TY - THES A1 - Friedrich, Alexandra T1 - Beeinflussung des Na+-D-Glukose-Kotransporters SGLT1 und der Na+-Nukleosidtransporter CNT durch Peptidmotive des Regulatorproteins RS1 im Darm T1 - Effects of RS1-derived peptides on Na+-D-glucose cotransporter SGLT1 and Na+- nucleoside cotransporters CNTs in small intestine N2 - Der Natrium-D-Glukose Kotransporter 1 (SGLT1) spielt eine wichtige Rolle bei der Aufnahme von Glukose aus dem Darmlumen in die Enterozyten des Darms. Anhand von Untersuchungen an Xenopus laevis-Oozyten konnte in unserem Labor das Protein RS1 als posttranslationales Regulatorprotein für SGLT1 und diverse andere Transporter ermittelt werden. Es wurde eine regulatorische Domäne aus RS1 mit vielen potentiellen Phosphorylierungsstellen isoliert (RS1-Reg) und gezeigt dass RS1-Reg die Abschnürung von Transporter enthaltenen Vesikeln vom Transgolgi-Netzwerk hemmt. Neben SGLT1 reguliert RS1 auch die konzentrierenden Nukleosidtransporter (CNTs) am TGN. Die Regulation der Transporter ist vom Phosphorylierungszustand von RS1-Reg abhängig. So wurde durch Versuche an Oozyten von Xenopus laevis und Injektion von RS1-Reg Mutanten gezeigt, dass die Phosphorylierung von RS1-Reg an einigen Stellen zu einer Inhibition von SGLT1 führte, während der Nukleosidtransporter CNT1 durch die dephosphorylierte Mutante herunterreguliert wurden. Neben der phosphorylierungsabhängigen Regulation konnte für SGLT1 auch gezeigt werden, dass die Herunterregulation nur unter Niedrigzucker-Bedingungen erfolgte, nicht jedoch bei hohen Glukosekonzentrationen. Für die CNTs war eine derartige Zuckerabhängigkeit nicht zu beobachten. Im Rahmen der vorliegenden Studie wurde untersucht, ob die Ergebnisse aus den Oozytenmessungen auch in vivo in einem Säugetier gezeigt werden können. Hierzu wurden Mutanten der regulatorischen Domäne (RS1-Reg) des Maus-Proteins, welche den phosphorylierten Zustand simulierten (RS1-Reg (S19E)), oder die Phosphorylierung verhinderten (RS1-Reg (S19A)) eingesetzt. Diese wurden an ein Nanohydrogel gekoppelt, um eine Aufnahme in die Enterozyten im Darm zu gewährleisten. Es wurde in der RS1KO-Mausohne funktionelles RS1 gezeigt, dass auch im in vivo-System eine Herunterregulation von SGLT1 durch mRS1-Reg (S19E), nicht jedoch durch mRS1-Reg (S19A) erfolgte, während die CNTs nur durch mRS1-Reg (S19A) inhibiert wurden. Des Weiteren führte mRS1-Reg (S19A) in der Wildtypmaus bei niedrigen Zuckerkonzentrationen zu einer Stimulation von SGLT1, was für eine Kompetition mit dem endogenen RS1-Proteins spricht. Es konnte indirekt der Beweis erbracht werden, dass über Nanohydrogele längere Proteine in die Zelle gebracht werden können und dort funktionell freigesetzt werden. N2 - The Sodium-D-glucose cotransporter 1 (SGLT1) is important for the uptake of glucose from the intestinal lumen into the enterocytes. In experiments with Xenopus-laevis oocytes, which were performed in our laboratory, we identified protein RS1 as a regulatory protein for SGLT1. A sequence of 80 aminoacids was identified to be the regulatory domain of RS1 (RS1-Reg) and prevents the constriction of transporter-containing vesicles from the transgolgi-network (TGN). Besides SGLT1, RS1 is able to regulate concentrative nucleoside transporters (CNTs) and the organic cation transporter 2 (OCT2). The regulation of the transporters depends on the phosphorylation-state of RS1-Reg. While SGLT1 is inhibited by the phosphorylated form of the regulatory domain, CNTs are regulated by the dephosphorylated form. In addition, the regulation of SGLT1 depends on the glucose concentration of the cells. RS1 only inhibits SGLT1 under low glucose conditions, while the regulation of CNTs is independent of glucose. In the following study we analyzed whether the results of the oocyte measurements could be reproduced in vivo. For this, we used mutants of the mouse regulatory domain (mRS1-Reg). In one mutant, the phosphorylation was mimicked (mRS1-Reg (S19E)), in a second mutant, phosphorylation was prevented (mRS1-Reg (S19A)). The mutants were coupled to nanohydrogels, to enable the uptake into enterocytes. By usage of a mouse-strain without functional RS1 and a wildtype-mouse-strain, I was able to discriminate between direct effects of the mutant and competition of mutants with endogenous RS1. Only mRS1-Reg (S19E) down regulates SGLT1, but not mRS1-Reg (S19A), while CNTs were downregulated by mRS1-Reg (S19A) but not by mRS1-Reg (S19E). In the wildtype-mouse mRS1-Reg (S19A) leads to an increase of SGLT1-activity which could be due to a competition with the endogenous RS1. The fact, that some peptides were able to regulate transporters leads to the conclusion, that longer proteins can be transported into cells by nanohydrogels and that these proteins are released in the cells in a functional active state. KW - Glucosetransport KW - SGLT1 KW - RS1 KW - Regulation KW - Glatter Krallenfrosch KW - Oozyte KW - Glucosetransportproteine KW - Darm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127394 ER - TY - THES A1 - Schulz, Alexander T1 - Molekulare Mechanismen des protonengekoppelten Zuckertransportes in Mesophyllvakuolen von Arabidopsis thaliana T1 - Molecular mechanism of the proton-coupled sugar transport in mesophyll vacuoles of Arabidopsis thaliana N2 - Im Rahmen dieser Arbeit konnten neue Erkenntnisse zum Zuckertransport über die Vakuolenmembran von Arabidopsis thaliana sowie dessen Energetisierung durch die V-ATPase erlangt werden. Hierfür wurden Patch-Clamp-Experimente konzipiert, die eine direkte Erfassung der Transportmechanismen, Transporteigenschaften sowie Triebkräfte des vakuolären Zuckertransportes ermöglichten. Zusätzlich wurden Lokalisations- und Interaktionsstudien zu ausgewählten Transportern mit Hilfe der konfokalen Laser Scanning Mikroskopie durchgeführt. Im Einzelnen wurden folgende Aspekte hinsichtlich des pflanzlichen Zuckertransports und dessen Energetisierung bearbeitet. Mittels der Patch-Clamp-Technik konnten vakuoläre glucose- und saccharose-induzierte Protonen-Transportkapazitäten in Mesophyllvakuolen von Wildtyp-pflanzen aufgelöst werden, die eindeutig einen Antiportmechanismus für beide Zucker zur Beladung der Vakuole vorschlagen. Dabei zeigten die Glucose- und Saccharoseantiporter eine geringe Affinität und hohe Transportkapazität für den jeweiligen Zucker. Auf molekularer Ebene konnte die protonengekoppelte Glucose- und Saccharoseaufnahme in die Vakuolen maßgeblich dem putativen Monosaccharid¬transporter AtTMT1/2 zugeordnet werden, der folglich als erster Glucose-Saccharose/Protonen-Antiporter identifiziert wurde. Im Zuge dieser Untersuchungen wurden der Zucker- und der pH-Gradient als Triebkräfte der Zuckertransportaktivität herausgearbeitet. In diesem Zusammenhang konnte ferner ein Beitrag zur quan¬titativen Charakterisierung der V-ATPase geleistet werden, welche den Einfluss der V-ATPase aufgrund ihrer pH-abhängigen H+-Pumpaktivität auf die pH-Homöostase belegt. Demzufolge scheint die V-ATPase als pH-regulierter Energielieferant für die Zuckertransporter zu fungieren. Darüber hinaus wurde die mitogenaktivierte Proteinkinase AtVIK1 als potentieller Regulationsfaktor von AtTMT1 identifiziert. Dies gelang durch den Nachweis einer spezifischen physikalischen Interaktion zwischen AtTMT1 und AtVIK1 mittels der Bimolekularen Fluoreszenzkomplemen¬tation. Neben der AtTMT1/2-vermittelten Aufnahme der beiden Zucker Glucose und Saccharose wurde ebenso die Zuckerentlassung aus der Vakuole näher charakterisiert. Mit Hilfe vergleichender Patch-Clamp-Analysen von verschiedenen Zuckertransporter-Verlustmutanten konnte AtERDl6 als Glucose/Protonen-Symporter identifiziert werden, der sich für den Glucoseexport aus der Vakuole verantwortlich zeigt. In Bezug auf den Saccharosetransport aus der Vakuole konnte erstmals die Saccharose/Protonen-Symportfunktion von AtSUC4 in planta nach dessen transienter Überexpression in Zuckertransporter-Verlustmutanten eindeutig aufgelöst und nachgewiesen werden. Desweiteren offenbarten die hier erlangten Ergebnisse bezüglich der Glucose/Saccharose-Beladung und -Entladung von Mesophyllvakuolen, dass weitere protonengekoppelte Zuckertransporter, neben AtTMT1/2 and AtERDl6, in diesem Zelltyp existieren, deren molekulare Natur es jedoch noch gilt herauszufinden. N2 - This work provides new insights into the sugar transport across the vacuolar membrane of Arabidopsis thaliana and its energization by the V-ATPase. For this, patch-clamp experiments were specifically designed enabling low-resolution current recordings for the direct detection and characterization of the transport mechanisms, transport properties and driving forces of the vacuolar sugar transport. In addition, localization and interaction studies on selected transporters have been performed by using the confocal laser scanning microscopy. In particular, following aspects of plant sugar transport and its energization were studied. In patch-clamp experiments on mesophyll vacuoles of wild type plants, prominent glucose- and sucrose-induced proton transport capacities were resolved, which could be clearly related to an antiport mechanism used for loading the vacuole with both sugars. Thereby, the vacuolar glucose and sucrose antiporter showed a low-affinity and a high transport-capacity for the respective sugar. On the molecular level, the proton-coupled uptake of both sugars, glucose and sucrose, into the vacuole could be mainly associated with the putative monosaccharide transporter AtTMT1/2, which was consequently identified as the first glucose-sucrose/proton-antiporter. In the course of these studies, the sugar- and the pH-gradient were revealed as driving forces of the sugar transport activity. In this context, a contribution was made to a quantitative characterization of the V-ATPase that proved the influence of the V-ATPase on the pH homeostasis based on the pH dependency of the H+-pump activity. Hence, the V-ATPase seems to function as a pH-regulated energy source for the sugar transporters. Moreover, a specific physical interaction between AtTMT1 and the mitogen-activated protein kinase AtVIK1 was detected via bimolecular fluorescence complementation assays identifiying AtVIK1 as a potential regulatory factor of AtTMT1. Beside the AtTMT1/2-mediated glucose and sucrose uptake into the vacuole, the sugar release from the vacuole was also characterized. By means of comparative patch-clamp studies on mutants lacking different sugar transporters, AtERDl6 was identified as glucose/proton symporter and appears to be responsible for glucose export from the vacuole. Concerning the export of sucrose out of the vacuole, for the first time direct evidence for the sucrose/proton symport function of AtSUC4 in planta was provided after its transient overexpression in certain sugar-transporter knockout lines. Furthermore, the studies on wild type and sugar-transporter knockout lines regarding vacuolar glucose/sucrose loading and unloading also revealed that in addition to AtTMT1/2 and AtERDl6 further proton-coupled sugar transporters - of yet unknown molecular identity - must be present in mesophyll cells. KW - Ackerschmalwand KW - Vakuole KW - Saccharose KW - Glucose KW - Mesophyll KW - Protonenpumpe KW - AtTMT1/2 KW - AtSUC4 KW - AtERDl6 KW - V-ATPase KW - Mesophyllvakuole KW - Glucose/Saccharose Transport KW - Antiport KW - Symport KW - AtTMT1/2 KW - AtSUC4 KW - AtERDl6 KW - V-ATPase KW - mesophyll vacuole KW - glucose/sucrose transport KW - antiport KW - symport KW - Glucosetransport Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85596 ER -