TY - JOUR A1 - Fischer, Annette A1 - Harrison, Kelly S A1 - Ramirez, Yesid A1 - Auer, Daniela A1 - Chowdhury, Suvagata Roy A1 - Prusty, Bhupesh K A1 - Sauer, Florian A1 - Dimond, Zoe A1 - Kisker, Caroline A1 - Hefty, P Scott A1 - Rudel, Thomas T1 - Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense JF - eLife N2 - Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique α-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl-1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNγ and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a deubiquitinating activity exerting a function in selective stabilization of host proteins and protection from host defense. KW - cell-autonomous defense KW - Chlamydia trachomatis KW - deubiquitinase KW - Mcl-1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171073 VL - 6 IS - e21465 ER -