TY - THES A1 - López Arboleda, William Andrés T1 - Global Genetic Heterogeneity in Adaptive Traits T1 - Globale genetische Heterogenität in adaptiven Merkmalen N2 - Genome Wide Association Studies (GWAS) have revolutionized the way on how genotype-phenotype relations are assessed. In the 20 years long history of GWAS, multiple challenges from a biological, computational, and statistical point of view have been faced. The implementation of this technique using the model plant species Arabidopsis thaliana, has enabled the detection of many association for multiple traits. Despite a lot of studies implementing GWAS have discovered new candidate genes for multiple traits, different samples are used across studies. In many cases, either globally diverse samples or samples composed of accessions from a geographically restricted area are used. With the aim of comparing GWAS outcomes between populations from different geographic areas, this thesis describes the performance of GWAS in different European samples of A. thaliana. Here, association mapping results for flowering time were compared. Chapter 2 describes the analyses of random resampling from this original sample. The aim was to establish reduced subsamples to later carry out GWAS and compare the outcomes between these subsamples. In Chapter 3, the European sample was split into eight equally-sized local samples representing different geographic regions. Next, GWAS was carried out and an attempt was made to clarify the differences in GWAS outcomes. Chapter 4 contains the results of a collaboration with Prof. Dr. Wolfgang Dröge- Laser, in which my mainly task was the analysis of RNAseq data from A. thaliana plants infected by pathogenic fungi. Finally, Appendix A presents a very short description of my participation in the GHP Project on Access to Care for Cardiometabolic Diseases (HPACC) at the university of Heidelberg. N2 - Die genomweiten Assoziationsstudien (GWAS) haben die Art und Weise revolutionierten, wie genotypische-phänotypische Zusammenhänge untersucht werden. In der 20-jährigen Geschichte dieser Analysen, gab es zahlreiche biologische, mathematische und statistische Herausforderungen. Die Anwendung dieser Methodik in der Modellpflanze Arabidopsis thaliana ermöglichte die Erkennung neuer Zusammenhänge für zahlreicher Merkmale. Obwohl viele Studien, die GWAS implementieren, neue Kandidatengene für verschiedene Merkmale entdeckt haben, werden in den verschiedenen Analysen oft unterschiedliche Populationen verwendet. Es werden entweder global unterschiedliche Accessionen oder alternative welche aus einem geografisch begrenzten Gebiet als Population für die Anaylsen verwendet. Mit dem Ziel, GWAS-Ergebnisse zwischen Populationen aus verschiedenen geografischen Gebieten zu vergleichen, beschreibt diese Arbeit die Eigenschaften der Analyse in verschiedenen europäischen Populationen von A. thaliana. Verglichen wurden die Ergebnisse der Assoziationskartierung für die Blütezeit. Kapitel 2 beschreibt die Analysen von zufälligen Populationen im Vergleich zur gesamten europäischen Population. Ziel war es, reduzierte Stichproben zu erstellen, um später GWAS durchzuführen und die Ergebnisse zwischen diesen Stichproben zu vergleichen. In Kapitel 3 wurde die europäische Population in acht gleich große lokale Subpopulationen aufgeteilt. Diese repräsentieren verschiedene geografische Regionen. Als nächstes wurde GWAS durchgeführt und die Unterschiede in den jeweilgen GWAS-Ergebnissen beschrieben. Kapitel 4 behinhaltet die Ergebnisse aus einer Zusammenarbeit mit Prof. Dr. Wolfgang Dröge-Laser: Hier war meine Hauptaufgabe die Analyse von RNAs Sequenzierungsdaten von mit pathogenen Pilzen befallenen A. thaliana-Pflanzen. Schließlich enthält Anhang A eine zusammenfassende Beschreibung meiner Mitarbeit am GHP-Projekt zum Zugang zur Versorgung bei kardiometabolischen Erkrankungen (HPACC) an der Universität Heidelberg KW - Genotype-phenotype relationship KW - GWAS KW - adaptive traits KW - local adaptation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242468 ER - TY - THES A1 - Anwar, Ammarah T1 - Natural variation of gene regulatory networks in \(Arabidopsis\) \(thaliana\) T1 - Natürliche Variation genregulatorischer Netzwerke in \(Arabidopsis\) \(thaliana\) N2 - Understanding the causal relationship between genotype and phenotype is a major objective in biology. The main interest is in understanding trait architecture and identifying loci contributing to the respective traits. Genome-wide association mapping (GWAS) is one tool to elucidate these relationships and has been successfully used in many different species. However, most studies concentrate on marginal marker effects and ignore epistatic and gene-environment interactions. These interactions are problematic to account for, but are likely to make major contributions to many phenotypes that are not regulated by independent genetic effects, but by more sophisticated gene-regulatory networks. Further complication arises from the fact that these networks vary in different natural accessions. However, understanding the differences of gene regulatory networks and gene-gene interactions is crucial to conceive trait architecture and predict phenotypes. The basic subject of this study – using data from the Arabidopsis 1001 Genomes Project – is the analysis of pre-mature stop codons. These have been incurred in nearly one-third of the ~ 30k genes. A gene-gene interaction network of the co-occurrence of stop codons has been built and the over and under representation of different pairs has been statistically analyzed. To further classify the significant over and under- represented gene-gene interactions in terms of molecular function of the encoded proteins, gene ontology terms (GO-SLIM) have been applied. Furthermore, co- expression analysis specifies gene clusters that co-occur over different genetic and phenotypic backgrounds. To link these patterns to evolutionary constrains, spatial location of the respective alleles have been analyzed as well. The latter shows clear patterns for certain gene pairs that indicate differential selection. N2 - Das Verständnis des kausalen Zusammenhangs zwischen Genotyp und Phänotyp ist ein wichtiges Ziel in der Biologie. Das Hauptinteresse liegt darin, die Merkmalsarchitektur zu verstehen und Loci zu identifizieren, die zu den jeweiligen Merkmalen beitragen. Genome-wide association mapping (GWAS) ist ein Werkzeug, um diese Zusammenhänge aufzuklären und wurde erfolgreich in vielen verschiedenen Arten eingesetzt. Die meisten Studien konzentrieren sich jedoch auf marginale Markereffekte und ignorieren epistatische und Gen-Umwelt-Interaktionen. Diese Wechselwirkungen sind problematisch zu erklären, werden aber wahrscheinlich einen wichtigen Beitrag zu vielen Phänotypen leisten, die nicht durch unabhängige genetische Effekte, sondern durch ausgefeiltere genregulatorische Netzwerke reguliert werden. Eine weitere Komplikation ergibt sich aus der Tatsache, dass sich diese Netzwerke in verschiedenen natürlichen Akzessionen unterscheiden. Das Verständnis der Unterschiede zwischen genregulatorischen Netzwerken und Gen-Gen- Interaktionen ist jedoch entscheidend, um die Merkmalsarchitektur zu konzipieren und Phänotypen vorherzusagen. Das grundlegende Thema dieser Studie – unter Verwendung von Daten aus dem Arabidopsis 1001 Genomes Project – ist die Analyse von vorzeitigen Stop-Codons. Diese sind in fast einem Drittel der ~ 30k-Gene aufgetreten. Ein Gen-Gen- Interaktionsnetzwerk des gleichzeitigen Auftretens von Stop-Codons wurde aufgebaut und die Über- und Unterrepräsentation verschiedener Paare wurde statistisch analysiert. Um die signifikante über- und unterrepräsentierte Gen-Gen-Interaktion in Bezug auf den biologischen Prozess der kodierten Proteine weiter zu klassifizieren, wurden genonkologische Begriffe (GO-SLIM) verwendet. Darüber hinaus spezifiziert die Koexpressionsanalyse Gencluster, die über verschiedene genetische und phänotypische Hintergründe hinweg gleichzeitig auftreten. Um diese Muster mit evolutionären Einschränkungen in Verbindung zu bringen, wurde auch die räumliche Lage der jeweiligen Allele analysiert. Letzteres zeigt klare Muster für bestimmte Genepaare, die auf eine differentielle Selektion hinweisen. KW - Arabidopsis thaliana KW - Co-occurrence matrix KW - co-expression coefficient KW - gene expression networks KW - non-sense mutations KW - phenotype KW - local adaptation KW - variations in genome KW - Ackerschmalwand Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291549 ER -