TY - THES A1 - Schramm, Claudia T1 - Ultraschneller Ladungstransfer und Energierelaxation an Grenzflächen T1 - Ultrafast charge transfer and energy relaxation at interfaces N2 - Ziel der vorliegenden Arbeit ist es, den ultraschnellen Transport und die Energierelaxation von Ladungsträgern an der Grenzfläche von heterogenen Systemen zu untersuchen. Dabei wird gezeigt, dass zeitaufgelöste Zweifarb-Mehrphotonen-Photoemissionsspektroskopie eine gute Methode ist, um Einblick in das Relaxationsverhalten und den dynamischen Ladungsträgertransport in den untersuchten Systemen zu erhalten. Es werden Messungen an zwei unterschiedlichen Systemen vorgestellt: Silbernanoteilchen auf Graphit und ultradünne Silberfilme auf Silizium. Die Untersuchung von heterogenen Systemen erfordert einen selektiven Photoemissionsprozess, d.h. es muss möglich sein, Photoemission von den Nanoteilchen bzw. vom Silberfilm und vom Substrat zu trennen. Für Silbernanoteilchen auf Graphit kann dies erreicht werden, indem die Abfragewellenlänge auf die Resonanz des Plasmon-Polaritons abgestimmt wird. So erhält man dominant Photoemission von den Nanoteilchen, Photoemission vom Graphit kann dagegen vernachlässigt werden. Die transiente Elektronenverteilung in den Nanoteilchen kann aus der Form der Photoemissionsspektren bestimmt werden. Die transiente Verschiebung der Spektren gibt Aufschluss über die Auf- oder Entladung des Nanoteilchens. Dadurch wird es hier möglich, zeitaufgelöste Photoemissionsspektroskopie als ultraschnelle Sonde im Nanometerbereich zu verwenden. Zusammen mit einem Modell für die Relaxation und den Ladungstransfer ist es möglich, quantitative Ergebnisse für die Kopplung zwischen Nanoteilchen und Substrat zu erhalten. Das vorgestellte semiempirische Modell enthält dabei zusätzlich zu Termen für die Relaxation in Nanoteilchen und Substrat die Möglichkeit eines zeitabhängigen Ladungstransfers zwischen Teilchen und Substrat. Die Kopplung wird durch eine Tunnelbarriere beschrieben, deren starke Energieabhängigkeit der Transferwahrscheinlichkeit die experimentellen Ergebnisse gut wiedergibt. Die Stärke des Ladungstransfers und das zeitabhängige Verhalten sind dabei stark von den gewählten Parametern für die Tunnelbarriere abhängig. Insbesondere zeigt der Vergleich der Simulationsergebnisse mit dem Experiment, dass transienter Ladungstransfer ein wichtiger Effekt ist und die Kühlungsdynamik, die im Elektronengas der Nanoteilchen beobachtet wird, wesentlich beeinflusst. Auch im Fall der ultradünnen Silberfilme auf Silizium ist es durch gezielte Wahl der Wellenlängen möglich, die Photoelektronenausbeute selektiv dem Silberfilm oder dem Siliziumsubstrat zuzuordnen. Bei Anregung mit 3.1 eV Photonenenergie dominiert Photoemission aus dem Silberfilm, während es bei Anregung mit 4.65 eV möglich ist, Informationen über die Grenzschicht und das Siliziumsubstrat zu erhalten. Intensitätsabhängige Messungen zeigen den Einfluss der optischen Anregung auf den Verlauf der Schottkybarriere an der Metall-Halbleiter-Grenzschicht. Dieser Effekt ist als Oberflächen-Photospannung bekannt. Die Anregung mit 4.65 eV Photonenenergie bewirkt zusätzlich eine Sättigung langlebiger Zustände an der Metall-Halbleiter-Grenzfläche, was zu einer linearen Abhängigkeit der Photoemissionsausbeute von der Laserfluenz führt. Zeitaufgelöste Zweifarb-Mehrphotonen-Photoemissionsmessungen machen es möglich, die Elektronendynamik an der Metall-Halbleiter-Grenzschicht und im Siliziumsubstrat zu untersuchen. Das Relaxationsverhalten der Ladungsträger zeigt dabei eine komplexe Dynamik, die auf die Anregung von Ladungsträgern in unterschiedlichen Bereichen zurückgeführt werden kann. Dabei dominiert für verschiedene Zwischenzustandsenergien die Dynamik entweder aus dem Film, der Grenzschicht oder dem Siliziumsubstrat, so dass das Relaxationsverhalten grob in drei unterschiedliche Energiebereiche eingeteilt werden kann. Im Silizium können aufgrund der Bandlücke mit 3.1 eV Photonenenergie Elektronen nur bis zu Zwischenzustandsenergien von EF + 2.0 eV angeregt werden. In der Tat stimmen die Relaxationszeiten, die man in diesem Bereich aus den zeitaufgelösten Messungen bestimmt, mit Werten von reinen Siliziumsubstraten überein. Für Zwischenzustandsenergien oberhalb von EF + 2.0 eV findet man überwiegend Anregung im Silberfilm. Die Relaxationszeiten für diese Energien entsprechen Werten von Silberfilmen auf einem isolierenden Substrat. Für sehr niedrige Zwischenzustandsenergien unterhalb von EF + 0.6 eV sind die Zustände wegen der vorliegenden experimentellen Bedingungen permanent besetzt. Der Anregepuls regt Elektronen aus diesen Zuständen an und führt daher in diesem Bereich zu einer Reduktion der Besetzung nach der Anregung mit Licht. Die Zeitkonstante für die Wiederbesetzung liegt im Bereich von mehreren 100 ps bis Nanosekunden. Solch lange Zeiten sind aus Rekombinationsprozessen an der Dipolschicht von Metall-Halbleiter-Grenzflächen bekannt. Zeitaufgelöste Mehrphotonen-Photoemissionsspektroskopie ist also sehr gut geeignet, das komplexe Relaxationsverhalten und den Ladungsträgertransfer an der Grenzfläche eines Schichtsystems zu untersuchen. N2 - The goal of the present work is the investigation of ultrafast transport and energy relaxation of excited carriers at interfaces. It is shown that time-resolved two-color multi-photon photoemission spectroscopy is a powerful method to get insight in relaxation dynamics and transient charge transfer. Measurements at two different systems were presented: Ag nanoparticles on graphite and ultraflat Ag films on Si(100). The investigation of a heterogeneous system requires a selective photoemission processes, i.e. the photoemission yield can be attributed to emission either from the nanoparticles/film or from the substrate. In measurements on Ag nanoparticles on graphite this can be achieved by tuning the probe wavelength to the plasmon polariton resonance. This results in predominate photoemission from the nanoparticles. Photoemission from the graphite can be neglected. The transient electron distribution can be extracted from the shape of the photoemission spectra. The transient shift of the spectra gives information on the charging and decharging of the nanoparticle. This makes it possible to use time-resolved photoemission spectroscopy as ultrafast probe on a nanometer scale. It is shown that the combination of the experimental results with a model yields quantitative results for the coupling of nanoparticle and substrate. Therefore, the presented semi-empirical model includes terms for transient charge transfer between particle and substrate in addition to terms for the relaxation dynamics in both the Ag nanoparticle and the graphite. The coupling is described by a tunnel barrier. The strong energy dependence of the transfer rate of such a barrier is needed to reproduce the experimental findings. The charge transfer dynamics depend strongly on the parameters used in the simulation. Especially, it is shown that transient charge transfer can not be neglected in our measurements and influences significantly the electron gas cooling dynamics in nanoparticles. On ultraflat Ag films on silicon selective photoemission can be achieved as well using adequate wavelengths. Excitation at 3.1 eV photon energy leads prominently to photoemission from the Ag film while at 4.65 eV excitation photoemission from the Si substrate or the interface is dominating. Intensity dependent measurements show that optical excitation influences the Schottky barrier at the metal-semiconductor-interface. This effect is known as surface photovoltage. In addition excitation at 4.65 eV leads to saturation of long lived interface states which results in a linear intensity dependence of the photoemission yield. Time-resolved two-color multi-photon photoemission spectroscopy on Ag films on Si gives insight in the electron dynamics at the metal-silicon interface. The relaxation dynamics show a complex behavior as excitation and relaxation in different parts of the system contribute to the signal. For different intermediate state energies the results can be attributed to either the Ag film, the Si substrate or the interface. Because of the band gap in silicon electrons can be excited in intermediate states up to EF + 2.0 eV. Indeed, the extracted effective relaxation times match values which are reported for uncovered Si substrates. At intermediate state energies above EF + 2.0 eV excitation takes place predominantly in the Ag film. Thus, the extracted effective relaxation times match values reported for 15 nm Ag films on a isolating substrate. At intermediate state energies below EF + 0.6 eV the states are permanently populated due to our experimental conditions. Thus, the pump excitation leads to a reduction of the population in these states. The repopulation has a time constant of several 100 ps up to nanoseconds. These time constant matches values for recombination processes at the dipol layer near a metal-semiconductor interface. Therefore, time-resolved multi-photon photoemission spectroscopy is a good method to investigate the complex relaxation behavior and charge transfer dynamics at the interface of a heterogeneous system. KW - Elektronischer Transport KW - Ultraschneller Prozess KW - Grenzfläche KW - Mehrphotonen-Spektroskopie KW - Elektronenzustand KW - Relaxation KW - Zweiphotonen-Photoemissionsspektroskopie KW - ultraschnell KW - Dynamik KW - heterogen KW - Transport KW - 2-photon-photoemission KW - ultrafast KW - dynamics KW - heterogeneous KW - transport Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18344 ER - TY - THES A1 - Latussek, Volker T1 - Elektronische Zustände in Typ-III-Halbleiterheterostrukturen T1 - Electron states in type III semiconductor heterostructures N2 - Seit 1988 werden mit dem Verfahren der Molekularstrahlepitaxie (MBE: Molecular Beam Epitaxy) am Physikalischen Institut der Universität Würzburg Halbleiterheterostrukturen aus dem Halbleitermaterialsystem Hg(1-x)Cd(x)Te hergestellt. Diese quecksilberhaltige Legierung ist ein II-VI-Verbindungshalbleiter und zeichnet sich durch eine legierungs- und temperaturabhängige fundamentale Energielücke aus. Die Bandstruktur ist je nach Temperatur und Legierungsfaktor x einerseits halbleitend, anderseits aber halbmetallisch. Die schmallückigen Hg(1-x)Cd(x)Te-Legierungen werden als Infrarotdetektoren eingesetzt. Mit dem Verfahren der Molekularstrahlepitaxie ist es möglich Bandstrukturen mit spezifischen Eigenschaften herzustellen (band structure engineering). Unter diesen neuen Materialien stellen die Typ-III-Übergitter eine besondere Klasse dar. Bei diesen zweidimensionalen Materialstrukturen wird eine nur wenige Atomlagen dicke Schicht von 30 °A bis 100 °A aus dem Halbmetall HgTe, dem Trogmaterial, in eine Legierung aus Hg(1-x)Cd(x)Te, dem Barrierenmaterial, eingebettet und zu einem Übergitter aufgebaut. Zweidimensionale Typ-III-Halbleiterheterostrukturen, wie die HgTe-Hg(1-x)Cd(x)Te-Quantentrogstrukturen und HgTe-Hg(1-x)Cd(x)Te-Übergitter, sind von fundamentalen Interesse zum Verständnis von elektronischen Zuständen komplexer Bandstrukturen und zweidimensionaler Ladungsträgersysteme. Darüber hinaus werden HgTe-Hg(1-x)Cd(x)Te-Übergitter in der Sensorik als Infrarotdektoren eingesetzt, deren cut-off-Wellenlänge prozessgesteuert in der Molekularstrahlepitaxie über die Trogbreite, der Schichtdicke des HgTe, eingestellt werden kann. Je nach verwendeten Barrierenmaterial Hg(1-x)Cd(x)Te und Temperatur besitzen die Übergitterstrukturen mit großen Barrierenschichtdicken, das sind die Quantentrogstrukturen, in Abhängigkeit von der Trogbreite, für niedrige Trogbreiten eine normal halbleitende Subbandstruktur, während sich für größere Trogbreiten eine invertiert halbleitende Subbandstruktur einstellt. In der invertiert halbleitenden Subbandstruktur ist ein indirekter Halbleiter realisierbar. Bei Strukturen mit dünnen Barrierenschichtdicken ist die Minibanddispersion stark ausgeprägt und es kann sich zusätzlich eine halbmetallische Subbandstruktur ausbilden. Diese speziellen Eigenschaften sind einzigartig und kennzeichnen die komplexe Bandstruktur von Typ-III-Heterostrukturen. Erst die genaue Kenntnis und ein vertieftes Verständnis der komplexen Bandstruktur erlaubt die Interpretation von Ergebnissen aus (magneto)-optischen Untersuchungen der elektronischen Eigenschaften von Typ-III-Halbleiterheterostrukturen. Die Berechnung der elektronischen Zustände in den HgTe-Hg(1-x)Cd(x)Te-Übergitter wurde in der vorliegenden Arbeit in der Envelopefunktionsnäherung durchgeführt. Seit drei Jahrzehnten wird die Envelopefunktionenn¨aherung (EFA: Envelope Function Approximation) sehr erfolgreich bei der Interpretation der experimentellen Ergebnisse von (magneto)- optischen Untersuchungen an Halbleiterheterostrukturen eingesetzt. Der Erfolg basiert auf der effektiven Beschreibung der quantisierten, elektronischen Zustände an Halbleitergrenzflächen, in Quantentrögen und Übergittern und der Einzigartigkeit, zur Berechnung der experimentellen Ergebnisse, die Abhängigkeit von äußeren Parametern, wie der Temperatur und des hydrostatischen Druckes, aber auch eines elektrischen und magnetischen Feldes, wie auch von freien Ladungsträgern, ein zu arbeiten. Die sehr gute quantitative Übereinstimmung der theoretischen Berechnungen in der Envelopefunktionennäherung und vieler experimenteller Messergebnisse an Halbleiterheterostrukturen baut auf der quantitativen Bestimmung der relevanten Bandstrukturparameter in der k·p-Störungstheorie zur Beschreibung der elektronischen Eigenschaften der beteiligten Volumenhalbleiter auf. In Kapitel 1 der vorliegenden Arbeit wird daher zunächst das Bandstrukturmodell des Volumenmaterials Hg(1-x)Cd(x)Te vorgestellt und daraus die Eigenwertgleichung des Hamilton-Operators in der Envelopefunktionenn¨aherung abgeleitet. Danach wird das L¨osungsverfahren, die Matrixmethode, zur Berechnung der Eigenwerte und Eigenfunktionen beschrieben und auf die Berechnung der elektronischen Subbandzustände der Typ-III-Hg(1-x)Cd(x)Te-Übergitter angewendet. Es folgt eine Diskussion der grundlegenden Eigenschaften der komplexen Bandstruktur in den verschiedenen Regimen der Typ-III-Halbleiterheterostrukturen und der charakteristischen Wellenfunktionen, den Grenzflächenzuständen. An Ende dieses Kapitels wird die Berechnung des Absorptionskoeffizienten hergeleitet und die grundlegenden Eigenschaften der Diplomatrixelemente zur Charakterisierung der optischen Eigenschaften von HgTe-Hg(1-x)Cd(x)Te-Übergitter exemplarisch vorgestellt. In Kapitel 2 sind die wesentlichen Ergebnisse aus dem Vergleich von Infrarotabsorptionsmessungen an HgTe-Hg(1-x)Cd(x)Te-Übergitter mit den berechneten Absorptionskoeffizienten zusammengestellt. N2 - For three decades the envelope function approximation (EFA) has been very successful in the interpretation of experimental results of magneto-transport and optical investigations of semiconducting heterostructures. Its success is based on the ability to describe the quantized electron states in semiconductor interfaces, quantum wells and superlattices combined with its unique ability to include the influence of external parameters such as temperature and hydrostatic pressure as well as electric and magnetic fields and the incorporation of free charge carriers. The excellent quantitative agreement between theoretical calculations using the envelope function approximation and numerous experimental results depends on the quantitative determination of the corresponding band structure parameters in the k · p perturbation theory required to correctly describe the electronic properties of the bulk semiconductors in the heterostructure in question. In order to understand numerous experiments on bulk semiconductors it is not necessary to know the band structure in the entire Brillouin zone. Knowledge is merely required near the corresponding band structure extrema. In the experiments considered here on the II-VI materials of HgTe and CdTe, which crystallize in the zinc blende structure, as well as III-V materials such as GaAs and GaAlAs, the center of the Brillouin zone is of primary importance. Since 1988 Molecular beam epitaxy (MBE) has been employed at the physics department (Physikalisches Institut) of the University of Würzburg to produce semiconducting heterostructures based on Hg(1-x)Cd(x)Te. With this method it is possible to produce materials with a particular band structure and specific properties (band structure engineering). Among these new heterostructures, type III superlattices represent an unique class. In these structures, thin layers (30 - 100)°A of only a few atomic layers of the semimetallic HgTe are alternated with layers of the Hg(1-x)Cd(x)Te alloy to form a superlattice. The resulting growth by the MBE method permits superlattices with the desired band structure to be produced and the corresponding optical absorption in the infrared spectral range. From a comparison of the band structure of these type III superlattices by means of the envelope function approximation and the resulting absorption spectrum with the experimental results from infrared spectroscopy it was possible for the first time to determine a precise value for the valence band offset a characteristic heterostructure parameter, as well as its temperature´dependence. Hereby HgTe thicknesses were determined by high resolution x-ray diffraction. Structure in the absorption spectra could be quantitatively assigned to dipole transitions between the involved subbands of the type III superlattice. The quantitative description of the optical properties of semiconducting heterostructures from the Ansatz that known bulk properties result in new and tailor made properties can also be stated conversely; from known heterostructure properties unknown properties of bulk materials can be determined. Using this corollary, first direct experimental determination of the difference of the hydrostatic deformation potentials, C-a, of HgTe with high precision, (-3.69 ± 0.10) eV, by means of hydrostatic pressure experiments on type III superlattices were carried out. Calculations of the electron states in heterostructures were carried out in this dissertation. Hereby the envelope function approximation was employed whereby the numerical eigenvalue problem was formulated in terms of the matrix method in which the individual components of the envelope functions were expanded from a complete set of functions. Because of the poor convergence in the calculations of interface states in type III quantum well structures, a new set of functions was constructed, which results in the required convergence for all heterostructures: from a p-type inversion channel in Ge bi-crystals, including GaAs-GaAlAs quantum well structures, to type III superlattices. The individual components of the envelope functions were very precisely approximated by only a very few, 10 - 20, basis functions. KW - Quecksilbertellurid KW - Cadmiumtellurid KW - Heterostruktur KW - Übergitter KW - Elektronenzustand KW - Halbleiterheterostrukturen KW - Envelopefunktionennäherung KW - Hg(1-x)Cd(x)Te KW - Semiconductor heterostrctures KW - envelope function approximation KW - Hg(1-x)Cd(x)Te Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15055 ER -