TY - THES A1 - Walper [geb. Schwarz], Elisabeth T1 - Identifizierung und Charakterisierung von Transkriptionsfaktoren in der pflanzlichen Antwort auf das Oxylipin 9-Hydroxyoktadekatriensäure (9-HOT) T1 - Identification and characterization of transcription factors in the plant signaling Response to the oxylipin 9-hydroxyoctadekatrienoic acid (9-HOT) N2 - Oxylipine werden in der Pflanze unter Stressbedingungen gebildet. Die dafür notwendige Oxidation von Fettsäuren wird entweder nicht-enzymatisch über Radikale wie reaktive Sauerstoffspezies (ROS) oder enzymatisch über Lipoxygenasen katalysiert. Abhängig von der Position der Oxidation in der Fettsäure entstehen dabei C13- oder C9-Oxylipine. Sehr gut erforscht sind C13-Oxylipine wie Jasmonsäure (JA), die bei biotischem Stress und Verwundung gebildet werden und bei exogener Gabe das Wurzelwachstum von Arabidopsis thaliana hemmen. Die C9-Oxylipine wie 9-Hydroxyoktadekatriensäure (9-HOT) sind erst wenig erforscht. Ziel dieser Arbeit war die Charakterisierung von Transkriptionsfaktoren, mit dem Fokus auf 9-HOT-vermittelte Signalwegen in Arabidopsis thaliana. Da bekannt ist, dass auch sie zu einer Hemmung des Wurzelwachstums führen, wurde dazu die Untersuchung des Wurzelwachstums von 10 Tage alten Keimlingen etabliert. Funktionsgewinn-Mutanten des Transkriptionsfaktors TGA5 sowie des TGA5-Zielgens CYTOCHROM P450 MONOOXYGENASE CYP81D11 zeigten auf 9-HOT ein verglichen mit Col-0 deutlich besseres Wurzelwachstum. Die AtTORF-Ex-Kollektion, eine große Sammlung an Überexpressions-Linien verschiedener Transkriptionsfaktoren, wurde hinsichtlich Wurzelwachstums auf dem Oxylipin 9-HOT analysiert. Die Gesamtheit der untersuchten Pflanzen enthielt 263 unabhängige TF-Expressions-Konstrukte. Von 6087 untersuchten Pflanzen zeigten 201 Pflanzen keine Hemmung des Wurzelwachstums auf 9-HOT. Dabei konnten 80 verschiedene Transkriptionsfaktoren identifiziert werden, deren Überexpression die Wurzelwachstums-hemmende Wirkung von 9-HOT kompensiert. Es zeigte sich eine Häufung von Transkriptionsfaktoren der ERF- (ethylene responsive factor) Familie. Die verstärkte Expression der nahe verwandten Transkriptionsfaktoren ERF106 und ERF107 ermöglichte sowohl auf 9-HOT als auch auf 9-KOT ein längeres Wurzelwachstum im Vergleich zum Wildtyp. Die Genexpression von ERF106 und ERF107 wird durch Überflutung aktiviert. Durch Überflutung wird im Wildtyp die Expression von Hypoxia-Antwort-Genen wie HRE1, SUS4 oder PDC1 induziert. In den Funktionsverlust-Mutanten sind diese Gene in der Expression aber nicht beeinflusst. Auch ist nach Überflutung im normalen Tag / Nacht-Rhythmus kein signifikanter Unterschied im Überleben zwischen Col-0 und den Mutanten erf106, erf107 und erf106xerf107 nachweisbar. Zur Identifikation möglicher Ziel-Gene von ERF106 und ERF107 wurden Transkriptom-Analysen durchgeführt. Die Funktionsverlust-Mutanten erf106, erf107 und erf106xerf107 zeigten weder im Grundzustand noch nach 4 Stunden Überflutung Veränderungen in den bekannten Hypoxia-Antwort-Genen. Die Funktionsgewinn-Mutanten von ERF106 und ERF107 zeigten in der Transkriptom-Analyse eine deutliche Aktivierung von Genen, die wichtig für Entgiftung und Stressabwehr sind. Ebenso wurden wichtige Biosynthese-Gene aus der Camalexin- und Glukosinolat-Synthese in den Funktionsgewinn-Mutanten verstärkt exprimiert. Des Weiteren konnte eine verringerte Expression von Genen beobachtet werden, die wichtig für die Regulation der Eisen-Aufnahme sind, darunter bHLH-Transkriptionsfaktoren, der Eisen-Transporter IRON REGULATED TRANSPORTER 1 (IRT1) und die Eisen-Reduktase FERRIC REDUCTION OXIDASE 2 (FRO2). Zusammenfassend wurden in dieser Arbeit durch die Untersuchung der AtTORF-Ex-Kollektion mehrere TF identifiziert, die wichtige Abwehr-Gene gegen Stress- und Vergiftung sowie bedeutende Gene im Bereich der Biosynthese und Eisenaufnahme regulieren können, um so die Antwort auf C9-Oxylipine zu beeinflussen. N2 - Oxylipins are built under stress conditions. They are the results of fatty acids oxidation that occurs either non-enzymatically by the action of free radicals like reactive oxygen species (ROS) or enzymatically by lipoxygenases conversion. There are two kinds of oxylipins, C13- or C9-, according to the position of the oxidation on the fatty acid back bone. Whereas C13-oxlipins like jasmonic acid (JA) are well characterized, little is known about C9-oxylipins like 9-hydroxyoctadecatrienoic acid (9-HOT). Both of them are generated as consequence of biotic stress or wounding and a common phenotypical mark is their ability to inhibit root growth of Arabidopsis seedlings. Preliminary studies have demonstrated that overexpression of the transcription factor TGA5 or its target gene CYTOCHROM P450 MONOOXYGENASE CYP81D11 make the plants more resistant than wildtype Col-0 to oxylipins-driven root inhibition. The aim of the work presented in this thesis was to identify and characterize transcription factors involved in 9-HOT induced signaling. At the beginning, a screening aiming at the identification of transcription factors involved in the 9-HOT signaling was set up. The root growth of 10 day old seedlings from the AtTORF-Ex-collection grown on 9-HOT containing medium was analyzed. All analyzed plants harbor 263 independent TF expression constructs. Of 6087 analyzed plants 201 plants showed no inhibition of root growth on 9-HOT. Plant overexpressing 80 different transcription factors showed a long root-phenotype on 9-HOT containing medium, indicating that in this plants the 9-HOT activated signaling was impaired. Among them, ERF-transcription factor family was overrepresented. Overexpression of the closely related ERF106 and ERF107 enabled longer root growth compared to wild-type on 9-HOT as well as on 9-KOT. Analysis of the stimuli inducing the alteration of the expression of ERF106 and ERF107, identified submergence as one of the main one. Under hypoxic conditions in wildtype, the expression of hypoxia-response-genes like HRE1, SUS4 or PDC1 is induced. Expression levels of these genes are not affected in erf106, erf107 and erf106xerf107 loss-of-function mutants. Examination of the survival rate after submergence did not reveal significant differences between Col-0 and the loss-of-function-mutants erf106, erf107 und erf106xerf107, at least under normal day-night-rhythm. To identify target genes of ERF106 and ERF107, transcriptome analysis were performed. The loss-of-function-mutants erf106, erf107 and of their double mutant did not show any differences in the known hypoxia responses, neither in control nor 4 hours after submergence. The gain-of-function-mutants of ERF106 and ERF107 exhibit a distinct gene activation of genes important for detoxification and stress regulation and defense. Moreover, genes for camalexin and glucosinolate biosynthesis pathway were up-regulated in these gain-of-function mutants. Genes crucial for regulation of iron uptake like bHLH transcription factors, iron transporter IRON REGULATED TRANSPORTER 1 (IRT1) and iron reductase FERRIC REDUCTION OXIDASE 2 (FRO2), whereas, show a reduced expression in these mutants. The analysis of the AtTORF-Ex-collection revealed some interesting TFs that can regulate genes important for stress response and detoxification, and thereby influence the response to C9-oxylipins. KW - Oxylipine KW - 9-HOT KW - Transkriptionsfaktor KW - 9-Hydroxyoktadekatriensäure KW - AtTORF-Ex-Kollektion KW - Stress KW - Signalling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128047 ER - TY - THES A1 - Degenhardt, Birgit T1 - Wachstum und physiologisches Verhalten von Zea mays bei multiplem Streß unter besonderer Berücksichtigung des Wurzelsystems T1 - Growth and physiological behaviour of Zea mays under multiple stress with special focus on the root system N2 - In der vorgestellten Arbeit wurden das Wachstum und das physiologische Verhalten von Zea mays auf Müllheizkraftwerk (MHKW) -Schlacke im Vergleich zu Gartenerde als Kulturmedium untersucht. Dabei stand das Wurzelsystem der Maispflanzen im Mittelpunkt des Interesses. Da feste Bodensubstrate verwendet wurden, mußten diese zu Beginn der Experimente chemisch, physikalisch und bodenbiologisch charakterisiert werden. Die Analyse der Schlacke zeigte, daß Schlacke ein multifaktorielles Streßsystem darstellt: Sie enthält einen hohen Gehalt an leicht löslichen Salzen, v.a. NaCl (bis zu 220 mM in der Bodenlösung). MHKW-Schlacke ist dagegen arm an Stickstoff und pflanzenverfügbarem Phosphat. Der pH-Wert der Bodenlösung von Schlacke ist stark alkalisch (pH 8.4 - 9.0). Darüber hinaus besitzt Schlacke einen hohen Gehalt an potentiell toxischen Schwermetallen und weist im Vergleich zum Kontrollsubstrat Gartenerde eine verdichtete Bodenstruktur mit erhöhtem mechanischen Widerstand auf. Im Vergleich zu der Kontroll-Anzucht auf Gartenerde reagierten die auf Schlacke kultivierten Mais-Pflanzen mit vermindertem Wachstum: Sproß und Wurzel erreichten nur die Hälfte der Länge der Kontrollpflanzen. Ein Vergleich der Biomassen von Sproß und Wurzel zeigte, daß das Sproßwachstum der Schlacke-Pflanzen stärker eingeschränkt ist als das Wurzelwachstum, woraus ein vergrößertes Wurzel / Sproß-Verhältnis resultiert. Das Wachstum von jungen Mais-Pflanzen auf Schlacke ist jedoch nicht in dem Maß eingeschränkt, wie es aufgrund der hohen Salzbelastung zu erwarten wäre. In einem Vergleichsexperiment mit Mais-Pflanzen, die in einer Nährlösung mit Zusatz von 100 mM NaCl kultiviert wurden, war das Wachstum erheblich schlechter und in den Blättern akkumulierte weitaus mehr Natrium als in Schlacke-Pflanzen. Hier wird der positive Einfluß des hohen Calciumgehaltes der Schlacke deutlich. Die Beeinträchtigung des Wachstums von Mais bei Kultur auf Schlacke wird hauptsächlich auf Phosphatmangel zurückgeführt, da durch Düngung eine beträchtliche Wachstumsverbesserung erzielt werden kann. Zudem wurden keine toxischen Konzentrationen an Schwermetallen im Blattgewebe von auf Schlacke kultivierten Pflanzen gefunden. Der Photosynthese-Apparat der Schlacke-kultivierten Pflanzen war sehr leistungsfähig: Es bestand keine Beeinträchtigung in der Energieverfügbarkeit (Quantenausbeute des Photosystems II) und die Lichtsättigung der photo-synthetischen Elektronentransportrate lag sogar höher als bei den Kontrollpflanzen. Die Bestimmung des „adenylate energy charge“ bestätigte diesen Sachverhalt. Das Wurzelsystem von Zea mays auf Schlacke wies strukturelle Veränderungen auf. Neben der verkürzten Wurzellänge und dem vergrößerten Wurzeldurchmesser der Schlacke-Pflanzen ergaben mikroskopische Untersuchungen, daß die Wurzeln durch Kultur auf Schlacke mit einer mechanischen Verstärkung reagieren: Stärker ausgeprägte tangentiale Zellwandverdickungen der Endodermis im tertiären Zustand und Zellwandmodifikationen in den radialen Zellwänden der Rhizodermis (Phi-Verdickungen). Für monokotyle Arten, insbesondere für Mais, gibt es bisher keine Beschreibung von Phi-Verdickungen in der Literatur. Gaschromatographische und massenspektrometrische Untersuchungen belegen, daß sich die Zellwände von auf Erde und Schlacke kultivierten Maiswurzeln im Hinblick auf den Gesamtgehalt an Lignin (endodermale Zellwandisolate) und in der Ligninzusammensetzung (hypodermale Zellwandisolate) unterscheiden: In Schlacke-kultivierten Maiswurzeln wurde ein höherer Anteil an dem Lignin-Monomer p Hydroxyphenyl gefunden, was zu einem höher verdichteten Lignin führt (Streßlignin). Die endodermalen Zellwände von auf Schlacke-kulivierten Pflanzen hatten dagegen einen höheren Gesamtlignin-Gehalt als die entsprechenden Kontrollen, was ebenfalls eine mechanische Verstärkung der Wurzel bewirkt. In Bezug auf Suberin konnten keine Unterschiede zwischen den verschiedenen Anzuchten gefunden werden, weder in den hypodermalen noch in den endodermalen Zellwandisolaten. Die verschiedenen Streßfaktoren führen demnach nicht zu einer verstärkten Imprägnierung der Zellwände mit lipophilem Material. Die Zellwände von Mais spielen eine wichtige Rolle bei der Immobilisierung von Schwermetallen. Die Zellwandisolate von auf Erde und Schlacke kultivierten Mais-Pflanzen wiesen je nach Schwermetall-Element 43 - 100 % des Gesamtgehaltes auf. Die absoluten Gehalte in den Zellwandisolaten von auf Schlacke angezogenen Pflanzen waren dabei höher als die entsprechenden Werte der Kontrolle. Eine Anreicherung in den Zellwänden wurde hauptsächlich für die Schwermetalle Zink, Blei, Nickel und Chrom beobachtet. Als unspezifische Streßantwort reagierten Maispflanzen auf die Kultur in Schlacke mit einer erhöhten Peroxidaseaktivität in der interzellulären Waschflüssigkeit. Die Peroxidaseaktivität des Symplastens der Wurzel unterscheidet sich zwischen den beiden Anzuchten dagegen nicht. Die Konzentration des Phytohormons Abscisinsäure (ABA) war in Blättern von auf Schlacke kultivierten Pflanzen von Zea mays und Vicia faba im Vergleich zu den Kontrollpflanzen erhöht. Dieser Anstieg ist eine Folge der erhöhten Salzbelastung der Schlacke, da die ABA-Gehalte entsprechender Blätter von auf gewaschener Schlacke kultivierten Pflanzen annähernd den Kontrollwerten entsprachen. Bei der Verteilung von ABA zwischen der Wurzel und der Bodenlösung der umliegenden Rhizosphäre konnte das als Anionenfalle bekannte Prinzip bestätigt werden. Nach diesem Modell reichert sich ABA im alkalischten Kompartiment an (hier: Schlacke-Bodenlösung). In den Wurzeln konnte nur in der Maiskultur auf Schlacke ein erhöhter Gehalt gefunden werden, nicht dagegen in der Vicia faba-Kultur. Dieser Unterschied liegt daran, daß Mais im Gegensatz zu Vicia faba eine exodermale Spezies ist und die Exodermis für ABA eine Barriere darstellt, was den ABA-Efflux in die Rhizosphäre verhindert. Im Wurzelgewebe von auf Schlacke kultivierten Maispflanzen wurde ein im Vergleich zur Kontrolle 15-facher Gehalt an wasserlöslichen, nicht proteingebundenen Sulfhydrylgruppen nachgewiesen. Diese auf Schwermetallstreß zurückzuführende Reaktion impliziert, daß die in der Schlacke-Bodenlösung vorhandenen Schwermetalle nicht ausreichend im Apoplasten zurückgehalten werden und bis in den Symplasten vordringen können. N2 - In the present thesis the growth and physiological behaviour of Zea mays cultivated on municipal solid waste incinerator bottom slag and garden mould were investigated. Thereby the root system of the maize plants was of main interest. Since solid soil substrates were used, experiments started with the chemical, physical and microbiological characterisation. The analysis represents the bottom incinerator slag as a multifactorial stress system: Slag contains a considerable amount of highly soluble salts, mainly sodium chloride (up to 220 mM in the soil solution). However, slag is poor in nitrogen and plant available phosphate. The pH-value of the slag soil solution is very alkaline (pH 8.4 – 9.0). Furthermore, slag exhibits high levels of potential toxic heavy metals and presents a condensed soil matrix with strong mechanical impedance. Compared to the control culture on garden mould, maize plants cultivated on slag showed a reduced growth: shoot and root of slag cultivated plants reached only one half of the length of the control plants. On the other hand the comparison of the shoot and root biomass revealed, that the shoot growth of the slag plants was more reduced than the root growth, resulting in an increased root to shoot ratio. Observing young corn plants on slag, the growth is not decreased as such extensively as it would be expected by this high salt burden. In a comparative experiment maize plants were cultivated in hydroponic culture supplemented by 100 mM NaCl. Here the plant growth was considerable inferior and the maize leaves accumulated sodium in much higher amounts. This emphasises the positive influence of the high calcium content of the slag. The long lasting impaired growth from corn plants cultivated on slag is mainly due to phosphate deficiency, because a substantial amendment of growth can be obtained by fertilising. Furthermore, no toxic concentration of heavy metals was detected in the leaves of slag grown plants. The photosynthetic performance of slag cultivated plants is very efficient: the energy availability (quantum yield of the photosystem II) was not reduced and the light saturation of the photosynthetic electron transport rate was even higher than for the control plants. The determination of the adenylate energy charge confirms that fact. Cultivating corn on slag, structural modifications can be observed in the root system. Besides the reduced root length and the enlargement of the root diameter microscopic examinations revealed, that roots response with a mechanical strengthening. They form more intensive tangential cell wall thickenings of the endodermis in the tertiary state of development and cell wall modifications in the radial cell walls of the rhizodermis (phi thickenings). Phi thickenings in monocotyledons species especially for maize haven’t been reported in the literature to date. Gaschromatographic and mass spectrometric investigations showed, that cell walls of maize roots cultivated on garden mould and slag differ in the total amount of lignin (endodermal cell wall isolates) and in lignin composition (hypodermal cell wall isolates): In slag cultivated corn roots a larger proportion of the lignin monomer p hydroxyphenyl was detected, which results in higher condensed lignin. The higher amount of total lignin of the endodermal cell walls from slag grown plants also causes a mechanical strengthening of the root. With regard to suberin no differences were found between the cultures, neither in hypodermal nor in endodermal cell wall isolates. Therefore the various stress factors do not induce a stronger impregnation of the cell walls with lipophilic material. The cell walls of maize play an important role by immobilisation of heavy metals. Depending on the metal species, 43 - 100 % of the total amount of the metals was recovered in cell wall isolates of garden mould and slag cultivated maize plants. The absolute amounts in the cell wall isolates of slag cultivated plants were higher than the corresponding control values. An accumulation in the cell walls were found for the heavy metals zinc, lead, nickel and chrome. As a non specific answer to stress, roots of maize plants react on slag cultivation with a rise in activity of peroxidase. This increase was only manifested in the intercellular wash fluid but not in the symplast. The investigation of the phytohormone abscisic acid (ABA) revealed a higher concentration of ABA in leaves of Zea mays and Vicia faba plants cultivated on slag than for the control plants. That increase is due to the high salt burden of slag, because the ABA values of leaves of plants cultivated on washed slag correspond approximately to the control values. The distribution of ABA between roots and the soil solution of the rhizosphere match to the anion trap concept. In accordance with that model ABA is enriched in alkaline compartments (here slag-soil solution). However, in roots an increased amount of ABA was only detected for maize cultivated on slag, but not for Vicia faba. The reason for that difference between the two plant species is, that Zea mays is an exodermal species and its exodermis represents a barrier for ABA, reducing the ABA efflux into the rhizosphere. In the root tissue of slag cultivated maize plants a 15-fold amount of water soluble, non-proteinogen sulfhydrylgroups was detected. This may be an indication for heavy metal stress and implies, that heavy metal ions in slag soil solution can not be retained sufficiently by the apoplast and enter the symplast. KW - Mais KW - Wurzel KW - Stressreaktion KW - Schlacke KW - Pflanzenwachstum KW - Gartenerde KW - Zea mays KW - Wachstum KW - Physiologie KW - Stress KW - Wurzelsystem KW - Zea mays KW - growth KW - physiology KW - stress KW - rootsystem Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16964 ER -