TY - THES A1 - Berkefeld, André T1 - Der Silicium-α-Effekt : experimentelle Untersuchungen der Hydrolyse von Cα- und Cγ-funktionalisierten Alkoxytriorganylsilanen T1 - Silicon α-Effect: A Experimental Study of the Hydrolysis of Cα- and Cγ-functionalized Alkoxytriorganylsilanes N2 - Um den Silicium-α-Effekt "als vergrößerte Reaktivität der Si–OC-Bindung" von α-Silanen der allgemeinen Formel ROSiMe2CH2X verglichen mit den entsprechenden γ-Silanen des Typs ROSiMe2(CH2)3X (R = Me, Et; X = funktionelle Gruppe) besser zu verstehen, wurde im Rahmen dieser Arbeit eine systematische experimentelle Untersuchung der Hydrolyse der genannten Alkoxy¬silane durchgeführt. Um die Abhängigkeit der Hydrolyse von der funktionellen Gruppe X, dem Abstand zwischen dem Silicium-Atom und der funktionellen Gruppe X (CH2 oder (CH2)3, α- oder γ-Silan) und dem pD-Wert zu untersuchen, wurde eine Vielzahl an kinetischer Hydrolyse-Studien in CD3CN/D2O unter selbsteinstellendem pD-Wert, unter Verwendung von Pufferlösungen und unter definierten basischen und sauren Bedingungen durchgeführt. Die Kinetik der Hydrolyse der untersuchten Silane wurde dabei mittels 1H-NMR Spektroskopie verfolgt. Die Ergebnisse dieser Untersuchungen zeigen eindeutig, dass der Silicium-α-Effekt nicht als ein einziger Effekt der funktionellen Gruppen verstanden werden kann. Im Gegenteil, die verschiedenen beobachteten Reaktivitäten sind das Resultat mehrerer verschiedener Teileffekte. Die jeweils beobachtete Reaktivität entspricht der Summe der möglichen Teileffekte und kann nicht durch einen bestimmten Silicium-α-Effekt erklärt werden. N2 - To understand the silicon α effect in terms of an enhanced reactivity of the Si–OC bond of α-silanes of the formula type ROSiMe2CH2X compared to analogous γ silanes ROSiMe2(CH2)3X (R = Me, Et; X = functional group), a systematic experimental study of the kinetics and mechanisms of hydrolysis of such compounds was performed. For this purpose, a series of suitable model compounds was synthesized and studied for their hydrolysis kinetics in CD3CN/D2O under basic and acidic conditions, using 1H NMR spectroscopy as the analytical tool. These investigations demonstrated that the silicon α-effect cannot be rationalized in terms of a special single effect. The reactivities observed rather result from a summation of different components, such as electronic and steric effects, pD dependence, and hydrogen bonds between the functional group (or even protonated functional group) and the alkoxy leaving group. KW - Chemische Synthese KW - Alkoxysilane KW - Hydrolyse KW - Silanderivate KW - alpha-Effekt KW - Alkoxysilane KW - hydrolysis kinetics KW - nucleophilic substitution KW - reaction mechanisms KW - Nucleophile Substitution KW - Silicium KW - Magnetische Kernresonanz KW - Synthese Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85155 ER - TY - THES A1 - Ehbets, Julia T1 - (β-AMINOALKYL)Silane: Synthese und Hydrolyseuntersuchungen von Cα-, Cβ-, Cγ- UND Cζ-funktionalisierten Alkoxy(Aminoalkyl)Silanen T1 - (β-AMINOALKYL)Silanes: Synthesis and study of hydrolysis of Cα-, Cβ-, Cγ- UND Cζ-functionalized Alkoxy(Aminoalkyl)Silanes N2 - Die vorliegende Arbeit behandelt die Synthese sowie die Eigenschaften einer Serie von organofunktionellen α-, β-, γ- und ζ-Silanen, mit einem Fokus auf Alkoxy(aminoalkyl)silanen. Der Großteil dieser Modellstrukturen wurde anschließend hinsichtlich ihrer Hydrolysekinetik in Abhängigkeit der Art der funktionellen Gruppe X (NMe3+, N(H)COOMe, N(Me)COOMe, NH2, N(H)Me, NMe2, Pip, Me), des Abstandes des Substituenten X zu dem Silicium-Atom (α-, β-, γ- und ζ-Position), der Alkoxy-Abgangsgruppe am Silicium-Atom (MeO, iPrO, tBuO) und des pD-Wertes der Reaktionslösung systematisch untersucht. Eine große Herausforderung dieser Studie war die Synthese von β-Amino-funktionalisierten Alkoxysilanen, deren Chemie aufgrund ihrer Labilität bisher kaum erforscht ist. Die einzigen literaturbekannten Vertreter stellten bislang das Trialkoxysilan (EtO)3Si(CH2)2NH2 (1) und sein Dialkoxy-Derivat (EtO)2SiMe(CH2)2NH2 (2) dar, welche durch Reaktion des entsprechenden 2-(Chlorethyl)silans mit Ammoniak unter hohem Druck im Autoklaven zugänglich sind. Unter Verwendung dieser Synthesemethode konnte sowohl die Synthese der Silane 1 und 2 reproduziert, als auch das Trimethoxy-Analogon (MeO)3Si(CH2)2NH2 (3) erstmals dargestellt werden. Darüber hinaus wurde eine Serie von organofunktionellen Monoalkoxysilanen des Typs RORSiMe(CH2)2X und ROSiMe2C(H)MeCH2X (4b–18b) im präparativen Maßstab analyserein dargestellt. Des Weiteren wurden die entsprechenden α-Silane 8a, 11a, 14a und 15a, die γ-Silane 6c, 8c, 11c, 13c–15c und 18c sowie die ζ-Silane 19 und 20 erstmals dargestellt. Weiterhin wurden die bereits literaturbekannten α-Silane 16a–18a und γ-Silane 7c, 16c und 17c für die Verwendung in den Hydrolyseexperimenten synthetisiert. Die Charakterisierung aller im Rahmen dieser Arbeit synthetisierten Verbindungen erfolgte mittels NMR-Spektroskopie (1H-, 13C-, 15N- und 29Si-NMR) und Elementaranalysen (C, H, N) bzw. HRMS-Experimente. Die hydrolytische Spaltung der Si–OC-Bindung in Alkoxy(aminoalkyl)silanen stellt einen technisch sehr wichtigen Schlüsselschritt in der Synthese von Amino-funktionalisierten Polysiloxanen dar. Um den Mechanismus dieser Si–OC-Bindungsspaltung besser zu verstehen, wurden die Alkoxysilane 4b, 4c, 5b, 6b, 6c, 7b, 7c, 8a–8c, 9b, 11a–11c, 12b, 14a–14c, 15a–15c, 16a–16c, 17a–17c, 18a–18c, 19 und 20 hinsichtlich ihrer Hydrolysekinetik in CD3CN/D2O unter sauren und basischen Bedingungen mittels 1H-NMR-Spektroskopie untersucht. Die Ergebnisse dieser Struktur–Reaktivitäts-Studie zeigten, dass die beobachteten unterschiedlichen Hydrolysegeschwindigkeiten das Resultat mehrerer Faktoren sind, wie beispielsweise elektronische und sterische Effekte, der große Einflusses des pD-Wertes und auch intramolekulare N–H∙∙∙O-Wasserstoffbrückenbindungen zwischen der protonierten Amino-Gruppe und der Alkoxy-Abgangsgruppe. Da der Einfluss dieser Effekte auf die Reaktivität der untersuchten α-, β-, γ- und ζ-Silane sehr unterschiedlich ist, kann kein klarer Zusammenhang zwischen der Hydrolysereaktivität und der Positionierung der stickstoff-haltigen funktionellen Gruppe (α-, β-, γ- und ζ-Position) erkannt werden. Die jeweils beobachtete Reaktivität entspricht vielmehr einer Summe aller zuvor genannten Teileffekte. Die Erkenntnisse, die im Rahmen dieser Arbeit erhalten wurden, ermöglichen ein verbessertes grundlegendes Verständnis der Reaktivität von funktionalisierten α-, β-, γ- und ζ-Silanen, und sind für die Silicon-Industrie von großem Interesse, da sie eine gezieltere Anwendung der α-, β- und γ-Aminosilane in der Synthese von technisch wichtigen Amino-funktionalisierten Polysiloxanen erlauben. N2 - This thesis deals with the synthesis and properties of a series of organofunctional α-, β-, γ-, and ζ-silanes, with a focus on alkoxy(aminoalky)silanes. The majority of these model compounds were systematically investigated for their hydrolysis kinetics, depending on the functional group X (NMe3+, N(H)COOMe, N(Me)COOMe, NH2, N(H)Me, NMe2, Pip, Me), the spacer between X and the silicon atom (α-, β-, γ-, and ζ-position of the functional group), the alkoxy leaving group at the silicon atom (MeO, iPrO, tBuO), and the pD value of the reaction mixture. One of the major challenges of this study was the synthesis of β-amino-functionalized alkoxysilanes, the chemistry of which was mainly due to stability issues not well established yet. Until now, the trialkoxysilane (EtO)3Si(CH2)2NH2 (1) and its dialkoxyderivative (EtO)2SiMe(CH2)2NH2 (2) were the only representatives of this type described in the literature. They were synthesized by reaction of the respective 2-(chloroethyl)silane and ammonia under high pressure in an autoclave. Using this synthetic method, the synthesis of the silanes 1 und 2 could be reproduced and the trimethoxyanalogue (MeO)3Si(CH2)2NH2 (3) could be prepared for the first time. Furthermore, a series of organofunctional monoalkoxysilanes of the formula type RORSiMe(CH2)2X and ROSiMe2C(H)MeCH2X (4b–18b) was synthesized on a preparative scale in analytically pure form. Also, the corresponding α-silanes 8a, 11a, 14a, and 15a, the γ-silanes 6c, 8c, 11c, 13c–15c, and 18c, and the ζ-silanes 19 and 20 were prepared for the first time. In addition, the well known α-silanes 16a–18a and γ-silanes 7c, 16c, and 17c were synthesized for their use in the hydrolysis experiments. All the compounds synthesized in this study were characterized by NMR spectroscopy (1H, 13C, 15N, and 29Si NMR) and elemental analysis (C, H, N) or HRMS experiments. The hydrolytic cleavage of the Si–OC bond of alkoxy(aminoalkyl)silanes represents a technically very important key step in the synthesis of amino-functionalized polysiloxanes. To get a better understanding of the mechanism of this Si–OC bond cleavage, the alkoxysilanes 4b, 4c, 5b, 6b, 6c, 7b, 7c, 8a–8c, 9b, 11a–11c, 12b, 14a–14c, 15a–15c, 16a–16c, 17a–17c, 18a–18c, 19, and 20 were studied for their hydrolysis kinetics in CD3CN/D2O under acidic and basic conditions, using 1H NMR spectroscopy as the analytical tool. The results of these structure–reactivity studies clearly demonstrate that the different hydrolysis reactivities observed are the result of a number of parameters, such as electronic and steric effects, the strong impact of the pD value, and intramolecular N–H∙∙∙O hydrogen bonds between the protonated amino group and the alkoxy leaving group. These parameters affect the hydrolysis reactivity of the α-, β-, γ-, and ζ-silanes in an unpredictable manner, so that no clear correlation between the hydrolysis reactivity and the position of the nitrogen-containing functional group (α-, β-, γ-, and ζ-position) can be found. The observed reactivity is rather a summation of all the aformentioned parameters. The insight gained from this work allows for a much clearer conceptual understanding of the reactivity of functionalized α-, β-, γ-, and ζ-silanes. These findings are also of great interest for silicone industry as they allow for a more directed application of α-, β-, and γ-aminosilanes for the preparation of the technically important class of amino-functionalized polysiloxanes. KW - Hydrolyse KW - Reaktionskinetik KW - Silanderivate KW - Hydrolyse KW - hydrolysis KW - kinetische Untersuchung KW - organofunktionelle Alkoxysilane KW - kinetic study KW - organofunctionalized alkoxysilanes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133071 ER - TY - THES A1 - Hofmann, Marco T1 - Ferriomethyl- und Wolframiomethyl-substituierte Silane, Silanole und Siloxane T1 - Ferriomethyl- and Tungsteniomethyl-substituted silanes, silanols and siloxanes N2 - Das Interesse an Übergangsmetall-substituierten Siloxanen ist in den vergangenen Jahren stark angewachsen. Dies ist vor allem darauf zurückzuführen, dass diesen Systemen eine wichtige Modellfunktion für auf Silica-Oberflächen verankerte, katalytisch aktive Übergangsmetallkomplexe zukommt, die eine Vielzahl organischer Reaktionen katalysieren und dabei sowohl die Vorteile der Homogenkatalyse als auch der Heterogenkatalyse in einem einzigen System vereinen. Weiterhin kommt ihnen auch eine wichtige Bedeutung als Vorstufen zur Darstellung von Silicon-Polymeren und Keramiken zu, die definierte Metallzentren in ihrem Polymer-Grundgerüst enthalten und somit als neue Werkstoffe mit hoher mechanischer und thermischer Stabilität sowie ausgezeichneten leitenden Eigenschaften dienen können. Metallosiloxane mit einer direkten Metall-Silicium-Bindung können über die entsprechenden Metallo-silanole generiert werden, die seit Beginn der 90er Jahre eine intensivere Bearbeitung erfahren. In dieser Arbeit wurden die ersten Vertreter von Metallo-silanolen dargestellt und bezüglich ihrer Reaktivität untersucht, in denen das Metall- und Siliciumatom durch einen Alkylidenspacer getrennt ist. Es wurde zunächst eine Reihe von C5R5(OC)2FeCH2-substituierten Silanolen über die Et3N-assistierte Hydrolyse von Ferriomethyl-chlorsilanen bzw. Oxygenierung von Si-H-funktionellen Ferriomethyl-silanen mit Dimethyldioxiran dargestellt. Die Stabilisierung durch das Metallfragment in β-Stellung zur Silanoleinheit erweist sich ebenfalls hinreichend für die Darstellung von Ferriomethyl-silandiolen und –silantriolen, wie anhand der Darstellung von Cp(OC)2Fe-CH2-Si(R)(OH)2 (R = Me, OH) nachgewiesen werden konnte. Allerdings zeigen diese Vertreter im Vergleich zu ihren Analoga mit direkter Fe-Si-Bindung eine z.T. deutlich erhöhte Eigenkondensationsneigung. Die Röntgenstrukturanalysen der Ferriomethyl-diorganosilanole C5R5(OC)2Fe-CH2-Si(Me)(R’)OH belegen deren Aggregation zu Tetrameren bzw. unendlichen Ketten im Festkörper über starke intermolekulare OH...O-Wasserstoffbrückenbindungen. Durch Et3N-assistierte Kondensation mit Organochlorsilanen, wie z.B. Me2Si(H)Cl lassen sich kontrolliert Ferriomethyl-substiuierte Di-, Tri- und Tetrasiloxane generieren. Auch der Aufbau von mehrkernigen Heterosiloxangerüsten ist möglich, wie exemplarisch anhand der Synthese von Cp(OC)2Fe-CH2-SiMe2O-M(Cl)Cp2 (M = Ti, Zr) überprüft wurde. Weiterhin können auch Modifikationen am Metallfragment vorgenommen werden, wie der photochemisch induzierte CO/PR3-Austausch an Cp(OC)2-CH2-SiMe2OH beweist. Die synthetisierten Ferriomethyl-siloxane mit δ-ständiger Si-H-Funktion eignen sich für weitere Umsetzungen, wie z.B. der oxidativen Addition der Si-H-Funktion an ungesättigte Metallfragmente. So lassen sich das Tri- bzw. Tetrasiloxan Cp(OC)2Fe-CH2-Si(R)(OSiMe2H)2 (R = Me, OSiMe2H) durch UV-Bestrahlung unter CO-Eliminierung glatt in die Cyclo(ferra)siloxane Cp(OC)(H)Fe-SiMe2-OSi(Me)(R)-OSiMe2 überführen. Abschließend wurde überprüft, ob sich die Chemie der Ferriomethyl-silanole auch auf andere Übergangsmetallfragmente übertragen lässt. Hierbei konnten Wolframiomethyl-silanole mit dem Cp(OC)2(Me3P)WCH2-Fragment dargestellt werden, wobei sich, im Gegensatz zu den Eisenvertretern, die Darstellungsmethode der Oxygenierung von Si-H-funktionellen Vorläufern als vorteilhafter erweist. N2 - The interest in transition metal substituted siloxanes has rapidly grown in recent years. This is mainly due to their ability to serve as model systems for catalytically active transition metal complexes immobilized on a silica surface combining the advantages of homogeneous as well as those of heterogeneous catalysis in one system. In addition, these systems are also considered as precursors in the production of silicon polymers and ceramics with well-defined metal centres in the polymer backbone and can so be applied as new materials with good mechanical and thermal stability and excellent conducting properties. Metallo-siloxanes with a direct metal-silicon bond can be generated via the corresponding metallo-silanols which raised a greater attention in the last ten years. In this work the first examples of metallo-silanols have been synthesized and studied in which the metal and silicon atom are separated by an alkylidene spacer group. A number of C5R5(OC)2FeCH2-substituted silanols has been generated via Et3N-assisted hydrolysis of ferriomethyl-chlorosilanes and oxygenation of Si-H-functional ferriomethyl-silanes with dimethyldioxirane, respectively. The stabilizing effect of the metal fragment in β-position to the silanol unit is sufficient for the isolation of ferriomethyl-silanediols und –silanetriols as could be demonstrated in the synthesis of Cp(OC)2Fe-CH2-Si(R)(OH)2 (R = Me, OH). However, these compounds show an enhanced tendency to self-condensation compared to their analogues with a direct metal-silicon bond. The X-ray structure analyses of the ferriomethyl-diorganosilanols C5R5(OC)2Fe-CH2-Si(Me)(R’)OH show their aggregation to tetramers or infinite chains in the solid state, respectively, via strong intermolecular OH...O hydrogen bonds. Ferriomethyl-substiuted di-, tri- and tetrasiloxanes can be generated by controlled Et3N-assisted condensation with organochlorosilanes, e.g. Me2Si(H)Cl. Even binuclear heterosiloxanes can be synthesized as was proved by the synthesis of Cp(OC)2Fe-CH2-SiMe2O-M(Cl)Cp2 (M = Ti, Zr). In addition, there are also modifications at the metal fragment possible like the photochemically induced CO/PR3 substitution at Cp(OC)2-CH2-SiMe2OH. Ferriomethyl-siloxanes with a Si-H function in δ-position are suitable for further modifications, e.g. oxidative addition of the Si-H function to electronically unsaturated metal fragments. UV irradiation of the tri- and tetrasiloxanes Cp(OC)2Fe-CH2-Si(R)(OSiMe2H)2 (R = Me, OSiMe2H) leads to CO elimination producing the cyclo(ferra)siloxanes Cp(OC)(H)Fe-[SiMe2-OSi(Me)(R)-OSiMe2]. Finally it was examined if the chemistry of ferriomethyl-silanols can be transferred to compounds with other transition metal fragments. Tungsteniomethyl-silanols with a Cp(OC)2(Me3P)WCH2 fragment can be generated, whereas in contrast to the synthesis of ferriomethyl-silanols, the oxygenation method via Si-H functional precursors is more favourable. KW - Übergangsmetallkomplexe KW - Siliciumorganische Verbindungen KW - Chemische Synthese KW - Metallo-silanole KW - Metallo-siloxane KW - Hydrolyse KW - Oxygenierung KW - Kondensation KW - metallo-silanols KW - metallo-siloxanes KW - hydrolysis KW - oxygenation KW - condensation Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1181579 ER - TY - THES A1 - Poppe, Heiko Anton T1 - Bestimmung der Substrat- und Inhibitorspezifität von Phosphodiesterasen mittels Mikrokaloriemetrie T1 - Phosphodiesterase activity and specificity measured using microcalorimetry N2 - Neben den cAMP- und cGMP-abhängigen Proteinkinasen (PKA bzw. PKG) sind als zyklonukleotid-regulierte Effektorproteine die Ionenkanäle CNG1-4, der "guanine nucleotide exhange factor“ Epac sowie die zyklonukleotid-spaltende Familie der Phosphodiesterasen (PDEs) von Bedeutung. Industriell synthetisierte cGMP- und cAMP-Analoga besitzen zwar meist eine hohe Affinität für ihr Zielprotein, über ihre Hydrolysestabilität gegenüber PDEs in der Zelle ist jedoch wenig bekannt. In dieser Arbeit wurden die kinetischen Konstanten von elf der am häufigsten genutzten cAMP-und cGMP-Analoga an verschiedenen Vertretern der PDE-Familien mittels Mikrokaloriemetrie bestimmt. Zudem konnte in den Messungen der inhibitorisch Effekt hydrolysestabiler Derivate auf die PDEs qualitativ und quantitativ ermittelt werden kann. Die Ergebnisse zeigen, dass Phosphodiesterasen in der Lage sind, auch chemisch modifizierte Analogsubstanzen der Cyclonukleotide cAMP und cGMP zu hydrolysieren. Hydrolysestabile Derivate dagegen entwickeln häufig inhibitorische Wirkung auf die PDEs und verursachen dadurch Veränderungen der intrazellulären cAMP und cGMP Konzentrationen. So vermag z. B. die Epac-spezifische Substanz Sp-8-pCPT-2’-O-Me-cAMPS in den in vitro Experimenten die PDEs mit ki-Werten im einstelligen mikromolaren Bereich zu inhibieren. In mit Sp-8-pCPT-2’-O-Me-cAMPS stimulierten Thrombozyten steigt als Folge dieser PDE-Hemmung die cGMP Konzentration in der Zelle an und man beobachtet eine als Folge eine PKG-vermittelte Phosphorylierung des Substratproteins VASP – eine unerwünschte Nebenreaktion. Die erhobenen Daten lassen außerdem Rückschlüsse auf den Inhibitionsmechanismus zu. Einige Analoga inhibieren die cGMP-bindenden GAF-Domänen in den PDEs 2A, 5A, 6cone und 10A sowie die PDE 4D3 nach dem linear-mixed-Typ und beeinflussen daher, neben der katalytischen Aktivität, vermutlich auch regulatorische Zentren dieser Enzyme. Zusammenfassend erleichtern die erhobenen Daten Wissenschaftlern die Auswahl des für ihre Fragestellung am besten geeigneten Derivates. N2 - cAMP and cGMP are critical second messengers that regulate multiple targets including different cAMP/cGMP-dependent protein kinases (PKA/PKGs), exchange proteins directly activated by cAMP (Epacs), phosphodiesterases (PDEs) and cyclic nucleotide-gated ion channels (CNGs). Second and third generation cyclic nucleotide analogs are widely used to elucidate specificity of cellular signaling, mediated by these target proteins. However, the selectivity and stability of these analogs need to be fully understood in order to properly interpret results and rigorously assess the mechanisms by which these analogs work in the cell. To better understand the selectivity and cross-reactivity of these analogs I measured the activation or inhibitory activity of 13 commonly-used cyclic nucleotide analogs 8 different PDEs. To measure their stability to hydrolysis I utilized isothermal microcalorimetry, a method that allows to evaluate whether or not an analog can function as a substrate or inhibitor for PDEs. I demonstrate that indeed some of these analogs can be hydrolyzed by multiple PDEs and others are competitive inhibitors. Herein I provide Ki data for all of the non-hydrolyzable analogs and Km and Vmax values for all of the hydrolyzable analogs. Each of these values, as well as their mode of inhibition can be determined in a single experiment. The data strongly implied that several of these analogs might, in addition to their primary effects, also cause elevation of cAMP or cGMP indirectly by inhibiting PDEs in the cell. Such an effect could of course cloud interpretation of the use of these analogs. Similarly, those that are PDE substrates also might have their duration of action substantially reduced. To illustrate this point we show that Sp-8-pCPT-2’-O-Me-cAMPS, a highly specific non-hydrolyzable Epac activator in vitro, can under certain conditions enhance cGMP/PKG and cAMP/PKA signaling pathways in intact platelets. Specifically we found enhanced VASP phosphorylation at both PKA and PKG phosphorylation sites after the addition of Sp-8-pCPT-2’-O-Me-cAMPS. These data indicate that this “selective Epac activator” is able to indirectly activate the cAMP/PKA and cGMP/PKG signalling pathways presumably through inhibition of platelet PDE5 and/or PDE3. The data together allow to provide recommendations for how best to probe the different cyclic nucleotide signalling pathways using cyclic nucleotide analogs. In summary, the data provide evidence that most cAMP and cGMP analogs have multiple targets. Therefore, interpretation of any effects these analogs have in cells should take into consideration their possible cross-target reactivities. KW - Cyclisches Nucleotid Phosphodiesterase <3 KW - 5-> KW - Proteinkinase A KW - Hydrolyse KW - Mikrokalorimetrie KW - Cyclo-GMP KW - Cyclo-GMP-Derivate KW - Dissoziationskonstante KW - Enzymkinetik KW - Inhibition KW - Cyclo-AMP KW - Signaltransduktion KW - Thrombozyt KW - Immunoblot KW - Stickst KW - Proteinkinase G KW - Adenylatcyclase KW - Epac KW - Linear Mixed Inhibition KW - GAF Domaine KW - Proteinkinase G KW - Adenylylcyclase KW - Epac KW - Linear mixed inhibition KW - Gaf domaine Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34477 ER -