TY - THES A1 - Haddad, Daniel T1 - Hochfeld 1H-NMR-Mikroskopie zur biophysikalischen Grundlagenforschung T1 - High Field 1H-NMR-Microscopy for Basic Biophysical Research N2 - Dank der mit modernen NMR-Spektrometern (Kernspintomographen) routinemäßig realisierbaren isotropen räumlichen Auflösungen von wenigen Mikrometern, ergeben sich für die 1H NMR-Mikroskopie zahlreiche neue Anwendungsgebiete. Allerdings sind die Möglichkeiten und Grenzen der NMR-Mikroskopie bezüglich ihrer praktischen Anwendbarkeit bisher nur wenig untersucht worden. Die vorliegende Arbeit ist im Bereich der biophysikalischen Grundlagenforschung angesiedelt und soll die praktische Anwendbarkeit der NMR-Mikroskopie auf neuen medizinischen und biologischen Anwendungsgebieten anhand von ausgewählten Beispielen aus diesen Bereichen demonstrieren. Die einzelnen Projekte besitzen deswegen immer auch den Charakter von Machbarkeitsstudien, die aufzeigen sollen, welche Möglichkeiten und Vorteile die NMR-Mikroskopie im Vergleich zu etablierten Untersuchungsmethoden bietet. Im Detail wurden unterschiedliche lebende und fixierte biologische Proben mittels NMR-Mikroskopie zerstörungsfrei und räumlich hochaufgelöst dargestellt. Dabei variierte die spezielle Zielsetzung von der Visualisierung der Invasion eines Tumorsphäroiden in ein Zellaggregat anhand von T2-Parameterkarten (Zeitkonstante der Spin-Spin-Relaxation) über die dreidimensionale Darstellung des Gehirns der Honigbiene in der intakten Kopfkapsel bis hin zur nicht-invassiven Abbildung der Anatomie prenataler Delphine. Für alle durchgeführten Projekte war der nicht-invasive Charakter der NMR-Experimente von entscheidender Bedeutung. Die zu beobachtende Tumorinvasion durfte nicht durch die Messung beeinflusst werden, das Bienengehirn sollte möglichst naturgetreu abgebildet werden, und die untersuchten Delphine sind seltene Museumsstücke, die nicht zerstört werden durften. Die verschiedenen Proben wurden mit der jeweils bestmöglichen räumlichen Auflösung visualisiert, die sich entweder durch das minimal nötige Signal-zu-Rausch-Verhältnis (SNR) oder durch die zur Verfügung stehende Messzeit ergab. Um einzelne feine Strukturen in den Bildern auflösen zu können, mussten sowohl das SNR, als auch das Kontrast-zu-Rausch-Verhältnis optimiert werden. Die Messungen wurden an Hochfeld-NMR-Spektrometern bei 500 und 750 MHz durchgeführt, um das für die hohe Auflösung notwendige SNR zu gewährleisten. Mit den Experimenten konnten zahlreiche Fragen bezüglich mikroskopischer Details der verschiedenen untersuchten Proben nicht-invasiv beantworten werden. Gleichzeitig führten sie zu neuen interessanten Fragestellungen bezüglich der NMR-Mikroskopie an fixierten Proben. Darüber hinaus konnte die praktische Anwendbarkeit der NMR-Mikroskopie als Alternative bzw. Ergänzung zu herkömmlichen Untersuchungsmethoden wie der konfokalen Lasermikroskopie bei der Visualisierung des Bienengehirns und der konventionellen Histologie bei der Untersuchung der Anatomie der prenatalen Delphine demonstriert werden. Durch die Untersuchung der speziellen Vorteile und der Grenzen der Anwendung der NMR-Mikroskopie gegenüber den herkömmlichen Untersuchungsmethoden konnte konkret der praktische Nutzen ihres Einsatzes aufgezeigt und Ergebnisse erzielt werden, die sonst nicht erzielbar wären. Gerade der Einsatz der NMR-Mikroskopie in Form der NMR-Histologie stellt einen vielversprechenden Weg zur Etablierung der NMR-Mikroskopie als Routineuntersuchungsmethode dar. Als ebenso erfolgreich hat sich die Anwendung der NMR-Mikroskopie als Untersuchungsmethode bei der Beobachtung der Tumorinvasion erwiesen, so dass sie auch in der medizinischen in-vitro Forschung und Therapiesimulation als sinnvolle Alternative zu den vorhandenen Methoden angesehen werden kann. Anhand der ausgewählten Anwendungsbeispiele ist es in dieser Arbeit somit gelungen, neue, konkrete Einsatzmöglichkeiten für die NMR-Mikroskopie zu eröffnen und ihre praktische Anwendbarkeit als Untersuchungsmethode für Fragestellungen im Bereich der medizinischen in-vitro Forschung und verschiedener neuro- und entwicklungsbiologischer Bereiche zu demonstrieren. N2 - With modern MR-spectrometers it is possible to achieve isotropic spatial resolutions in the range of only a few microns. Thus, several new fields of application for 1H-MR-Microscopy are being developed. Still, the practical possibilities and limitations of this technique have only been determined rarely. This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz. Numerous questions about microscopic details of the examined samples could be answered non-invasively with the experiments performed. At the same time, the experiments led to new interesting questions about MR-Microscopy on fixed samples. Furthermore, the practical applicability of MR-Microscopy as an alternative or a supplement to conventional examination methods could be demonstrated. Here, these methods were confocal laser microscopy in the case of the honey bee brain and conventional histology in the case of the prenatal dolphins. By investigating the specific advantages and limitations of MR-Microscopy in these cases, it was possible to demonstrate the practical value of its application and to obtain results which would otherwise have been impossible. Especially the use of MR-Microscopy as MR-Histology is a promising application which will help to establish MR-Microscopy as a routine examination method. Since the tumor invasion process could also be observed very successfully using MR-Microscopy, this technique can as well be considered as a valuable tool for medical in-vitro research and therapy simulation and thus an alternative to existing methods. In summary, with the examples chosen in this work, it was possible to find new applications for MR-Microscopy and to demonstrate the practical applicability of this method in the fields of medical in-vitro research as well as neurological and developmental biology. KW - NMR-Spektroskopie KW - NMR-Bildgebung KW - Hochauflösendes Verfahren KW - NMR KW - Magnetresonanztomographie KW - Kernspintomographie KW - Mikroskopie KW - Bildgebung KW - MRI KW - magnetic resonance KW - imaging KW - microscopy Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12449 ER - TY - THES A1 - Köhler, Sascha T1 - Entwicklung hochaufgelöster NMR-Methoden zur morphologischen und funktionellen Charakterisierung des Herzmuskels T1 - Development of high resolution NMR techniques for morphological and functional characterization of heart muscle N2 - Das Ziel der vorliegenden Arbeit ist es, neue Messverfahren zu entwickeln, die eine umfassende Charakterisierung des Herzmuskels ermöglichen. Sowohl die Morphologie als auch die Funktion und der Gefäßstatus wurden am intakten und am krankhaft veränderten isolierten Herzmuskel der Ratte mit NMR-Mikroskopietechniken untersucht. N2 - The goal of the present work is the development of new NMR techniques, which can be used for a broad characterization of the heart muscle. The morphology as well as the function and the status of coronary arteries was investigated in intact and in chronic infarcted hearts. KW - Herzfunktionsdiagnostik KW - NMR-Bildgebung KW - NMR KW - Bildgebung KW - Mikroskopie KW - Herz KW - Muskelfaser KW - NMR KW - imaging KW - microscopy KW - heart KW - muscle fiber Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9060 ER - TY - THES A1 - Greiser, Andreas T1 - Dichte-gewichtete Phasenkodierung zur effizienten k-Raumabtastung in der NMR-Bildgebung T1 - Density-weighted phase-encoding for efficient k-space sampling in NMR Imaging N2 - Die spektroskopische NMR-Bildgebung (Chemical Shift Imaging, CSI) kombiniert die Lokalisationstechniken der NMR-Tomographie mit der NMR-Spektroskopie und bietet so eine ortsaufgelöste metabolische Information über das untersuchte Gewebe. Mit dieser Technik können Stoffwechselvorgänge direkt und quantitativ untersucht werden. Deshalb finden die Verfahren der spektroskopischen NMR-Bildgebung in der medizinischen Forschung eine immer breitere Anwendung. Zwei Aspekte erschweren hierbei die klinische Etablierung dieser Methoden: die aufgrund der geringen Empfindlichkeit langen notwendigen Messzeiten bei dennoch geringer räumlicher Auflösung und die im Vergleich zur herkömmlichen NMR-Tomographie aufwendigere Datenauswertung. In der vorliegenden Arbeit wurden in beiden Punkten substantielle methodische Fortschritte erzielt. In einer Fallstudie mit Herzpatienten konnten erstmals die Veränderungen der Metabolitensignale auf 31P-Karten visualisiert werden. Die dabei erreichte Empfindlichkeit erlaubt auch die Untersuchung der Herzhinterwand, wobei hier die Sensitivität an der Grenze des für eine Individualdiagnostik minimal akzeptablen Signal-Rausch-Verhältnisses (SNR) liegt. Der Einsatz höherer Grundfeldstärken in der 31P-NMR-Spektroskopie läßt einen deutlichen Empfindlichkeitsgewinn erwarten. Im Rahmen dieser Arbeit wurde eine umfassende Vergleichsstudie zwischen einem klinischen 1,5 T NMR-Bildgebungssystem und einem 2,0 T Tomographen durchgeführt. Der beobachtete Empfindlichkeitsgewinn von 45% steht im Rahmen der Messgenauigkeit in Einklang mit einem theoretisch zu erwartenden, linearen Anstieg des SNR. Die Lokalisationseigenschaften eines ortsaufgelösten NMR-Experiments werden dadurch bestimmt, wie die der k-Raum, der Raum der räumlichen Frequenzen, abgetastet wird. Insbesondere in räumlich niedrig aufgelösten Experimenten führen die Seitenbanden der räumlichen Antwortfunktion zu Signalkontamination. Bei der Phasenkodierung kann diese Kontamination durch eine auf unterschiedlichen Mittelungszahlen beruhende Wichtung der k-Raumabtastung unterdrückt werden. Bei vorgegebener Experimentdauer und räumlicher Auflösung verringert diese Akkumulations-gewichtetete Phasenkodierung jedoch im Vergleich zum ungewichteten Experiment den abdeckbaren Bildbereich. Der Schwerpunkt der vorliegenden Arbeit lag deshalb auf der Entwicklung eines neuen k-Raum-Abtastschemas. Dieses Abtastschema basiert auf einer Modulation der Abtastdichte im k-Raum und wird deshalb als Dichte-Wichtung („DW“) bezeichnet. Zur Diskretisierung einer gewünschten kontinuierlichen Wichtungsfunktion dient ein neuer, nicht-iterativer Algorithmus, der aus den Eingangsparametern räumliche Auflösung und Gesamt-Akkumulationszahl ein geeignetes Abtastschema generiert. Die Lokalisations-Eigenschaften der Dichte-Wichtung wurden ausführlich analysiert und mit den etablierten Phasenkodierschemata verglichen. Die Dichte-gewichtete k-Raumabtastung kombiniert die Vorteile der Akquisitions-gewichteten Phasenkodierung mit einem maximierten Bildbereich. So kann bei kürzeren Experimentdauern ein deutlicher Gewinn an Lokalisationsqualität erzielt werden, ohne dabei die Vorteile einer reinen Phasenkodierung aufzugeben. Für die Dichte-gewichtete Phasenkodierung gibt es ein weites Anwendungsfeld. Sie wurde im Rahmen dieser Arbeit in mehreren vorklinischen Studien erfolgreich eingesetzt. Die theoretisch zu erwartenden Vorteile bezüglich der Lokalisationseigenschaften bestätigten sich experimentell. Im Bereich der spektroskopischen 31P-NMR-Bildgebung in vivo erwies sich die Dichte-Wichtung als deutlich bessere Alternative zur Akkumulations-Wichtung. Die Einfaltungen des starken Brustmuskelsignals, welche im bisher verwendeten 31P CSI Protokoll den Informationsgehalt der Metabolitenkarten beeinträchtigt hatten, konnten unterdrückt werden. In der 23Na-NMR-Bildgebung am Herzen wurde das DW Abtastschema eingesetzt, um die Verbesserung der Lokalisationsqualität durch Akquisitions-Wichtung erstmals auch in der 23Na-NMR-Bildgebung am menschlichen Herzen zu nutzen. Es konnte gezeigt werden, daß die DW Methode deutliche Vorteile im Vergleich zu den herkömmlichen Abtastungen liefert. Mit der DW Methode gelang es, 23Na-Bilder des menschlichen Herzens von bisher unerreichter Qualität zu erzeugen. Insgesamt wurde mit der Dichte-gewichteten k-Raumabtastung in der vorliegenden Arbeit eine flexible und effiziente Art der Akquisitionswichtung entwickelt. Zusätzlich zu einer deutlichen Verbesserung der Lokalisationsqualität bei optimaler Empfindlichkeit wird mit DW auch die Optimierung des abdeckbaren Bildbereichs erreicht. Somit bietet DW im Vergleich zum Akkumulations-gewichteten Experiment eine größere Flexibilität bei der Wahl der experimentellen Parameter Auflösung und Experimentdauer. Darüber hinaus ist das DW Abtastschema potentiell für jedes NMR-Bildgebungsexperiment mit niedriger räumlicher Auflösung von Nutzen. N2 - Magnetic Resonance Spectroscopic imaging (Chemical Shift Imaging, CSI) combines the localization techniques of MRI with MR spectroscopy and therefore povides spatially resolved metabolic information of the investigated tissue. Two aspects hamper the clinical acceptance of this method: the long measurement durations and the more elaborate data evaluation. In the presented work in both aspects significant improvements were achieved. In a case study with patients after myocardial infarction the changes in the 31P metabolite levels could be visualized. In combination with an automated data evaluation the acceptance of spectroscopic 31P MRI will be improved. Higher field strengths can improve the sensitivity in MRI. In an extended volunteer study a gain of 45% in sensitivity could be achieved at a field strength of 2.0 T compared to the clinically established 1.5 T. The localization properties in a spatially resolved NMR experiment are determined by the way how the k-space, representing the spatial frequencies that are acquired, is sampled. In particular in experiments with low spatial resolution, the sidebands of the spatial response function result in severe signal contamination. In phase-encoded expeiments this contamination can be suppressed by variable accumulation numbers at different positions in k-space. However, this results in a reduced spatial coverage in image space. The main goal of this work was the implementation of a new k-pace sampling scheme, that is based on the variation of the sampling density and is therefore referred to as "Density-weighting". To generate the discrete sampling matrix a new, non-iterative algorithm was developed, that calculates the sampling scheme from the input parameters spatial resolution and total number of accumulations. The new ampling scheme was extensively analyzed and compard to the established schemes. Density-weighting combines the advantages of Accumulation-weighting with a maximized field of view. At shorter experiment durations and maintained optimal sensitivity a significant improvement in image quality could be achieved. In several applications of cardiac spectroscopic MR imaging the advantages could be demonstrated. KW - Herzfunktionsdiagnostik KW - Phosphor-31-NMR-Spektroskopie KW - Chemische Verschiebung KW - Phasen-Kodierung KW - Dichte-Wichtung KW - Akquisitions-Wichtung KW - NMR-Bildgebung KW - Phase-encoding KW - Density-weighting KW - Acquisition-weighting KW - NMR-Imaging Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-7145 ER -