberfläche. (ii) Die zu schätzenden oder vorherzusagenden Umweltvariablen sind normalerweise kontinuierlich. (iii) Daten können unbalanciert sein, was auf relativ seltene Extremereignisse (z. B. extreme Niederschläge) zurückzuführen ist. (iv) Pro Standort können mehrere verwandte potenzielle Zielvariablen verfügbar sein, da Messgeräte oft verschiedene Sensoren enthalten. (v) Zielwerte sind räumlich oft nur spärlich vorhanden, da die Durchführung von Messungen an allen gewünschten Orten in der Regel nicht möglich ist. Diese Eigenschaften stellen eine Herausforderung, aber auch eine Chance bei der Entwicklung von ML-Methoden für derlei Aufgaben dar. In der Vergangenheit wurden ML-Aufgaben im Umweltbereich mit konventionellen ML-Methoden angegangen, wie z. B. lineare Regression oder Random Forests (RFs). In den letzten Jahren hat der Bereich ML jedoch durch Deep Learning (DL) enorme Fortschritte über diese klassischen Modelle hinaus gemacht. Bei DL verwenden die Modelle mehrere Schichten von Neuronen, die mit zunehmender Schichtungstiefe immer abstraktere Merkmalsdarstellungen erzeugen. DL hat zuvor undurchführbare ML-Aufgaben realisierbar gemacht, die Leistung für viele Aufgaben im Vergleich zu bestehenden ML-Modellen erheblich verbessert und die Notwendigkeit für manuelles Feature-Engineering in einigen Bereichen aufgrund seiner Fähigkeit, Features aus Rohdaten zu lernen, eliminiert. Um diese Vorteile für ML-Aufgaben in der Umwelt nutzbar zu machen, ist es vielversprechend, geeignete DL-Methoden für diesen Bereich zu entwickeln. In dieser Arbeit werden Methoden zur Bewältigung der besonderen Herausforderungen und zur Nutzung der Möglichkeiten von Umwelt-ML-Aufgaben in Verbindung mit DL vorgestellt. Zu diesem Zweck werden in den vorgeschlagenen Methoden die folgenden Techniken untersucht: (i) Faltungen wie in Convolutional Neural Networks (CNNs), um wiederkehrende räumliche Muster in Geodaten zu nutzen. (ii) Probleme als Regressionsaufgaben stellen, um die kontinuierlichen Variablen zu schätzen. (iii) Dichtebasierte Gewichtung zur Verbesserung der Schätzungen bei seltenen und extremen Ereignissen. (iv) Multi-Task-Lernen, um mehrere verwandte Zielvariablen zu nutzen. (v) Halbüber- wachtes Lernen, um auch mit wenigen bekannten Zielwerten zurechtzukommen. Mithilfe dieser Techniken werden in der Arbeit vier Forschungsfragen untersucht: (i) Kann Luftverschmutzung ohne manuelles Feature Engineering geschätzt werden? Dies wird durch die Einführung des CNN-basierten LUR-Modells MapLUR sowie der automatisierten LUR–Lösung OpenLUR positiv beantwortet. (ii) Können kolokalisierte Verschmutzungsdaten räumliche Luftverschmutzungsmodelle verbessern? Hierfür wird Multi-Task-Learning für LUR entwickelt, das Potenzial für Verbesserungen mit kolokalisierten Daten zeigt. (iii) Können DL-Modelle die Qualität der Ausgaben von Klimamodellen verbessern? Die vorgeschlagene DL-MOS-Architektur ConvMOS demonstriert das. Zusätzlich wird halbüberwachtes Training von Multilayer Perceptrons (MLPs) für die Interpolation von Korngrößenverteilungen vorgestellt, das verbesserte Eingabedaten liefern kann. (iv) Kann man DL-Modellen beibringen, Klimaextreme besser abzuschätzen? Zu diesem Zweck wird eine dichtebasierte Gewichtung für unbalancierte Regression (DenseLoss) vorgeschlagen und auf die DL-Architektur ConvMOS angewendet, um die Schätzung von Klimaextremen zu verbessern. Diese Methoden zeigen, wie speziell DL-Techniken für Umwelt-ML-Aufgaben unter Berücksichtigung ihrer besonderen Eigenschaften entwickelt werden können. Dies ermöglicht bessere Modelle als konventionelles ML bisher erlaubt hat, was zu einer genaueren Bewertung und einem besseren Verständnis des Zustands unserer Umwelt führt. KW - Deep learning KW - Modellierung KW - Umwelt KW - Geospatial KW - Environmental KW - Regression KW - Neuronales Netz KW - Maschinelles Lernen KW - Geoinformationssystem Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313121 ER - TY - THES A1 - Jawork, Anna T1 - Die Rolle von durch rhGM-CSF aktivierten Makrophagen bei der Immunabwehr von Glioblastomen im orthotopen C6-Tumormodell der Ratte T1 - The role of macrophages activated by rhGM-CSF in the immune defense of glioblastoma in the rodent orthotopic C6 tumor model N2 - Die Immunabwehr des Patienten stellt eine Schlüsselrolle bei der spontanen Tumorregression dar. Bisher zählten zytotoxische CD8-positive T Zellen und natürliche Killerzellen zu den wichtigsten zellulären Vertretern der Tumorkontrolle. Im Tierversuch konnte jedoch kein signifikanter Einfluss dieser Zellen auf die spontane Regression nachgewiesen werden. Allerdings fand sich eine hohe Anzahl an Makrophagen im Tumorgewebe. In vorangegangenen Untersuchungen zeigte sich bei der Depletion der Makrophagen mittels Clodronate im Tiermodell der Ratte ein deutlich gesteigertes Tumorwachstum. In der hier durchgeführten Versuchsreihe wurde nun der Einfluss von Makrophagen auf das Tumorwachstum orthotop implantierter C6-Glioblastomsphäroide betrachtet. Dabei wurden die Makrophagen durch den Granulozyten-Makrophagen Kolonie-stimulierenden Faktor (rhGM-CSF, Leukine) aktiviert. 29 SD-Ratten wurden C6-Gliom-Sphäroide orthotop implantiert. 20 der Tiere wurden jeden zweiten Tag mit 1µg/100g Körpergewicht rhGSM-CSF s. c. behandelt. Neun Tiere dienten als Kontrollgruppe. Zur Verlaufsbeurteilung wurden an den Tagen 7, 14, 21, 28, 32 und 42 nach Implantation MRT-Untersuchungen (T1, T2 und 3D CISS-Sequenzen) durchgeführt. Die Tumorvolumina wurden mit Hilfe dieser MRT-Untersuchungen ermittelt. Die histologische Aufarbeitung beinhaltete HE-, CD68-Makrophagen-, CD8-positive T Zellen- sowie Ki-67 Proliferations- Färbungen in Paraffinschnitten von Gehirn, Tumor und Milz. In 15 der 20 behandelten Tiere entwickelten sich solide Tumoren. Am Tag 7 konnte lediglich bei zwei Tieren mittels MRT ein minimales Tumorwachstum nachgewiesen werden. In der Kontrollgruppe war bereits bei drei von neun Tieren minimales Tumorwachstum zu verzeichnen. Am Tag 14 zeigten sich bei 11 von 17 (65%) Tieren der Versuchsgruppe solide Tumoren. Drei der verbleibenden 15 Tiere zeigten am Tag 21 erstmalig Tumorwachstum. Im Gegensatz dazu konnte in der Kontrollgruppe bereits an Tag 14 bei allen Tieren ein Tumorwachstum nachgewiesen werden. In der GM-CSF Gruppe entwickelten sich die Tumoren später und erreichten mit einem Median von 134mm³ ein geringeres Volumen als in der Kontrollgruppe (262mm³). Das mediane Überleben war mit 35 Tagen in der Gruppe der behandelten Tiere signifikant länger als in der Kontrollgruppe mit 24 Tagen. Zudem wurden in der histologischen Aufarbeitung der Tumoren signifikant mehr Makrophagen im Tumorgewebe nachgewiesen. Die Stimulation der Makrophagen durch GM CSF im orthotopen C6 Glioblastommodell der Ratte führte zu einem beachtlich reduzierten und verzögerten Tumorwachstum. Die behandelten Tiere überlebten signifikant länger als die Tiere der Kontrollgruppe. Die aktuelle Datenlage bestätigt die bedeutende Rolle der angeborenen Immunabwehr durch Makrophagen in der Kontrolle des Tumorwachstums bei experimentellen Glioblastomen. Die Aktivierung der Makrophagen hatte einen deutlichen Einfluss auf das Tumorwachstum, wohingegen eine T Zell-Depletion nur einen geringen Einfluss darauf hatte. Makrophagen als Vertreter des angeborenen Immunsystems wurden bisher in ihrer Rolle der Tumorkontrolle unterschätzt. Es bedarf noch weiterer Untersuchungen, ob die Makrophagen in Zukunft, ohne die körpereigenen Zellen anzugreifen, zur wirkungsvollen Tumorbekämpfung herangezogen werden könnten. N2 - The patient's immune defense represents a key role in spontaneous tumor regression. Until now, cytotoxic CD8-positive T cells and natural killer cells were considered to be one of the most important cellular representatives of tumor control. The aim of the present study was to investigate the influence of macrophages on tumor growth of orthotopically implanted C6 glioma spheroids. Macrophages were activated by granulocyte-macrophage colony-stimulating factor (rhGM-CSF, Leukine). 29 Sprague-Dawley rats were implanted C6 glioma spheroids orthotopically. 20 of the animals were treated with 1μg/100g rhGSM-CSF s. c. every other day. Nine animals served as the control group. MRI examinations (T1, T2, and 3D CISS sequences) were performed on days 7, 14, 21, 28, 32, and 42 after implantation. Tumor volumes were determined using these MRI examinations. Histologic workup included HE, CD68, CD8, and Ki-67 staining in sections of brain and spleen. Tumors developed later and reached with a median of 126 mm³ a smaller size in the GM-CSF series compared to the controls with 150 mm³. Median survival was significantly longer in the treated group (35 days) compared with the control group (24 days). In addition, histological workup of the tumors showed significantly more macrophages in the tumor tissue. Stimulation of macrophages by GM-CSF in the rodent C6 glioma model resulted in reduced and delayed tumor growth. Treated animals survived significantly longer than in the control group. The current data confirm the important role of innate immune defense by macrophages in the control of tumor growth in experimental gliomas. Macrophage activation had a marked effect on tumor growth. Macrophages as representatives of the innate immune system have been underestimated in their role of tumor control. KW - Glioblastoma multiforme KW - Makrophagen KW - Granulozyten-Makrophagen-koloniestimulierender Faktor Leukomax (rekombinant hergestelltes Präparat) KW - Tumorwachstum KW - Tiermodell KW - Regression Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-278550 ER - TY - THES A1 - Karama, Alphonse T1 - East African Seasonal Rainfall prediction using multiple linear regression and regression with ARIMA errors models T1 - Vorhersage des saisonalen Niederschlags in Ostafrika mit multipler linearer Regression und Regression mit ARIMA-Fehlermodellen N2 - The detrimental impacts of climate variability on water, agriculture, and food resources in East Africa underscore the importance of reliable seasonal climate prediction. To overcome this difficulty RARIMAE method were evolved. Applications RARIMAE in the literature shows that amalgamating different methods can be an efficient and effective way to improve the forecasts of time series under consideration. With these motivations, attempt have been made to develop a multiple linear regression model (MLR) and a RARIMAE models for forecasting seasonal rainfall in east Africa under the following objectives: 1. To develop MLR model for seasonal rainfall prediction in East Africa. 2. To develop a RARIMAE model for seasonal rainfall prediction in East Africa. 3. Comparison of model's efficiency under consideration In order to achieve the above objectives, the monthly precipitation data covering the period from 1949 to 2000 was obtained from Climate Research Unit (CRU). Next to that, the first differenced climate indices were used as predictors. In the first part of this study, the analyses of the rainfall fluctuation in whole Central- East Africa region which span over a longitude of 15 degrees East to 55 degrees East and a latitude of 15 degrees South to 15 degrees North was done by the help of maps. For models’ comparison, the R-squared values for the MLR model are subtracted from the R-squared values of RARIMAE model. The results show positive values which indicates that R-squared is improved by RARIMAE model. On the other side, the root mean square errors (RMSE) values of the RARIMAE model are subtracted from the RMSE values of the MLR model and the results show negative value which indicates that RMSE is reduced by RARIMAE model for training and testing datasets. For the second part of this study, the area which is considered covers a longitude of 31.5 degrees East to 41 degrees East and a latitude of 3.5 degrees South to 0.5 degrees South. This region covers Central-East of the Democratic Republic of Congo (DRC), north of Burundi, south of Uganda, Rwanda, north of Tanzania and south of Kenya. Considering a model constructed based on the average rainfall time series in this region, the long rainfall season counts the nine months lead of the first principal component of Indian sea level pressure (SLP_PC19) and the nine months lead of Dipole Mode Index (DMI_LR9) as selected predictors for both statistical and predictive model. On the other side, the short rainfall season counts the three months lead of the first principal component of Indian sea surface temperature (SST_PC13) and the three months lead of Southern Oscillation Index (SOI_SR3) as predictors for predictive model. For short rainfall season statistical model SAOD current time series (SAOD_SR0) was added on the two predictors in predictive model. By applying a MLR model it is shown that the forecast can explain 27.4% of the total variation and has a RMSE of 74.2mm/season for long rainfall season while for the RARIMAE the forecast explains 53.6% of the total variation and has a RMSE of 59.4mm/season. By applying a MLR model it is shown that the forecast can explain 22.8% of the total variation and has a RMSE of 106.1 mm/season for short rainfall season predictive model while for the RARIMAE the forecast explains 55.1% of the total variation and has a RMSE of 81.1 mm/season. From such comparison, a significant rise in R-squared, a decrease of RMSE values were observed in RARIMAE models for both short rainfall and long rainfall season averaged time series. In terms of reliability, RARIMAE outperformed its MLR counterparts with better efficiency and accuracy. Therefore, whenever the data suffer from autocorrelation, we can go for MLR with ARIMA error, the ARIMA error part is more to correct the autocorrelation thereby improving the variance and productiveness of the model. N2 - Die nachteiligen Auswirkungen der Klimavariabilität auf Wasser, Landwirtschaft und Nahrungsressourcen in Ostafrika unterstreichen die Bedeutung einer zuverlässigen saisonalen Klimavorhersage. Um diese Schwierigkeit zu überwinden, wurden die Regression mit ARIMA-Fehlern (RARIMAE)-Methoden entwickelt. Die Anwendungen RARIMAE in der Literatur zeigen, dass die Zusammenführung verschiedener Methoden ein effizienter und effektiver Weg sein kann, um die Vorhersagen der betrachteten Zeitreihen zu verbessern. Aus dieser Motivation heraus wurde versucht, ein multiples lineares Regressionsmodell (MLR) und ein RARIMAE-Modell zur Vorhersage saisonaler Niederschläge in Ostafrika unter folgenden Zielsetzungen zu entwickeln: 1. Entwicklung eines MLR-Modells für die Vorhersage der saisonalen Regenfälle in Ostafrika. 2. Entwicklung eines RARIMAE-Modells für die saisonale Niederschlagsvorhersage in Ostafrika. 3. Vergleich der betrachteten Modelleffizienz Um die oben genannten Ziele zu erreichen, wurden die monatlichen Niederschlagsdaten für den Zeitraum von 1949 bis 2000 von der Climate Research Unit (CRU) bezogen. Daneben wurden die ersten differenzierten Klimaindizes als Prädiktoren verwendet. Im ersten Teil dieser Studie wurden die Niederschlagsschwankungen in der gesamten Region Zentral-Ostafrika, die sich über einen Längengrad von 15 Grad Ost bis 55 Grad Ost und einen Breitengrad von 15 Grad Süd bis 15 Grad Nord erstrecken, analysiert mit Hilfe von Karten gemacht. Für den Modellvergleich werden die Erklärte Varianz-Werte für das MLR-Modell von den R-Quadrat-Werten des RARIMAE-Modells abgezogen. Die Ergebnisse zeigen positive Werte, was darauf hinweist, die Erklärte Varianz durch das RARIMAE-Modell verbessert wird. Auf der anderen Seite werden die Root-Mean-Square-Error-Werte (RMSE) des RARIMAE-Modells von den RMSE-Werten des MLR-Modells subtrahiert und die Ergebnisse zeigen einen negativen Wert, der darauf hinweist, dass der RMSE durch das RARIMAE-Modell für Trainings- und Testdatensätze reduziert wird. Für den zweiten Teil dieser Studie umfasst das betrachtete Gebiet einen Längengrad von 31,5 Grad Ost bis 41 Grad Ost und einen Breitengrad von 3,5 Grad Süd bis 0,5 Grad Süd. Diese Region umfasst den Zentral-Osten der Demokratischen Republik Kongo (DRC), nördlich von Burundi, südlich von Uganda, Ruanda, nördlich von Tansania und südlich von Kenia. Betrachtet man ein Modell, das auf der Grundlage der durchschnittlichen Niederschlagszeitreihen in dieser Region erstellt wurde, zählt die lange Regensaison den neunmonatigen Vorsprung der ersten Hauptkomponente des indischen Meeresspiegeldrucks (SLP_PC19) und den neunmonatigen Vorsprung des Dipolmodus-Index (DMI_LR9) als ausgewählte Prädiktoren für statistische und prädiktive Modelle. Auf der anderen Seite zählt die kurze Regenzeit den dreimonatigen Vorsprung der ersten Hauptkomponente der indischen Meeresoberflächentemperatur (SST_PC13) und den dreimonatigen Vorsprung des Southern Oscillation Index (SOI_SR3) als Prädiktoren für das Vorhersagemodell. Für das statistische Modell der kurzen Regenzeit wurde die aktuelle SAOD-Zeitreihe (SAOD_SR0) zu den beiden Prädiktoren im Vorhersagemodell hinzugefügt. Durch die Anwendung eines MLR-Modells wird gezeigt, dass die Vorhersage 27,4 % der Gesamtvariation erklären kann und einen RMSE von 74,2 mm/Saison für eine lange Regenzeit hat, während die Vorhersage für RARIMAE 53,6% der Gesamtvariation erklärt und einen RMSE von 59,4 mm/Saison hat. Durch die Anwendung eines MLR-Modells wird gezeigt, dass die Vorhersage 22,8% der Gesamtvariation erklären kann und einen RMSE von 106,1 mm/Saison für das Vorhersagemodell für kurze Regenzeiten hat, während die Vorhersage für RARIMAE 55,1% der Gesamtvariation erklärt und a RMSE von 81,1 mm/Saison. Aus einem solchen Vergleich wurde ein signifikanter Anstieg die Erklärte Varianz und eine Abnahme der RMSE-Werte in RARIMAE-Modellen sowohl für die gemittelten Zeitreihen für kurze Regenfälle als auch für lange Regenzeiten beobachtet. In Bezug auf die Zuverlässigkeit übertraf RARIMAE seine MLR-Pendants mit besserer Effizienz und Genauigkeit. Wenn die Daten unter Autokorrelation leiden, können wir uns daher für MLR mit ARIMA-Fehler entscheiden. Der ARIMA-Fehlerteil dient mehr dazu, die Autokorrelation zu korrigieren, wodurch die Varianz und Produktivität des Modells verbessert wird. KW - Regression KW - Niederschlag KW - Telekonnektion KW - Precipitation KW - ARIMA KW - Teleconnection Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251831 ER - TY - JOUR A1 - Allignol, Arthur A1 - Schumacher, Martin A1 - Wanner, Christoph A1 - Drechsler, Christiane A1 - Beyersmann, Jan T1 - Understanding competing risks: a simulation point of view JF - BMC Medical Research Methodology N2 - Background: Competing risks methodology allows for an event-specific analysis of the single components of composite time-to-event endpoints. A key feature of competing risks is that there are as many hazards as there are competing risks. This is not always well accounted for in the applied literature. Methods: We advocate a simulation point of view for understanding competing risks. The hazards are envisaged as momentary event forces. They jointly determine the event time. Their relative magnitude determines the event type. 'Empirical simulations' using data from a recent study on cardiovascular events in diabetes patients illustrate subsequent interpretation. The method avoids concerns on identifiability and plausibility known from the latent failure time approach. Results: The 'empirical simulations' served as a proof of concept. Additionally manipulating baseline hazards and treatment effects illustrated both scenarios that require greater care for interpretation and how the simulation point of view aids the interpretation. The simulation algorithm applied to real data also provides for a general tool for study planning. Conclusions: There are as many hazards as there are competing risks. All of them should be analysed. This includes estimation of baseline hazards. Study planning must equally account for these aspects. KW - Cumulative incidence function KW - Clinical-trials KW - Sample-sizes KW - Regression KW - Subdistribution KW - Hazards KW - Model KW - Probabilities KW - Tests Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142811 VL - 11 IS - 86 ER - TY - JOUR A1 - Chen, Nanhai G. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Szalay, Aladar A. T1 - Replication efficiency of oncolytic vaccinia virus in cell cultures prognosticates the virulence and antitumor efficacy in mice JF - Journal of Translational Medicine N2 - Background: We have shown that insertion of the three vaccinia virus (VACV) promoter-driven foreign gene expression cassettes encoding Renilla luciferase-Aequorea GFP fusion protein, beta-galactosidase, and beta-glucuronidase into the F14.5L, J2R, and A56R loci of the VACV LIVP genome, respectively, results in a highly attenuated mutant strain GLV 1h68. This strain shows tumor specific replication and is capable of eradicating tumors with little or no virulence in mice. This study aimed to distinguish the contribution of added VACV promoter-driven transcriptional units as inserts from the effects of insertional inactivation of three viral genes, and to determine the correlation between replication efficiency of oncolytic vaccinia virus in cell cultures and the virulence and antitumor efficacy in mice Methods: A series of recombinant VACV strains was generated by replacing one, two, or all three of the expression cassettes in GLV 1h68 with short non coding DNA sequences. The replication efficiency and tumor cell killing capacity of these newly generated VACV strains were compared with those of the parent virus GLV-1h68 in cell cultures. The virus replication efficiency in tumors and antitumor efficacy as well as the virulence were evaluated in nu/nu (nude) mice bearing human breast tumor xenografts. Results: we found that virus replication efficiency increased with removal of each of the expression cassettes. The increase in virus replication efficiency was proportionate to the strength of removed VACV promoters linked to foreign genes. The replication efficiency of the new VACV strains paralleled their cytotoxicity in cell cultures. The increased replication efficiency in tumor xenografts resulted in enhanced antitumor efficacy in nude mice. Similarly, the enhanced virus replication efficiency was indicative of increased virulence in nude mice. Conclusions: These data demonstrated that insertion of VACV promoter-driven transcriptional units into the viral genome for the purpose of insertional mutagenesis did modulate the efficiency of virus replication together with antitumor efficacy as well as virulence. Replication efficiency of oncolytic VACV in cell cultures can predict the virulence and therapeutic efficacy in nude mice. These findings may be essential for rational design of safe and potent VACV strains for vaccination and virotherapy of cancer in humans and animals. KW - Recombinant vaccinia KW - Nude-mice KW - Cancer KW - GLV-1H68 KW - Therapy KW - Agent KW - Regression KW - Carcinoma KW - Deletion KW - Protein KW - modulation of virus replication KW - GI-101A tumor xenografts KW - oncolytic virotherapy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142268 VL - 9 IS - 164 ER -