TY - THES A1 - Winterfeldt, Carsten T1 - Generation and control of high-harmonic radiation T1 - Erzeugung und Kontrolle Hoher Harmonischer N2 - High-harmonic generation provides a powerful source of ultrashort coherent radiation in the XUV and soft-x-ray range, which also allows for the production of attosecond light pulses. Based on the unique properties of this new radiation it is now possible to perform time-resolved spectroscopy at high excitation energies, from which a wide field of seminal discoveries can be expected. Since the exploration and observation of the corresponding processes in turn are accompanied by the desire to control them, this work deals with new ways to manipulate and characterize the properties of these high-harmonic-based soft-x-ray pulses. After introductory remarks this work first presents a comprehensive overview over recent developments and achievements on the field of the control of high-harmonic radiation in order to classify the experimental results obtained in this work. These results include the control of high-harmonic radiation both by temporally shaping and by manipulating the spatial properties of the fundamental laser pulses. In addition, the influence of the conversion medium and of the setup geometry (gas jet, gas-filled hollow fiber) was investigated. Using adaptive temporal pulse shaping of the driving laser pulse by a deformable mirror, this work demonstrates the complete control over the XUV spectrum of high harmonics. Based on a closed-loop optimization setup incorporating an evolutionary algorithm, it is possible to generate arbitrarily shaped spectra of coherent soft-x-ray radiation in a gas-filled hollow fiber. Both the enhancement and suppression of narrowband high-harmonic emission in a selected wavelength region as well as the enhancement of coherent soft-x-ray radiation over a selectable extended range of harmonics (multiple harmonics) can be achieved. Since simulations that do not take into account spatial properties such as propagation effects inside a hollow fiber cannot reproduce the experimentally observed high contrast ratios between adjacent harmonics, a feedback-controlled adaptive two-dimensional spatial pulse shaper was set up to examine selective fiber mode excitation and the optimization of high-harmonic radiation in such a geometry. It is demonstrated that different fiber modes contribute to harmonic generation and make the high extent of control possible. These results resolve the long-standing issue about the controllability of high-harmonic generation in free-focusing geometries such as gas jets as compared to geometries where the laser is guided. Temporal pulse shaping alone is not sufficient. It was possible to extend the cutoff position of harmonics generated in a gas jet, however, selectivity cannot be achieved. The modifications of the high-harmonic spectrum have direct implications for the time structure of the harmonic radiation, including the possibility for temporal pulse shaping on an attosecond time scale. To this end, known methods for the temporal characterization of optical pulses and high-harmonic pulses (determination of the harmonic chirp on femtosecond and attosecond time scales) were introduced. The experimental progress in this work comprises the demonstration of different setups that are in principle suitable to determine the time structure of shaped harmonic pulses based on two-photon two-color ionization cross-correlation techniques. Photoelectron spectra of different noble gases generated by photoionization with high-harmonic radiation reproduce the spin-orbit splitting of the valence electrons and prove the satisfactory resolution of our electron time-of-flight spectrometer for the temporal characterization of high harmonics. Unfortunately no positive results for this part could be achieved so far, which can probably be attributed mainly to the lack of the focusability of the high harmonics and to the low available power of our laser system. However, we have shown that shaping the high-harmonic radiation in the spectral domain must result in modifications of the time structure on an attosecond time scale. Therefore this constitutes the first steps towards building an attosecond pulse shaper in the soft-x-ray domain. Together with the ultrashort time resolution, high harmonics open great possibilities in the field of time-resolved soft-x-ray spectroscopy, for example of inner-shell transitions. Tailored high-harmonic spectra as generated in this work and shaped attosecond pulses will represent a multifunctional toolbox for this kind of research. N2 - Die Erzeugung von Hohen Harmonischen stellt eine leistungsfähige Quelle ultrakurzer und kohärenter Strahlung im extremen Ultraviolett- und weichen Röntgenbereich dar, die auch die Erzeugung von Attosekundenlichtimpulsen erlaubt. Durch die einzigartigen Eigenschaften dieser neuen Strahlung ist es nun möglich, zeitaufgelöste Spektroskopie mit hohen Anregungsenergien durchzuführen, was eine Vielzahl bahnbrechender Entdeckungen erwarten lässt. Da die Erforschung und Beobachtung entsprechender Prozesse gekoppelt sind mit dem Wunsch, diese zu kontrollieren, beschäftigt sich die vorliegende Arbeit mit Wegen, die Eigenschaften dieser Röntgenpulse aus Hohen Harmonischen zu manipulieren und zu charakterisieren. Nach einleitenden Bemerkungen gibt diese Arbeit zunächst einen umfassenden Überblick über neueste Entwicklungen und Ergebnisse auf dem Gebiet der Kontrolle von Hohen Harmonischen, um die in dieser Arbeit erreichten experimentellen Ergebnisse einordnen zu können. Diese beinhalten die Kontrolle der Strahlung von Hohen Harmonischen sowohl durch die zeitliche Formung als auch durch die Manipulation der räumlichen Eigenschaften der fundamentalen Laserpulse. Untersucht wurde auch der Einfluss des Konversionsmediums und der Geometrie des Aufbaus (Gasstrahl, gasgefüllte Hohlfaser). Durch adaptive zeitliche Pulsformung der erzeugenden Laserpulse mit Hilfe eines deformierbaren Spiegels zeigt die vorliegende Arbeit die komplette Kontrolle über das XUV-Spektrum von Hohen Harmonischen. Basierend auf einem Optimierungsexperiment mit einer Rückkopplungsschleife und einem evolutionären Algorithmus ist es möglich, willkürlich geformte Spektren von kohärenter Strahlung im weichen Röntgenbereich in einer gasgefüllten Hohlfaser zu erzeugen. Sowohl die Steigerung und Unterdrückung von schmalbandiger Hohen-Harmonischen-Strahlung über einen ausgewählten Wellenlängenbereich als auch die Verstärkung von kohärenter weicher Röntgenstrahlung über einen wählbaren ausgedehnten Bereich von Harmonischen können erreicht werden. Da Simulationen ohne die Berücksichtigung von räumlichen Eigenschaften wie zum Beispiel Propagationseffekten in einer Hohlfaser die experimentell beobachteten hohen Kontrastverhältnisse zwischen benachbarten Harmonischen nicht reproduzieren konnten, wurde ein rückkopplungsgesteuerter zweidimensionaler räumlicher Pulsformer in Betrieb genommen, um die gezielte Anregung von Fasermoden und die Optimierung von Hohen Harmonischen in einer solchen Geometrie zu untersuchen. Es wird gezeigt, dass verschiedene Fasermoden zur Erzeugung von Harmonischen beitragen und erst das hohe Maß an Kontrolle ermöglichen. Diese Ergebnisse lösen eine lang bestehende Frage nach der Kontrollierbarkeit der Erzeugung von Hohen Harmonischen in Geometrien mit einem freien Fokus wie zum Beispiel in Gasstrahlen im Vergleich zu Geometrien, in denen der Laser geführt wird. Zeitliche Pulsformung allein reicht nicht aus. In einem Gasstrahl konnten zwar beispielsweise die höchsten erzeugten Harmonischen zu kürzeren Wellenlängen hin verschoben werden, eine Selektivität ist jedoch nicht möglich. Die Modifizierungen des Spektrums von Hohen Harmonischen haben direkte Auswirkungen auf die Zeitstruktur der Harmonischen-Strahlung, einschließlich der Möglichkeit für zeitliche Pulsformung im Attosekundenbereich. Dazu wurden bekannte Methoden zur zeitlichen Charakterisierung von optischen Pulsen und Hohen-Harmonischen-Pulsen vorgestellt. Der experimentelle Fortschritt in dieser Arbeit beinhaltet die Demonstration von verschiedenen Aufbauten, die im Prinzip geeignet sind, die Zeitstruktur von geformten Harmonischen-Pulsen mit Kreuzkorrelationsmethoden durch Zwei-Photonen-zwei-Farben-Ionisation zu bestimmen. Photoelektronenspektren verschiedener Edelgase, die durch Photoionisation mit der Hohen-Harmonischen-Strahlung erzeugt wurden, können die Spin-Bahn-Aufspaltung der Valenzelektronen reproduzieren und belegen die ausreichende Auflösung unseres Elektronen-Flugzeit-Spektrometers zur zeitlichen Charakterisierung von Hohen Harmonischen. Leider konnten bislang keine positiven Ergebnisse zu diesem Teil erzielt werden, was sich wohl hauptsächlich auf die fehlende Fokussierbarkeit der Harmonischen und die zu niedrige zur Verfügung stehende Leistung unseres Lasersystems zurückführen lässt. Wir haben jedoch gezeigt, dass die Formung der Hohen-Harmonischen-Strahlung im Spektralbereich Veränderungen der Zeitstruktur auf Attosekundenzeitskalen nach sich ziehen muss. Dies stellt daher erste Schritte in Richtung des Baus eines Attosekundenpulsformers im weichen Röntgenbereich dar. Zusammen mit der ultrakurzen Zeitauflösung eröffnen Hohe Harmonische daher viele Möglichkeiten auf dem Gebiet der zeitaufgelösten Spektroskopie im weichen Röntgenbereich, beispielsweise bei Innenschalen-Übergängen. Maßgeschneiderte Spektren von Hohen Harmonischen, wie sie in dieser Arbeit erzeugt werden konnten, und geformte Attosekundenpulse werden dabei vielseitige Werkzeuge darstellen. KW - Frequenzvervielfachung KW - Ultrakurzer Lichtimpuls KW - Attosekundenbereich KW - Adaptivregelung KW - Erzeugung Hoher Harmonischer KW - Wechselwirkung intensiver Laserpulse mit Materie KW - adaptive Kontrolle KW - Pulsformung KW - ultraschnelle Optik KW - high-harmonic generation KW - high-intensity laser-matter interaction KW - adaptive control KW - pulse shaping KW - ultrafast optics Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20309 ER - TY - THES A1 - Walter, Dominik T1 - Adaptive Control of Ultrashort Laser Pulses for High-Harmonic Generation T1 - Adaptive Kontrolle ultrakurzer Laserpulse zur Erzeugung Hoher Harmonischer N2 - The generation of high harmonics is an ideal method to convert frequencies of the infrared- or visible range into the soft x-ray range. This process demands high laser intensities that are nowadays supplied by femtosecond laser systems. As the temporal and spatial coherence properties of the laser are transferred during the conversion process, the generated high harmonics will propagate as a beam with high peak-brightness. Under ideal conditions the generation of soft-x-ray pulses shorter than one femtosecond is possible. These properties are exploited in many applications like time-resolved x-ray spectroscopy. The topic of this thesis is the generation and optimization of high harmonics. A variety of conversion setups is investigated (jet of noble gas atoms, gas-filled hollow-fiber, water microdroplets) and theoretical models present ideas to further enhance the conversion efficiency (using excited atoms or aligned molecules). In different setups the peak intensity of the fundamental laser pulses is increased by spectral broadening and subsequent temporal compression. This is achieved with the help of pulse shaping devices that can modify the spectral phase and therefore also the temporal intensity distribution of laser pulses. These pulse shaping devices are controlled by an evolutionary algorithm. With this setup not only adaptive compression of laser pulses is possible, but also the engineering of specific laser pulse shapes to optimize an experimental output. This setup was used to influence the process of high harmonic generation. It is demonstrated that the spectral distribution of the generated soft-x-ray radiation can be controlled by temporal pulse shaping. This method to tailor high harmonics is complemented by spatial shaping techniques. These findings demonstrate the realization of a tunable source of soft-x-ray radiation. N2 - Die Erzeugung hoher Harmonischer ist eine ideale Methode zur Frequenzkonversion von Licht aus dem sichtbaren- oder Infrarotbereich in den weichen Röntgenbereich. Für diesen Prozess werden hohe Laserintensitäten benötigt, die heutzutage von Femtosekundenlasersystemen bereitgestellt werden können. Da die zeitlichen und räumlichen Kohärenzeigenschaften des Lasers während der Ereugung der hohen Harmonischen Frequenzen nicht verlorengehen, erhält man unter geeigneten Bedingungen räumlich gerichete Pulse weicher Röntgenstrahlung mit Pulsdauern unter einer Femtosekunde. Die hohe Frequenz der erzeugten Strahlung und die kurze Zeitstruktur sind für eine Vielzahl von Anwendungen von grossem Nutzen, z.B. der zeitaufgelösten Röntgenspektroskopie. Die vorliegende Arbeit beschäftigt sich insbesondere mit der Erzeugung und Optimierung Hoher Harmonischer. Es werden experimentelle Ergebnisse unterschiedlicher Aufbauten zur Frequenzkonversion untersucht (Gas Strahl aus Edelgasatomen, gasgefüllte Hohlfaser, Wasser-Mikrotröpfchen) und theoretische Modelle zur effizienteren Erzeugung hoher Harmonischer (Erzeugung in angeregten Atomen oder ausgericheten Molekülen). Um die zur Verfügung stehende Laserintensität weiter zu erhöhen, werden verschiedene Aufbauten zur spektralen Verbreiterung und anschliessenden zeitlichen Kompression genutzt. Dabei kommen Pulsformer zum Einsatz, mit denen sich die spektrale Phase der Laserpulse, und damit gleichzeitig deren zeitlicher Intensitätsverlauf, kontrollieren lässt. Die Pulsformer werden von einem evolutionären Algorithmus gesteuert, wodurch beispielsweise eine automatisierte Pulskompression möglich ist oder Pulsformen erzeugt werden können, die gezielt das Ergebnis eines Experimentes optimieren. Mithilfe eines solchen adaptiven optischen Aufbaus ist es möglich auch den Prozess der Erzeugung hoher Harmonischer zu beeinflussen. Wie gezeigt wird, lässt dich damit die spektrale Verteilung hoher Harmonischer steuern. Der Grad an Kontrolle der erzeugten Strahlung kann durch räumliche Pulsformung noch weiter erhöht werden. Somit ist eine durchstimmbare Quelle köhärenter weicher Röntgenstrahlung realisiert. KW - Frequenzvervielfachung KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Adaptivregelung KW - ultrakurz KW - Hohe Harmonische KW - Pulsformung KW - Evolutionärer Algorithmus KW - Adaptive Optimierung KW - ultrashort KW - high harmonic generation KW - pulse shaping KW - evolutionary algorithm KW - adaptive optimization Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21975 ER - TY - THES A1 - Vogt, Gerhard Sebastian T1 - Adaptive Femtosekunden-Quantenkontrolle komplexer Moleküle in kondensierter Phase T1 - Asaptive femtosecond quantum control of complex molecules in the condensed phase N2 - Die Bildung verschiedener Isomere durch Änderung der molekularen Struktur spielt eine wichtige Rolle in vielen Gebieten der Physik, Chemie und Biologie. Die Kontrolle dieser Reaktionen ist daher eine sehr interessante Herausforderung und von großer Bedeutung für viele verschiedene Bereiche. Die Entwicklung der letzten Jahre hat gezeigt, dass adaptive Femtosekunden Quantenkontrolle eine ausgesprochen geeignete Methode ist, um chemische Reaktionen zu kontrollieren. Die vorliegende Arbeit behandelt die Beobachtung und Kontrolle von solchen Isomerisierungsreaktionen in biologisch und chemisch relevanten Systemen. Dazu wurde die Reaktionsdynamik eines in Methanol gelösten Modellmoleküls mittlerer Größe mittels transienter Absorption, Fluorescence Upconversion und Anisotropie Spektroskopie untersucht. In Kooperation mit F. Santoro und R. Improta konnte eine detaillierte Beschreibung der ablaufenden Prozesse gefunden werden. In Übereinstimmung mit den von ihnen durchgeführten quantenmechanischen Simulationen hat sich herausgestellt, dass sich die Dynamik auf der ersten angeregten Potentialfläche nach der Anregung auf zwei Zeitskalen abspielt. Nach dem Passieren einer konische Durchschneidung isomerisiert das Molekül entweder zum thermodynamisch stabileren trans Isomer oder zu den instabileren Produktisomeren. An diesem System wurden nun adaptive Femtosekunden Quantenkontrollexperimente durchgeführt, mit dem Ziel den Isomerisierungsprozess zu beeinflussen. Es konnte erfolgreich gezeigt werden, dass die Isomerisierungseffizienz (die relative Menge von Edukt- zu Produktisomeren) sowohl erhöht als auch verringert werden kann. Einzel-Parameter Kontrollmechanismen wie zum Beispiel das Verwenden verschieden gechirpter Anregeimpulse oder unterschiedlicher Anregeimpulsenergien ergaben einen nur geringen Einfluss auf die Isomerisierungseffizienz. Diese Kontrollstudien über den Isomerisierungsprozess haben weiterführende Experimente an dem sehr komplexen biologischen System Retinal innerhalb des Proteins Bakteriorhodopsin motiviert. Die traditionelle Anrege-Abrege-Abfrage Technik wurde zu einem neuen Anrege-geformten-Abrege-Abfrage Konzept erweitert. Dadurch können molekulare Systeme in den Regionen der Potentialenergie-Landschaft kontrolliert werden, in denen der entscheidende Reaktionsschritt stattfinded. Verschiedene theoretische Berechnungen zum Problem der Erhöhung der Isomerisierungseffizienz stellen in Aussicht, dass Anrege-Abrege-Wiederanrege-Abfrage Mechanismen eine Möglichkeit der effektiven Beeinflussung der Reaktionsdynamik eröffnen. Mit der weiterentwickelten Methode können solche Vier-Puls-Techniken realisiert und ihr Einfluss auf den Reaktionsprozess systematisch untersucht werden. Zusätzlich wurde mittels Variation von parametrisierten spektralen Phasenfunktionen, wie verschiedene Ordnungen Chirp, die Dynamik des Abregungsprozesses beleuchtet. Durch Formen des Abregungsimpulses mittels adaptiver Femtosekunden Quantenkontrolle wurden die Informationen aus den systematische Untersuchung vervollständigt. Häufig sind die aus einem adaptiven Femtosekunden Quantenkontrollexperiment erhaltenen optimalen Laserimpulsformen sehr kompliziert. Besonders Anrege-Abrege Szenarien spielen oft eine wichtige Rolle in den ermittelten optimalen Lösungen und sollten daher gesondert untersucht werden. Dazu können verschiedenfarbige Doppelimpulse verwendet werden, bei denen man sowohl den Pulsabstand als auch die relative Amplitude oder die Phasendifferenz der beiden Einzellpulse systematisch ändert. Diese weiterentwickelte Methode wurde mittels einfacher Experimente charakterisiert. In einem weiteren Schritt wurde ein Aufbau entworfen, der Doppelimpulse erfordert, um ein maximale Ausbeute von Licht bei einer Wellenlänge von 266~nm zu erhalten. Mit dem Kontrollziel der maximalen dritten Harmonischen Ausbeute wurden adaptive Femtosekunden Quantenkontrollexperimente durchgeführt. Durch zusätzliche Messungen von verschiedenfarbigen Doppelimpuls-Kontrolllandschaften konnte die optimale Pulsform ermittelt und bestätigt werden. In einem abschließenden Experiment wurde die Abhängigkeit der Anregeeffizienz eines komplexen, in Methanol gelösten Farbstoffmoleküls auf verschiedene Impulsformen untersucht. Aus den Ergebnissen wird ersichtlich, dass sehr unterschiedliche Impulsformen ein Kontrollziel ähnlich gut erfüllen können. Verschiedenfarbige Doppelimpuls-Kontrolllandschaften können einen Einblick in Kontrollmechanismen von adaptiv gefundenen Impulsformen ermöglichen und Informationen über die Reaktionsdynamik liefern. Mittels der angewandten und weiterentwickelten Methoden mehr über verschiedene Prozesse unterschiedlicher Molekülklassen zu lernen ist ein viel versprechendes und realistisches Ziel für die Zukunft. Die präsentierten Experimente zeigen, dass es möglich ist, geometrische Änderungsreaktionen in chemisch und biologisch relevanten Systemen durch adaptive Femtosekunden Quantenkontrolle zu steuern. N2 - The formation of different isomers by rearrangement of the molecular structure plays a substantial role in many areas in physics, chemistry and biology. The control of such reactions is therefore a very appealing task. Directly connected to the control is the observation and characterization of the dynamics. Within the last years, adaptive femtosecond quantum control has proven to be a very powerful tool to control chemical reactions. Prototype experiments based on simple reactions already have shown that the concept of femtosecond quantum control is also applicable for molecules in a condensed environment. This thesis deals with the observation and control of such isomerization reactions in chemically and biologically relevant systems. Therefore the reaction dynamics of a medium size prototype molecule of the family of the cyanine dyes in solution were investigated by transient absorption spectroscopy, by fluorescence upconversion and by anisotropy spectroscopy. In cooperation with F. Santoro and R. Improta a detailed and reliable description of the overall kinetics was achieved, evidencing a two-timescale dynamics on the first excited potential energy surface after excitation. After decaying through a conical intersection, the molecule isomerizes either to the thermodynamically most stable trans isomer or to two less stable product isomers. Adaptive femtosecond quantum control experiments were performed on this system with the objective to control the isomerization process. Both enhancement as well as reduction of the isomerization efficiency, i.e the relative yield of the educt to the product isomers, were achieved. Single parameter control mechanisms such as applying different chirps or varying the excitation laser pulse energy failed to change the ratio of the photoproducts. These control studies on the isomerization process of a medium size molecule in the condensed phase motivated experiments on the very complex biological system of retinal embedded in bacteriorhodopsin. The traditional pump-dump-probe method was extended to a new pump-shaped-dump-probe scheme to control molecular systems in those regions of the potential-energy landscape where the decisive reaction step occurs. Different theoretical simulations on the enhancement of the isomerization yield predict that pump-dump-repump-probe mechanisms can control the reaction dynamics. Using the novel scheme, such a four-pulse technique with a double-pulse-like shaped dump pulse can be realized and its impact on the reaction process can be systematically investigated. With further parameterized scans of specialized phase functions, such as different orders of chirp, the dynamics of the dumping process has been illuminated. Finally by adaptively shaping the dump pulse the information from the systematic scan has been refined and completed. Very often, adaptively obtained optimal laser pulse shapes are very complicated and can contain structures, that contribute to a certain control mechanism to different degrees. Consequently, it can be difficult to identify the control mechanism of such optimal pulses. Especially pump-dump scenarios often play an important role in the acquired optimal solution and therefore deserve to be investigated separately. For this, colored double pulses are employed and both the pulse separation and the relative amplitude or phase difference of the two subpulses are systematically scanned. This further developed method was first characterized by simple experiments. Then, a setup forcing double-pulses to obtain the highest third harmonic yield was designed. The control objective of maximizing the third harmonic yield has the advantage that the optimal pulse shape can be calculated and intuitively understood. Adaptive femtosecond quantum control experiments were performed with this control objective. With additional measurements of colored double-pulse control landscapes the control mechanism of the adaptively obtained optimal pulse shape can be extracted and confirmed. In a further experiment, the dependence of the excitation efficiency of a complex dye molecule dissolved in methanol on selected pulse shapes probed by transient absorption spectroscopy was studied. The results show that very different pulse shapes are equally adequate to fulfill the control objective. Colored double pulse scans thus can give an insight into the control mechanism of adaptively obtained pulse shapes and provide information about reaction dynamics. Investigations on various processes of different molecular classes using the methods developed and applied here are a promising and realistic goal for the near future. The presented experiments demonstrate a successful manipulation of geometrical rearrangement reactions in chemically and biologically relevant systems by adaptive femtosecond quantum control. KW - Molekül KW - Isomerisierungsreaktion KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Adaptivregelung KW - Isomerizierung KW - Quantenkontrolle KW - transiente Absorption KW - kondensierte Phase KW - flüssige Phase KW - isomerization KW - quantum control KW - transiente absorption spectroscopy KW - condensed phase KW - liquid phase Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20222 ER -