TY - JOUR A1 - Vellmer, Tim A1 - Hartleb, Laura A1 - Fradera Sola, Albert A1 - Kramer, Susanne A1 - Meyer-Natus, Elisabeth A1 - Butter, Falk A1 - Janzen, Christian J. T1 - A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling JF - PLoS Pathogens N2 - A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed. KW - Trypanosoma KW - chromatin KW - histones KW - RNA interference KW - Trypanosoma brucei gambiense KW - luciferase KW - transcriptional control KW - nucleosomes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301372 VL - 18 IS - 6 ER - TY - JOUR A1 - Dejung, Mario A1 - Subota, Ines A1 - Bucerius, Ferdinand A1 - Dindar, Gülcin A1 - Freiwald, Anja A1 - Engstler, Markus A1 - Boshart, Michael A1 - Butter, Falk A1 - Janzen, Chistian J. T1 - Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei JF - PLoS Pathogens N2 - Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes. KW - cell differentiation KW - cell cycle and cell division KW - parasitic cell cycles KW - proteomes KW - chromatin KW - parasitic life cycles KW - transcriptome analysis KW - host-pathogen interactions Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146362 VL - 12 IS - 2 ER - TY - JOUR A1 - Lando, David A1 - Endesfelder, Ulrike A1 - Berger, Harald A1 - Subramanian, Lakxmi A1 - Dunne, Paul D. A1 - McColl, James A1 - Klenerman, David A1 - Carr, Antony M. A1 - Sauer, Markus A1 - Allshire, Robin C. A1 - Heilemann, Mike A1 - Laue, Ernest D. T1 - Quantitative single-molecule microscopy reveals that CENP-A\(^{Cnp1}\) deposition occurs during G2 in fission yeast JF - Open Biology N2 - The inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states. However, thus far, its use has been limited to studies in bacteria or to processes occurring near the surface of eukaryotic cells. With PALM, one literally observes and 'counts' individual molecules in cells one-by-one and this allows the recording of images with a resolution higher than that determined by the diffraction of light (the so-called super-resolution microscopy). Here, we investigate the use of different fluorophores and develop procedures to count the centromere-specific histone H3 variant CENP-A\(^{Cnp1}\) with single-molecule sensitivity in fission yeast (Schizosaccharomyces pombe). The results obtained are validated by and compared with ChIP-seq analyses. Using this approach, CENP-A\(^{Cnp1}\) levels at fission yeast (S. pombe) centromeres were followed as they change during the cell cycle. Our measurements show that CENP-A(Cnp1) is deposited solely during the G2 phase of the cell cycle. KW - nucleosome KW - fission yeast KW - identification KW - propagation KW - CSE4, CENP-A KW - CENP-A KW - schizosaccaromyces-pombe KW - fluorescent protein KW - centomeres KW - superresolution KW - chromatin KW - centromere KW - ingle-molecule microscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134682 VL - 2 IS - 120078 ER - TY - JOUR A1 - Scheer, Ulrich A1 - Messner, Karin A1 - Hazan, Rachel A1 - Raska, Ivan A1 - Hansmann, Paul A1 - Falk, Heinz A1 - Spiess, Eberhard A1 - Franke, Werner W. T1 - High sensitivity immunolocalization of double and single-stranded DNA by a monoclonal antibody N2 - A monoclonal antibody (AK 30-10) is described which specifically reacts with DNA both in double and single-stranded forms but not with other molecules and structures, including deoxyribonucleotides and RNAs. When used in immunocytochemical experiments on tissue sections and permeabilized cultured cells, this antibody detects DNA-containing structures, even when the DNA is present in very small amounts. Examples of high resolution detection include the DNA present in amplified extrachromosomal nucleoli, chromomeres of lampbrush chromosomes, mitochondria, chloroplasts and mycoplasmal particles. In immunoelectron microscopy using the immunogold technique, the DNA was localized in distinct substructures such as the "fibrillar centers" of nucleoli and certain stromal centers in chloroplasts. The antibody also reacts with DNA of chromatin of living cells, as shown by microinjection into cultured mitotic cells and into nuclei of amphibian oocytes. The potential value and the limitations of immunocytochemical DNA detection are discussed. KW - Cytologie KW - DNA antibodies KW - monoclonal antibodies KW - DNA immunolocalization KW - chromatin KW - mycoplasma tests Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41063 ER -