TY - JOUR A1 - Heisswolf, Annette A1 - Ulmann, Sandra A1 - Obermaier, Elisabeth A1 - Mitesser, Oliver A1 - Poethke, Hans J. T1 - Host plant finding in the specialised leaf beetle Cassida canaliculata: an analysis of small-scale movement behaviour N2 - 1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues. 2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena (r = 1 m). In three different settings, a host (Salvia pratensis L., Lamiales: Lamiaceae), a non-host (Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena. 3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials. 4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies. KW - Käfer KW - Blattkäfer KW - Ampfer KW - Wiesensalbei KW - Arena experiment KW - Coleoptera KW - Chrysomelidae KW - olfaction KW - Rumex KW - Salvia pratensis KW - vision KW - walking Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49485 ER - TY - JOUR A1 - Randlkofer, Barbara A1 - Jordan, Florian A1 - Mitesser, Oliver A1 - Meiners, Torsten A1 - Obermaier, Elisabeth T1 - Effect of vegetation density, height, and connectivity on the oviposition pattern of the leaf beetle Galeruca tanaceti N2 - Vegetation structure can profoundly influence patterns of abundance, distribution, and reproduction of herbivorous insects and their susceptibility to natural enemies. The three main structural traits of herbaceous vegetation are density, height, and connectivity. This study determined the herbivore response to each of these three parameters by analysing oviposition patterns in the field and studying the underlying mechanisms in laboratory bioassays. The generalist leaf beetle, Galeruca tanaceti L. (Coleoptera: Chrysomelidae), preferentially deposits its egg clutches on non-host plants such as grasses. Earlier studies revealed that oviposition within structurally complex vegetation reduces the risk of egg parasitism. Consequently, leaf beetle females should prefer patches with dense, tall, or connected vegetation for oviposition in order to increase their reproductive success. In the present study, we tested the following three hypotheses on the effect of stem density, height, and connectivity on oviposition: (1) Within habitats, the number of egg clutches in areas with high stem densities is disproportionately higher than in low-density areas. The number of egg clutches on (2) tall stems or (3) in vegetation with high connectivity is higher than expected for a random distribution. In the field, stem density and height were positively correlated with egg clutch presence. Moreover, a disproportionately high presence of egg clutches was determined in patches with high stem densities. Stem height had a positive influence on oviposition, also in a laboratory two-choice bioassay, whereas stem density and connectivity did not affect oviposition preferences in the laboratory. Therefore, stem height and, potentially, density, but not connectivity, seem to trigger oviposition site selection of the herbivore. This study made evident that certain, but not all traits of the vegetation structure can impose a strong influence on oviposition patterns of herbivorous insects. The results were finally compared with data on the movement patterns of the specialised egg parasitoid of the herbivore in comparable types of vegetation structure. KW - Blattkäfer KW - Galeruca tanaceti KW - Hautflügler KW - Eulophidae KW - Oomyzus galerucivorus KW - Coleoptera KW - Chrysomelidae KW - tansy leaf beetle KW - vegetation structure KW - Oomyzus galerucivorus KW - Hymenoptera KW - Eulophidae Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49665 ER -