TY - JOUR A1 - Dekant, Wolfgang A1 - Bridges, James T1 - Assessment of reproductive and developmental effects of DINP, DnHP and DCHP using quantitative weight of evidence JF - Regulatory Toxicology and Pharmacology N2 - Quantitative weight of evidence (QWoE) methodology utilizes detailed scoring sheets to assess the quality/reliability of each publication on toxicity of a chemical and gives numerical scores for quality and observed toxicity. This QWoE-methodology was applied to the reproductive toxicity data on diisononylphthalate (DINP), di-n-hexylphthalate (DnHP), and dicyclohexylphthalate (DCHP) to determine if the scientific evidence for adverse effects meets the requirements for classification as reproductive toxicants. The scores for DINP were compared to those when applying the methodology DCHP and DnHP that have harmonized classifications. Based on the quality/reliability scores, application of the QWoE shows that the three databases are of similar quality; but effect scores differ widely. Application of QWoE to DINP studies resulted in an overall score well below the benchmark required to trigger classification. For DCHP, the QWoE also results in low scores. The high scores from the application of the QWoE methodology to the toxicological data for DnHP represent clear evidence for adverse effects and justify a classification of DnHP as category 1B for both development and fertility. The conclusions on classification based on the QWoE are well supported using a narrative assessment of consistency and biological plausibility. KW - n-hexyl phthalate KW - male rats KW - dicyclohexyl phthalate KW - Diisononyl phthalate KW - in-vivo KW - 2-Generation reproduction KW - testosterone production KW - sexual development KW - risk-assesment KW - fetal testis KW - weight of evidence KW - classification and labeling KW - reproductive and developmental toxicity KW - quantitative assessments Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186750 VL - 81 ER - TY - JOUR A1 - Hoffmann, Linda S A1 - Schmidt, Peter M A1 - Keim, Yvonne A1 - Hoffmann, Carsten A1 - Schmidt, Harald H H W A1 - Stasch, Johannes-Peter T1 - Fluorescence Dequenching Makes Haem-Free Soluble Guanylate Cyclase Detectable in Living Cells JF - PLOS ONE N2 - In cardiovascular disease, the protective NO/sGC/cGMP signalling-pathway is impaired due to a decreased pool of NO-sensitive haem-containing sGC accompanied by a reciprocal increase in NO-insensitive haem-free sGC. However, no direct method to detect cellular haem-free sGC other than its activation by the new therapeutic class of haem mimetics, such as BAY 58-2667, is available. Here we show that fluorescence dequenching, based on the interaction of the optical active prosthetic haem group and the attached biarsenical fluorophor FlAsH can be used to detect changes in cellular sGC haem status. The partly overlap of the emission spectrum of haem and FlAsH allows energy transfer from the fluorophore to the haem which reduces the intensity of FlAsH fluorescence. Loss of the prosthetic group, e. g. by oxidative stress or by replacement with the haem mimetic BAY 58-2667, prevented the energy transfer resulting in increased fluorescence. Haem loss was corroborated by an observed decrease in NO-induced sGC activity, reduced sGC protein levels, and an increased effect of BAY 58-2667. The use of a haem-free sGC mutant and a biarsenical dye that was not quenched by haem as controls further validated that the increase in fluorescence was due to the loss of the prosthetic haem group. The present approach is based on the cellular expression of an engineered sGC variant limiting is applicability to recombinant expression systems. Nevertheless, it allows to monitor sGC's redox regulation in living cells and future enhancements might be able to extend this approach to in vivo conditions. KW - spontaneously hypersensitive-rats KW - nitric-oxide KW - down-regulation KW - energy-transfer KW - cyclic-gmp KW - protein KW - activation KW - identification KW - in-vivo KW - no Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139631 VL - 6 IS - 8 ER -