TY - THES A1 - Vogel, Benjamin T1 - Organisation von Chromatin durch HMGA1 Proteine T1 - Organisation of chromatin through HMGA1 proteins N2 - HMGA1 Proteine sind kleine, basische, Nicht-Histon Proteine, die in Lösung keine Struktur aufweisen, durch drei AT-Haken, als DNA-Bindungsmotive, gekennzeichnet sind und präferentiell an die kleine Furche der DNA binden. Als differenziell exprimierte Architekturelemente des Chromatins erfüllen sie wichtige Funktionen bei der Regulation DNA abhängiger Prozesse in Zellen und während Entwicklungsprozessen. Aberrante Expressionen führen zu Entwicklungsdefekten und Krebs. In dieser Arbeit wurde der Einfluss von HMGA1 Proteinen auf die Organisation des Chromatins untersucht. Als Modell diente dabei zunächst die Differenzierung von C2C12 Muskelvorläuferzellen. Wie in einer früheren Arbeit gezeigt wurde, ist die Herunterregulation von HMGA1a essentiell für den Eintritt von C2C12 Zellen in die Myogenese. Eine konstante Überexpression von HMGA1a-eGFP hingegen verhindert die Muskeldifferenzierung durch Beeinflussung der Expression myogenesespezifischer Gene und Etablierung einer stabilen Chromatinstruktur. Wie in der vorliegenden Arbeit herausgefunden wurde, nimmt die differenzielle HMGA1a Expression nicht nur Einfluss auf die Expression muskelspezifischer Gene, sondern auch auf die globale Zusammensetzung des Chromatins durch eine reduzierte Expression von H1 Histonen und einer aberranten Expression von HMGB1, HMGN1 und HP1 Proteinen. HMGA1a wurde zusammen mit ORC Proteinen eine Funktion bei der Definition von Replikationsursprüngen in eukaryotischen Zellen zugesprochen. ORC Proteine wurden auch als Komponenten des Heterochromatins und als Interaktionspartner von HP1α identifiziert. Hier konnte mit Hilfe von Co-Immunpräzipitationen, Pull-down Assays und Verdrängungsexperimenten gezeigt werden, dass HMGA1 ein weiterer, direkter Interaktionspartner von ORC Proteinen im Heterochromatin ist und zusammen mit HP1α kooperiert. Pull-down-, Verdrängungs- und siRNA-Experimente zeigten zudem, dass HMGA1 zwar nicht direkt mit HP1α interagiert, die Kooperation der Proteine über ORC aber dennoch wichtig für die Aufrechterhaltung der Heterochromatinsstruktur ist. Damit erweisen sich HMGA1 Proteine als wichtige Stabilisierungsfaktoren des Heterochromatins. Bislang ging man davon aus, dass HMGA1 Moleküle linear, also eindimensional, an ein DNA Molekül binden. Das Vorhandensein von drei DNA-Bindungsmotiven und die eher struktur- als sequenzabhängige Bindung an die DNA lassen vermuten, dass HMGA1 Proteine auch gleichzeitig an benachbarte DNA-Stränge, also auch dreidimensional, binden könnten. Bekräftigt wurde diese Vermutung durch die Bildung von Chromatinaggregaten in Zellen die HMGA1a-eGFP überexprimierten. Dies wurde mittels konfokaler und hochauflösender Mikroskopie (dSTORM) analysiert. Um das Potential einer DNA-Quervernetzung durch HMGA1 Proteine nachzuweisen, wurde eine neue Methode entwickelt. Mit Hilfe eines neuartigen DNA Cross-linking Assays wurde nachgewiesen, dass HMGA1 Proteine in der Lage sind, zwei individuelle DNA Stränge zu vernetzen. Zudem wurde eine neue Domäne in HMGA1 entdeckt die maßgeblich zum Cross-linking beiträgt. Elektronenmikroskopische Analysen bestätigten, dass HMGA1 Proteine in der Lage sind Kreuzungen und Schleifen in DNA Molekülen zu erzeugen. Diese Ergebnisse unterstützen die Vermutung, dass HMGA1 Proteine im Zellkern ein DNA Gerüst bilden können, das Einfluss auf die zelltypische Chromatinorganisation nimmt und dadurch DNA abhängige Prozesse beeinflusst. In wie weit eine HMGA1 induzierte DNA Quervernetzung in vivo zum Beispiel in Chromozentren von C2C12 Zellen oder in Krebszellen, in denen HMGA1 Proteine stark überexprimiert sind, eine Rolle spielen, müssen künftige Untersuchungen zeigen. In dieser Arbeit konnte also gezeigt werden, dass HMGA1 Proteine die Chromatinstruktur auf drei Ebenen organisieren können: Durch Beeinflussung der Chromatinzusammensetzung durch Veränderung der Expression von Chromatinproteinen, durch Interaktion mit anderen Architekturelementen des Chromatins und durch Organisation eines potentiellen DNA Gerüsts. N2 - HMGA1 proteins are small basic non-histone proteins characterized by three DNA binding domains, the AT-hooks, which bind to the minor groove of DNA. As differentially expressed architectural chromatin proteins, they perform important functions in the regulation of DNA dependent processes and in development. Aberrant expression leads to developmental defects and cancer. In this thesis the influence of HMGA1 proteins on chromatin organization is investigated. Initially C2C12 myogenic precursor cells were studied, which can be differentiated to myotubes. Previously it had been shown that down-regulation of HMGA1 proteins is crucial for the initiation of myogenic differentiation. Constant over-expression of HMGA1a-eGFP prevents myogenic differentiation by influencing the expression of myogenic genes and by the establishment of a stable chromatin structure. Here it was shown that the differential HMGA1 expression does not only influence the expression of myogenic specific genes but also affects total chromatin composition. This was shown by reduced and aberrant expression of chromatin proteins such as histone H1, HMGB1, HMGN1 and HP1 proteins. Recently it was demonstrated that HMGA1 together with ORC proteins function in origin definition in eukaryotic cells. ORC proteins were also identified as components of heterochromatin and direct interaction partners of HP1α. Here, it was shown by co-immunoprecipitation, pull-down assays, siRNA and displacement experiments that HMGA1 proteins can interact with ORC proteins directly and that they can cooperate with HP1α in heterochromatin. It could be shown that HP1α indeed does not directly interact with HMGA1 but together with ORC proteins is relevant for heterochromatin maintenance. Thus HMGA1 proteins turned out to be important stabilizers of heterochromatin. Until recently it was thought that HMGA1 proteins bind DNA collinearly. In principle the three independent DNA binding AT-hooks of HMGA1 also suggest a concomitant binding to neighboring DNA strands, which could lead to a three dimensional stabilization of DNA. This assumption was affirmed by the occurrence of chromatin aggregates in HMGA1a-eGFP overexpressing cells, which was analyzed by confocal and high resolution (dSTORM) microscopy. By using a newly developed DNA cross-linking assay, which allows the analysis of a DNA crosslinking capability of a protein, it was proven that HMGA1 proteins can bind two individual DNA fibers simultaneously. Furthermore a novel domain in HMGA1 proteins was discovered which is significantly involved in the DNA cross-linking. Electron microscopic analyses confirmed that HMGA1 proteins can specifically generate crossings and loops in DNA molecules. These results support the assumption that HMGA1 proteins can create a DNA scaffold that has influence on cell typical chromatin organization and possibly also affects DNA dependent processes. To what extent HMGA1 induced DNA cross-linking plays a role in vivo, for example in the organization of chromocenters of C2C12 cells or in cancer cells, where HMGA1 proteins are over-expressed, will need to be elucidated in further experiments In summary, this work shows, that HMGA1 proteins influence chromatin structure and composition by affecting the expression of chromatin proteins, by interacting with other architectural chromatin proteins or by producing a higher organization of chromatin on its own. KW - Chromatin KW - HMG-Proteine KW - HMGA1 KW - Chromatin KW - dSTORM KW - HMGA1 KW - Chromatin KW - dSTORM Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65295 ER - TY - THES A1 - Brocher, Jan T1 - Einfluss von HMGA1-Proteinen auf die Myogenese und Heterochromatinorganisation während der Differenzierung T1 - Influence of HMGA1 proteins on myogenesis and heterochromatin organization during differentiation N2 - HMG-Proteine sind nach den Histonen die zweithäufigste Superfamilie nukleärer Proteine. Sie binden an DNA und Nukleosomen und induzieren strukturelle Veränderungen im Chromatin. Sie spielen eine wichtige Rolle in der Dynamik des Chromatins und beeinflussen dadurch DNA-abhängige Prozesse, wie Transkription und Replikation. Proteine der HMGA-Familie sind charakterisiert durch konservierte DNA-Bindungsmotive, den AT-Hooks, welche eine Bindung an AT-reiche DNA-Sequenzen vermitteln und durch einen sauren C-Terminus. HMGA-Proteine sind verstärkt im Heterochromatin konzentriert und stehen in Verbindung mit der Expressionsregulation spezifischer Gene aufgrund der Stabilisierung von Nukleoproteinkomplexen, so genannten Enhanceosomen. HMGA-Proteine spielen des Weiteren eine entscheidende Rolle in verschiedenen Entwicklungsprozessen und bei der Tumorprogression . Um den Einfluss von HMGA1 auf die zelluläre Differenzierung und die Chromatinmodulation zu untersuchen, wurden C2C12 Maus-Myoblastenzellen verwendet. Die Induktion der Myogenese in diesen Zellen geht mit der Herunterregulierung von HMGA1 einher. Durch die Etablierung einer C2C12-Zelllinie, welche ein EGFP-markiertes HMGA1a stabil exprimierte, konnte gezeigt werden, dass eine anhaltende HMGA1-Expression spezifisch die Myogeneseprozess inhibierte, während die Osteogenese davon unbeeinflusst zu bleiben schien. Dieser hemmende Effekt kann durch die HMGA1-abhängige Fehlexpression verschiedener Gene, welche für eine einwandfreie Muskeldifferenzierung nötig sind und in die Zellzyklusregulation eingreifen, erklärt werden. Unter der Verwendung von RNAi konnte gezeigt werden, dass die Herunterregulierung von HMGA1-Proteinen für eine korrekte Genexpression und den Muskeldifferenzierungsprozess notwendig ist. Während der terminalen Differenzierung wird die Umorganisation des Chromatins durch die Fusion der Chromozentren offensichtlich. Fotobleichtechniken, wie „fluorescence recovery after photobleaching“ (FRAP) zeigten, dass HMGA1-Proteine mit dem Methyl-CpG-bindenden Protein 2 (MeCP2), welches eine wichtige Rolle in der Chromozentrenfusion spielt, um DNA-Bindungsstellen konkurriert und dieses vom Chromatin verdrängt. Diese dynamische Konkurrenz zwischen einem anhaltend exprimierten HMGA1 und MeCP2 trägt somit zur Inhibition der differenzierungsabhängigen Modulation des Chromatins während der späten Myogenese bei. Die Untersuchungen in C2A1a-Zellen lieferten weitere Hinweise dafür, dass der wesentlichste Umbau des Chromatins in einem Zeitfenster um den dritten Tag nach Induktion der Myogenese stattfindet, an welchem HMGA1 natürlicherweise nahezu vollständig herunterreguliert sind. In diesem Zeitraum kommt es zur Dissoziation der Chromozentren, zu veränderten Expressionsmustern in bestimmten Genen, zu Modulationen in Histonmodifikationen (H3K4me2, H3K4me3, H3K27me3), zur Replikations-unabhängigen Akkumulation von Histon H3 in den Chromozentren über ungefähr einen Zellzyklus hinweg und zu eine signifikanten Erhöhung der HP1-Dynamik. Durch den Einsatz von Bimolekularer Fluoreszenzkomplementierung (BiFC), die es erlaubt Protein-Protein-Interaktionen in vivo zu visualisieren, konnte gezeigt werden, dass der saure C-Terminus des HMGA mit der Chromodomäne (CD) des HP1 interagiert. Zusätzlich ist für diese Interaktion die korrekte DNA-Bindung des HMGA nötig. FRAP-Messungen mit HP1-EGFP-Fusionsproteinen in Zellen die wildtypisches oder ein mutiertes HMGA koexprimierten, bestätigten diese Daten und wiesen darauf hin, dass die HP1-Verweildauer im Heterochromatin maßgeblich von der Gegenwart eines funktionellen HMGA1 abhängig ist. Des Weiteren zeigten C2C12-Myoblasten, die HMGA1 natürlicherweise exprimieren, eine hohe HP1-Verweildauer, die nach HMGA1-knock down drastisch verringert ist. Umgekehrt ist die HP1-Verweildauer nach einer Herunterregulierung von HMGA1 an Tag 3 der Myogenese gering und steigt durch die Koexpression von HMGA1 auf das in Myoblasten gemessene Niveau an. Zusammengenommen zeigen diese Daten, dass die differenzielle Expression von HMGA1 und ihre Fähigkeit mit HP1 zu interagieren, sowie ihre Konkurrenz mit MeCP2 um DNA-Bindungsstellen einen entscheidende Rolle in der Regulation der Aufrechterhaltung und Plastizität des Heterochromatins während der Differenzierung spielen. Daher ist eine zeitlich festgelegte Herunterregulierung von HMGA1 notwendig, um die Modulation des Chromatins und dadurch den Differenzierungsprozess zu ermöglichen N2 - HMG proteins are an abundant superfamily of nuclear proteins that bind to DNA and nucleosomes and induce structural changes in the chromatin fiber. These proteins play an important role in chromatin dynamics and thereby impact DNA-related processes like transcription and replication. Proteins of the HMGA family are characterized by conserved DNA-binding domains, the AT hooks, which mediate binding to AT-rich DNA, and an acidic c-terminal domain. HMGA proteins concentrate in heterochromatin and are linked to specific gene regulation by stabilizing nucleoprotein complexes called enhanceosomes. Furthermore, HMGA proteins play an important role in several developmental processes and in tumor progression. C2C12 mouse myoblast cells were used to explore the impact of HMGA1 proteins on differentiation and chromatin modulation. After induction of myogenesis HMGA1 proteins revealed a downregulation. By establishing a C2C12 cell line stably expressing an EGFP tagged HMGA1a (C2A1a) it could be shown that sustained HMGA expression inhibited specifically the myogenic process while osteogenesis seemed to be unaffected. This inhibition can be explained by an HMGA1-dependent misexpression of several genes that are required for proper myogenic differentiation and genes involved in cell cycle regulation. Using RNAi techniques it could be demonstrated that downregulation of HMGA1 proteins is required to restore proper gene expression and to enable the myogenic program. During terminal differentiation chromatin remodeling is apparent by fusion of chromocenters. Photobleaching experiments like “fluorescence recovery after photobleaching” (FRAP) revealed that HMGA1 proteins compete with the methyl-CpG-binding protein 2 (MeCP2), which plays an important role during the fusion of chromocenters, for DNA-binding sites. Thereby MeCP2 is displaced from chromatin. This dynamic competition between constitutively expressed HMGA1 and MeCP2 thereby leads to an inhibition of the differentiation dependent modulation of the chromatin during late myogenesis. Studies in C2A1a cells revealed a set of evidences indicating that further major chromatin remodeling occurs around day three after induction when HMGA1 proteins are downregulated. At this time-frame chromocenters dissociate, expression patterns of genes are switching, histone modifications are modulated (H3K4me2, H3K4me3, H3K27me3), histone H3 accumulates in a replication independent mode in chromocenters for approximately one cell cycle, and dynamics of HP1 proteins are significantly increased. Applying bimolecular fluorescence complementation (BiFC) that allows visualization of protein-protein interactions in living cells I could show that the acidic domain of HMGA interacts with the chromodomain (CD) of HP1. In Addition, the proper DNA-binding of HMGA1 is necessary to accomplish a functional interaction between HP1 and HMGA. FRAP measurements of HP1-EGFP in cells coexpressing wild type or mutated HMGAs corroborated theses findings and indicated that the HP1 residence time in heterochromatin strongly depends on the presence of functional HMGA proteins. Furthermore, HP1 residence time is high in C2C12 myoblasts which express HMGA1 but low after HMGA1 knock down. Vice versa, it is low in C2C12 cells at day 3 of differentiation when HMGA proteins are downregulated, but high when HMGA1 proteins are coexpressed. Together, these data indicate that the differential expression of HMGAs and their capacity to interact with HP1 proteins and compete with MeCP2 plays an important role in the regulation of heterochromatin maintenance and plasticity during differentiation. Therefore, the downregulation of HMGA1 proteins is required to allow chromatin remodeling and to enable the differentiation program. KW - HMG-Proteine KW - Differenzierung KW - Muskelentwicklung KW - Heterochromatin KW - C2C12-Zellen KW - HMG proteins KW - myogenesis KW - heterochromatin KW - differentiation KW - C2C12 cells Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24456 ER - TY - THES A1 - Schütz, Monika T1 - Dynamik und Funktion der HMG-Proteine T1 - Dynamics and Function of HMG-proteins N2 - HMG-Proteine sind Architekturelemente des Chromatins und regulieren durch ihre Bindung an das Chromatin auf verschiedene Weise DNA-abhängige Prozesse wie Replikation, Transkription und DNA-Reparatur. Um zu verstehen, wie HMG-Proteine ihre vielfältigen Funktionen erfüllen können, wurde mit Hilfe von EGFP- und DsRed2-Fusionsproteinen ihre Funktion in vivo untersucht. Im Wesentlichen wurde dabei mit Hilfe von Bleichtechniken ihr dynamisches Verhalten charakterisiert. Daneben wurde für die HMGN-Proteine ihr bislang unbekanntes Expressionsverhalten in Tumorzellen bestimmt. So konnte für die HMGN-Proteine gezeigt werden, dass bestimmte Tumorzelllinien (HT-29, FTC-133, MCF-7, RPMI 8226, 697, Ishikawa, LNCap) eine relativ erhöhte Expression von HMGN2 aufweisen, die mit der Tumordifferenzierung korreliert. Eine relativ verringerte Expression von HMGN1 steht dagegen in Mammakarzinomen und Non-Hodgkin-Lymphomen in direktem Zusammenhang mit der Aggressivität der Tumore. Somit kann die HMGN-Expression bei diesen Tumoren als diagnostischer Marker verwendet werden. FRAP-Analysen mit EGFP-Fusionsproteinen führten zu der Erkenntnis, dass HMGN1, HMGN2, HMGA1a, HMGA1b und HMGB1 sich sehr schnell durch den Zellkern bewegen und nur transient an das Chromatin gebunden sind. Es konnte gezeigt werden, dass die spezifischen DNA/Chromatin-Bindungsmotive im Wesentlichen entscheiden, wo die Bindung der HMG-Proteine in vivo erfolgt, ihre Verweildauer im Euchromatin, Heterochromatin und zellzyklusabhängig dann aber durch Modifikationen (Phosphorylierungen, Acetylierungen) reguliert wird. Dies wurde beispielhaft durch punktmutierte und deletierte Fusionsproteine, sowie durch Inkubation der Zellen mit spezifischen Drogen für die HMGA1a-Proteine gezeigt. FRAP-Analysen haben außerdem gezeigt, dass die Spleißvarianten hHMGA1a und hHMGA1b unterschiedliche kinetische Parameter besitzen. Dies zeigt, dass beiden Varianten unterschiedliche Funktionen zugesprochen werden können. Die gefundenen spezifischen, transienten Verweildauern der einzelnen HMG-Proteine führen zu einem Modell eines dynamischen Chromatin-Netzwerkes, wobei alle HMG-Proteine in Wechselwirkungen innerhalb eines dynamischen Chromatinprotein-Cocktails DNA-abhängige Prozesse regulieren können. Die jeweiligen, wie hier gezeigt, durch Modifikationen regulierten Verweildauern der HMG-Proteine bestimmen darüber, welche anderen Chromatinproteine wie lange am Chromatin verbleiben und bestimmte Funktionen, wie beispielsweise die Modifikation der Core-Histone, übernehmen können. Die dynamischen Parameter einzelner HMG-Proteine erklären so, wie diese Proteine ihre vielfältigen Funktionen als Architekturelemente und bei der Regulation DNA-abhängiger Prozesse erfüllen können. Einige Vertreter, wie die HMGB1-Proteine, bewegen sich so schnell durch den Zellkern, dass ihre kinetischen Parameter durch das beschränkte zeitliche Auflösungsvermögen konfokaler Mikroskope der älteren Generation nicht erfassbar sind. Die Bestimmung von Dosis-Wirkungs-Beziehungen von Drogen, welche die kinetischen Parameter von HMGB1-Proteinen beeinflussen können, ist inzwischen mit Mikroskopen der neuen Generation möglich. Im Verlaufe der Arbeit zeigte sich, dass andere verwendete Fluorophore wie DsRed2 die kinetischen Eigenschaften von HMG-Fusionsproteinen beeinflussen können. Durch eine erhöhte Verweildauer können auch sehr transiente Interaktionen sichtbar gemacht werden. Wie gezeigt wurde, kann eine erhöhte Verweildauer aber auch zur Verdrängung anderer Proteine führen, die die gleichen Bindungsstellen benutzen und so eine Modulation des Chromatins bewirken. Die Nutzung von DsRed-Fluorophoren ermöglicht interessante neue Erkenntnisse. Diese müssen aber stets vor dem Hintergrund eines veränderten dynamischen Verhaltens der Fusionsproteine interpretiert werden. Zusammengenommen liefern die hier vorgestellten Ergebnisse zur Dynamik der HMG-Proteine grundlegende Informationen, die zur Klärung ihrer Funktion bei Chromatinmodulationen, etwa bei Differenzierungsprozessen oder der Entstehung von Tumorzellen entscheidend beitragen. Die Erkenntnis, dass diese Proteine lediglich transiente Interaktionen mit ihren Bindungspartnern eingehen können, sind im Hinblick auf die Behandlung von Tumoren, bei denen HMG-Proteine im Vergleich zu Normalgewebe häufig überexprimiert sind, von großer Bedeutung. N2 - HMG proteins are architectural chromatin proteins that regulate different DNA dependent processes such as replication, transcription and DNA repair. To understand how HMG proteins manage to fulfill their multiple functions they were investigated in vivo with the help of EGFP and DsRed2 fusion proteins. Using photobleaching techniques their dynamic properties were characterized in detail. Furthermore, the expression pattern of HMGN proteins in tumor cell lines was investigated for the first time. As presented in this thesis, it was found that HMGN2 proteins exhibited an elevated expression level in some tumor cells (HT-29, FTC-133, MCF-7, RPMI 8226, 697, Ishikawa, LNCap) correlating with the tumor differentiation status. In contrast a reduced expression of HMGN1 found in Mammacarcinoma and Non-Hodgkin-Lymphoma correlated with tumor aggressiveness. Therefore the analyses of HMGN expression may be a suitable diagnostic marker at least in the tumors investigated. FRAP analyses with cells expressing EGFP fusion proteins revealed that HMGN1, HMGN2, HMGA1a, HMGA1b and HMGB1 move very rapidly through the cell nucleus and only bind transiently to chromatin. It was demonstrated that the decision where HMG proteins bind in vivo is essentially mediated by their specific DNA binding motifs. However, the individual residence times in eu- or heterochromatin and chromosomes are regulated by protein modifications (phosphorylation, acetylation). This has been demonstrated using point mutated and truncated HMGA fusion proteins and by the application of specific drugs as well. FRAP analyses also indicated that the splice variants HMGA1a and HMGA1b exhibit different kinetic properties. This supports the view that both variants have different functions. The kinetic parameters characteristic for each HMG protein lead to a model of a dynamic chromatin network in which all HMG proteins are able to regulate DNA dependent processes via multiple interactions with other proteins as components of a cocktail of dynamic chromatin proteins. In this model, individual residence times of all HMG proteins which are regulated by secondary modifications would determine how long other chromatin modulating proteins could reside on chromatin. Therefore the dynamic parameters of the HMG proteins directly affect the capability of other proteins to modulate chromatin structure, e.g. by modifications of core histones. This explains the multiple functions of HMG proteins in chromatin packaging and function. The kinetic parameters of some rapidly moving members of the HMG protein family, such as HMGB1, are beyond the time resolution capacities of most confocal microscopes. However, novel setups of modern confocal microscopes are now capable to determine the dynamic parameters of HMGB proteins and allow investigations of drug induced effects on HMGB dynamics. Control experiments revealed that other fluorophors such as DsRed2 modulate the dynamic parameters of HMG fusion proteins. Due to an increased residence time of HMG DsRed2 fusion proteins it is possible to monitor even very transient interactions. Moreover, it could be observed that this increased residence time may interfere with binding of other proteins (i.e. proteins which occupy the same binding sites) leading to a reorganization of chromatin. Thus, fusion proteins with DsRed fluorophores may be used as helpful tools to investigate protein functions. However, results should always be considered against the background of DsRed modulated kinetics and thus they should be interpreted very carefully. Taken together the results presented in this thesis provide novel information about the dynamic behaviour of HMG proteins which is crucial to understand how chromatin is modulated during differentiation processes or development of neoplasia. Their transient interactions with DNA or other proteins and the fact that overexpression correlates with tumor progression might be relevant for the development of novel strategies for tumor treatment. KW - HMG-Proteine KW - Chromatin KW - Genexpression KW - Tumor KW - HMG KW - Dynamik KW - Chromatin KW - EGFP KW - Tumorinstabilität KW - HMG KW - Dynamics KW - Chromatin KW - EGFP KW - Tumorinstability Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15627 ER - TY - THES A1 - Körner, Ulrich T1 - Funktionelle Rolle von HMGN-Proteinen während der Embryonalentwicklung von Xenopus laevis T1 - The functional role of the HMGN proteins during embryogenesis of Xenopus laevis N2 - HMGN Proteine sind Architekturelemente des Chromatins und besitzen die Fähigkeit, Chromatin aufzulockern. Sie ermöglichen anderen Proteinen den Zugang zu Nukleosomen und unterstützen DNA-abhängige Prozesse wie Replikation, Transkription und DNA-Reparatur. In dieser Arbeit wurde die funktionelle Rolle der HMGN Proteine während der Embryogenese am Beispiel des südafrikanischen Krallenfroschs Xenopus laevis untersucht. Dabei wurde entdeckt, dass sowohl die Expression als auch die zelluläre Verteilung der HMGN Proteine entwicklungsspezifisch reguliert ist. Eine Manipulation der HMGN Proteinmengen während der Embryonalentwicklung führte zu schweren Fehlentwicklungen in Postblastula Embryonen. In der Oogenese waren sowohl Xenopus HMGN mRNAs als auch Xenopus HMGN Proteine in allen Oozytenstadien nachweisbar. Interessanterweise waren HMGN Proteine in späteren Oozytenstadien nur im Zytoplasma zu finden und nicht mit Lampenbürstenchromosomen assoziiert. Im Zuge der Maturation der Oozyten zu Eiern verschwinden die Proteine gänzlich. Während der Embryogenese waren HMGN Proteine dann erst wieder ab der Blastula detektierbar, zeitgleich mit der transkriptionellen Aktivierung des embryonalen Genoms. Gleichzeitig wiesen ihre Expressionsmuster, zumindest auf mRNA-Ebene, auf Gewebspezifität hin. Whole mount in situ-Hybridisierungen und RT-PCR-Analysen zeigten eine erhöhte mRNA-Menge in mesodermalen und neuroektodermalen Geweben von Schwanzknospenstadien. Nach Injektion rekombinanter HMGN Proteine (Überexpression) oder Morpholino-Antisense-Oligonukleotiden (knock-down) in die Zygote entwickelten sich Embryonen mit offenen Rücken, stark verkürzten und gebogenen Körperachsen und deformierten Kopfstrukturen als Hauptmerkmale. Histologische Analysen und insbesondere die Magnetresonanz Bildgebung deuteten auf Fehler in der Mesodermdifferenzierung hin. Die Analysen zeigen, dass eine bestimmte kritische zelluläre HMGN Proteinmenge für eine korrekte Embryonalentwicklung von Xenopus laevis notwendig ist. Durch „animal cap assays“ und RT-PCR-Expressionsanalysen Mesoderm-spezifischer Gene konnte schließlich gezeigt werden, dass HMGN Proteine die Regulation Mesoderm-spezifischer Gene beeinflussen. Die Ergebnisse lassen vermuten, dass auch die HMGN-Genexpression während der Mesodermdifferenzierung reguliert wird. Durch eine Analyse des Expressionsbeginns entwicklungsrelevanter Gene während der Midblastula Transition konnte gezeigt werden, dass veränderte HMGN Proteinmengen den Expressionsbeginn spezifischer Gene wie Xbra und chordin beeinflussen. Damit konnte zum ersten Mal ein Einfluss dieser ubiquitären Chromatinproteine auf die Expression spezifischer Gene gefunden werden. Die durch HMGN Proteine verursachte fehlerhafte Expression von Xbra und chordin als Schlüsselgene der Mesodermdifferenzierung kann die Fehlentwicklungen mesodermaler Strukturen erklären. N2 - HMGN proteins are architectural chromatin proteins that reduce the compaction of the chromatin fiber, facilitate access to nucleosomes and modulate DNA-dependent processes such as replication, transcription and DNA repair. In this work the functional role of the HMGN proteins during embryogenesis was analyzed using the African clawed frog Xenopus laevis as a model system. The expression and cellular location of the HMGN proteins was found to be developmentally regulated. Experimental manipulations of the HMGN protein amounts led to gross developmental defects in postblastula embryos. HMGN transcripts and proteins were present throughout oogenesis. Interestingly, the HMGN proteins were stored in the cytoplasm of later oocyte stages and excluded from the oocytes nuclei and lampbrush chromosomes. Upon maturation of oocytes into eggs, HMGN proteins were no longer detectable. During embryogenesis, HMGN proteins were first detected in blastula stage embryos, coinciding with the transcriptional activation of the embryonic genome. At least at the mRNA level the expression pattern showed a tissue specific pattern, with relatively high levels of mRNAs in the mesodermal and neuroectodermal regions of early tailbud embryos as shown by whole mount in-situ hybridization and RT-PCR-analyses. After microinjection of recombinant HMGN proteins (overexpression) or morpholino-antisense oligonucleotides (knock-down) the embryos displayed typical phenotypes with imperfect closure of the blastopore, distorted body axis and abnormal head structures. Histological analyses and magnetic resonance imaging indicated that mesoderm differentiation was particularly affected by aberrant HMGN protein levels. The results demonstrate that proper embryonic development of Xenopus laevis requires precisely regulated levels of HMGN proteins. “Animal cap assays” and RT-PCR-analyses of the expression of mesodermal genes indicated that HMGN proteins are involved in the regulation of mesoderm specific genes. These experiments also indicated that the HMGN expression itself is regulated during mesoderm differentiation. Moreover, by studying the expression pattern of developmentally relevant genes during midblastula transition it became evident that altered HMGN protein levels influence the onset of the expression of specific genes such as Xbra and chordin. The results show, for the first time, that these ubiquitous chromatin proteins modulate the expression of specific genes. The HMGN-induced misexpression of Xbra and chordin as key regulatory genes during mesoderm differentiation may explain the observed malformations of mesodermal structures. KW - Glatter Krallenfrosch KW - HMG-Proteine KW - Genexpression KW - Embryonalentwicklung KW - HMGN Proteine KW - Xenopus laevis KW - Genexpression KW - Chromatin KW - Embryonalentwicklung KW - HMGN proteins KW - Xenopus laevis KW - chromatin KW - gene expression KW - early development Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9166 ER -