TY - THES A1 - Wittek, Anke T1 - Vergleichende elektrophysiologische Untersuchungen zweier Saccharose/H +-Symporter, ZmSUT1 (Zea mays) und UmSrt1 (Ustilago maydis) T1 - Comparative electrophysiological studies of two suc/H+-symporter ZmSUT1 (Zea mays) and UmSrt1 (Ustilago maydis) N2 - Bei der Betrachtung des Pathosystems Ustilago maydis/Zea mays kommen sich Proteine unterschiedlicher Organismen sehr nahe. Die derzeitige Hypothese zur lokalen Szenerie in der ausgebildeten Interaktionszone von Pflanze und Pilz spricht zwei SUC-Transportern dabei wichtige Rollen in der Pflanze/Pilz Interaktion zu. UmSrt1, der erste beschriebene pilzliche SUC-Transporter aus dem Maispathogen Ustilago maydis (Wahl et al., 2010) und ZmSUT1, der aus Zea mays stammende low affinity SUC-Transporter (Carpaneto et al., 2005) werden als Gegenspieler im Konkurrenzkampf um die extrazelluläre SUC beschrieben (Wahl et al., 2010). ZmSUT1 ist in der Plasmamembran der Geleitzellen lokalisiert und dort für die Beladung des Phloems mit SUC aus dem Apoplasten zuständig. UmSrt1, für den eine Lokalisation in der Plasmamembran in Hefen gezeigt werden konnte, sorgt als „high affinity“ Transporter mit dem Import extrazellulärer SUC für die Kohlenhydratversorgung der pilzlichen Entwicklung und Ernährung (Wahl et al., 2010). Gegenstand der vorliegenden Arbeit waren vergleichende elektrophysiologische Charakterisierungen der SUC-Transporteigenschaften von ZmSUT1 und UmSrt1. Durch heterologe Expression der Proteine in Xenopus Oozyten und anschließende Messungen unter Verwendung der DEVC-Technik wurden die Eigenschaften des SUC-Transports beider SUC-Transporter im Hinblick auf ihre Konzentrations-, pH-, Spannungsabhängigkeit, sowie auf die Substratspezifität hin untersucht. Diese vergleichenden Studien zur Charakterisierung beider Transportproteine ergaben ihren physiologischen Aufgaben entsprechende Unterschiede. ZmSUT1 konnte ein Verhalten als „low affinity/high capacity“ Transporter mit Affinitäten gegenüber SUC im millimolaren Bereich mit einer spannungsunabhängigen Transportaktivität bestätigt werden. Zudem konnte die Transportaktivität als stark H+-abhängig beschrieben werden (Carpaneto et al., 2005), deren Optimum nahe des physiologischen Bereichs des Apoplasten bestimmt werden konnte. Des Weiteren wurden Untersuchungen zur Substratspezifität angefertigt, die ZmSUT1 eindeutig eine Typ-II SUT Zugehörigkeit (Sivitz et al., 2005; Reinders et al., 2006; Sun et al., 2010) mit einem engen Substratspektrum belegen. Für UmSrt1 dagegen wurde ein Transportverhalten als „high affinity/low capacity“ Transporter mit höheren Affinitäten gegenüber SUC im mikromolaren Bereich ermittelt (Wahl et al., 2010). Darüber hinaus beschreiben die Ergebnisse dieser Arbeit eine weitestgehend H+-unabhängige Transportaktivität in einem weiten pH-Wert Bereich. Im Profil der Substratspezifität zeigte sich neben SUC als primärem Substrat ein eher unspezifischer Transport weiterer Mono-, Di- und Trisaccharide. Die postulierte SUC-Spezifität von UmSrt1 (Wahl et al., 2010) konnte mit den vorliegenden Ergebnissen nicht bestätigt werden. Mit einem effektivem Import von SUC mittels UmSrt1 in den Pilz umgeht U. maydis die Hydrolyse von SUC im pflanzlichen Apoplasten und damit die Bildung extrazellulärer Glukose, die ein Signal in der pflanzlichen Pathogenabwehr darstellt (Herbers et al., 1996b; Ehness et al., 1997; Kocal et al., 2008). Somit scheint es für Ustillago maydis möglich zu sein, eine von der Wirtspflanze Zea mays weitestgehend „unbemerkte“ Aufnahme von Kohlenhydraten über einen breiten pH-Wert Bereich bewerkstelligen zu können. Die vielfach höheren Affinitäten gegenüber SUC und H+ verschaffen UmSrt1 im Konkurrenzkampf um die extrazelluläre SUC einen klaren Vorteil gegenüber ZmSUT1. Diese Daten deuten darauf hin, dass U. maydis auch unter Stressbedingungen der Pflanze und damit resultierenden Schwankungen der H+-Konzentrationen in der Lage ist, den SUC-Import für seine eigene Ernährung sicher zu stellen. Das Gebiet posttranslationaler Modifikationen von SUC-Transportern ist weitestgehend unerforscht. In planta Versuche deuteten darauf hin, dass Redox-aktive Substanzen den Zuckertransport beeinflussen. Im Oozytensystem wurde deshalb die Aktivität von ZmSUT1 in Anwesenheit der Redox-aktiven Substanzen GSH, GSSG, H2O2 und DTT getestet. Der geringfügige Einfluss dieser Substanzen auf SUC-induzierte Ströme von ZmSUT1 deuten jedoch darauf hin, dass SUC-Transporter nicht ein direktes Ziel von Redox-Veränderungen darstellen. Um die Struktur des pflanzlichen SUC-Transporters ZmSUT1 näher zu beleuchten und die an der Bindung von SUC involvierten Aminosäuren zu identifizieren, wurde auf der Basis der bereits bekannten Struktur von LacY aus E.coli, ebenfalls einem Vertreter der MFS, ein 3D-Modell für ZmSUT1 erstellt. Die AS, die in LacY an der Bindung des Substrats beteiligt sind, wurden bereits identifiziert (Vadyvaloo et al., 2006). Darauf aufbauend wurden im Rahmen einer Mutagenesestudie gezielt AS im Protein ZmSUT1 ausgewählt, die in verwandten SUC-Transportern konserviert und in homolgen Positionen zu den in LacY bereits identifizierten AS vorliegen. In diesen ausgewählten Positionen wurden mittels gerichteter Mutagenese acht Mutanten generiert. Die elektrophysiologische Charakterisierung dieser ZmSUT1-Mutanten identifizierte zwei Mutanten, die in der SUC-/H+-Translokation gestört waren sowie zwei WT-ähnliche. Es konnten vier Mutanten mit erniedrigten Affinitäten gegenüber SUC identifiziert werden, von denen zwei zusätzlich Veränderungen in ihrer Substratspezifität aufweisen. Diese vier AS werden als mögliche Kandidaten angesehen, an der Bindung und/oder Translokation von SUC beteiligt zu sein. N2 - Within the Ustilago maydis/Zea mays pathosystem suc transport proteins of different organisms are coming close to each other and compete for sugar in the plant apoplast. It could be shown that two suc transport proteins play an important role in the plant/fungal interaction-zone. UmSrt1, the first described fungal suc-transporter of Ustilago maydis (Wahl et al., 2010), and ZmSUT1, a low affinity transporter from Zea mays (Carpaneto et al., 2005) are thought to have the role of opposing players in extracellular suc-transport (Wahl et al., 2010). ZmSUT1 is localized in the plasma membrane of companion cells and there it is responsible for loading the phloem with suc from the apoplast. The high affinity transporter UmSrt1, whose localization in the yeast plasma membrane has been shown, ensures the carbohydrate supply needed for fungal growth and development by importing extracellular suc (Wahl et al., 2010). The topic of this dissertation is an electrophysiological characterization of the suc-transport performance of ZmSUT1 and UmSrt1 in terms of concentration-, pH- and voltage-dependence as well as substrate specificity. These characterizations have been measured by the heterologous expression of the proteins in Xenopus oocytes and subsequent measurements via DEVC-technique. The results of these comparative studies characterize both transport proteins and present differences originating from their physiological responsibilities. ZmSUT1 was shown to be a „low affinity/high capacity“ transporter with affinities for suc and H+ in millimolar ranges and a voltage-independent transport activity. A strong H+-dependent transport activity had been shown by Carpaneto et al. (2005). This dissertation adds the finding that the optimum corresponds with the physiological environment of the apoplast. Further experiments regarding substrate specificity of ZmSUT1 have been conducted and show clearly that this protein belongs to the type-II SUT`s (Sivitz et al., 2005; Reinders et al., 2006; Sun et al., 2010; Sun et al., 2012) with a narrow spectrum of selectivity. On the other hand, for UmSrt1 a „high affinity/low capacity“ performance with values for suc affinity in micromolar ranges could be confirmed (Wahl et al., 2010). Furthermore the results of this dissertation show a H+-independent transport activity over a broad pH range. In addition to suc as the primary substrate, a broad substrate specificity involving mono-, di, and trisaccharides was shown for UmSrt1. The postulated high suc specificity for UmSrt1 (Wahl et al.) could not be confirmed. Efficient import of suc into the fungus, U. maydis seem to avoid extracellular glucose production by suc hydrolysis and therewith plant defence responses (Herbers et al., 1996b; Ehness et al., 1997; Kocal et al., 2008). For U. maydis it seems to be possible to import carbohydrates in an undetected way by UmSrt1 over a broad pH range. UmSrt1 exhibits high affinities for suc and H+, which leads to a more efficient transport of sugar compared to ZmSUT1. Thus U. maydis is able to import suc for its own feeding even under stress conditions when oscillating apoplastic H+-concentrations may occur. Up to now the posttranslational modifications of suc-transporters are nearly unexplored. In planta it was shown that redox-active substances reduce the sugar import markedly. To test whether suc-transporters are regulated by redox-active substances, such as GSH, GSSG, H2O2 and DTT, we expressed ZmSUT1 in oocytes and monitored its activity in response to the latter substances. Since ZmSUT1 activity was only weakly influenced by redox-active substances, the redox-status of plant cells seem not to regulate SUC-transporter directly. In order to examine the structure of the plant suc-transporter ZmSUT1 and further characterize the suc bindingsite by identification of involved amino acids, a 3-D model was prepared. The basis of the 3-D model was the known structure of LacY from E. coli, which also is an MFS-member. The amino acids, which in LacY are responsible for substrate binding, have already been identified (Vadyvaloo et al., 2006). According to the model, amino acids in homologous positions to those identified in LacY were selected for a mutagenesis study of ZmSUT1. Mutations were introduced in selected positions by targeted mutagenesis and eight mutants were generated. The results of electrophysiological characterization of the mutants showed two mutants with disturbance in suc-/H+-translocation and two others with a WT-like transport profile. Furthermore four mutants with modified affinity for suc have been identified. Whilst all of these four mutants show a lower affinity for suc, two of them additionally showed a modified profile in their substrate specificity. These four mutants are considered to be possible candidates regarding the involvement of theses amino acids in binding and translocation of suc. KW - Saccharose KW - corn KW - Mais KW - Ustilago zeae KW - sucrose KW - transporter KW - Stofftransport Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85279 ER - TY - THES A1 - Derrer, Carmen T1 - Biophysikalische Aufschlüsselung des Transportzyklus von ZmSUT1, einem H+/Saccharose Symporter aus Mais T1 - Biophysical analysis of the transport cycle of ZmSUT1, a H+/sucrose symporter from maize N2 - Die Mesophyllzellen vollentwickelter Blätter stellen den Hauptort der Photosynthese höherer Pflanzen dar. Diese autotrophen Zellen (source-Gewebe) produzieren einen Überschuss an Kohlenstoff-Assimilaten, die für die Versorgung anderer heterotropher Gewebe und Organe, wie z.B. Früchten oder Wurzeln (sink-Gewebe), genutzt werden. Das Langstrecken-Transportsystem höherer Pflanzen, das Phloem, transportiert die Photoassimilate durch den gesamten Pflanzenkörper. Der zwischen source- und sink-Geweben herrschende hydrostatische Druckunterschied wird von osmotisch aktiven Substanzen generiert und treibt den Massenstrom in diesem Gefäßsystem an. Der nicht-reduzierende Zucker Saccharose stellt in den meisten höheren Pflanzen die Haupttransportform der photosynthetisch hergestellten Kohlenstoffverbindungen im Phloem dar. Protonen-gekoppelte Saccharosetransporter reichern Saccharose im Phloemgewebe mit einer 1000-fach höheren Konzentration (bis zu 1M), verglichen zum extrazellulären Raum, an. Aufgrund dieser einzigartigen Fähigkeit üben diese Carrier eine essentielle Rolle in der Phloembeladung aus und gewährleisten so die Versorgung der gesamten Pflanze mit Photoassimilaten. Saccharosetransporter können diese Energie-aufwändige Aufgabe nur durch eine enge Kopplung des zeitgleichen Transports von Saccharose und Protonen bewerkstelligen. Molekulare Einblicke in diesen physiologisch außerordentlich wichtigen Prozess der Zuckertranslokation sind jedoch bis heute immer noch sehr lückenhaft. Im Rahmen dieser Arbeit wurde der Saccharosetransporter ZmSUT1 aus Mais im heterologen Expressionssystem der Xenopus Oozyten exprimiert. ZmSUT1 generiert in Oozyten ungewöhnlich hohe Ströme im µA-Bereich, was diesen Zuckertransporter für präzise elektrophysiologische Messungen geradezu prädestiniert. Erste elektrophysiologische Messungen zur Substratspezifität zeigten, dass der synthetische Süßstoff Sucralose kein Substrat für ZmSUT1 darstellt. Darüber hinaus gelang es, Sucralose als kompetitiven Inhibitor der Saccharose-induzierten Transportströme von ZmSUT1 zu identifizieren. Die Verwendung dieses Saccharose-Derivats ermöglichte es, den Transportmechanismus in einzelne Schritte zu zerlegen und diese zu quantifizieren. Durch hochauflösende elektrophysiologische Messungen konnten transiente Ströme in der Abwesenheit jeglichen Substrats detektiert werden, die jedoch in der Anwesenheit sättigender Saccharosekonzentrationen erloschen. Diese sogenannten presteady-state Ströme (Ipre) zeichneten sich durch eine schnelle und eine langsame Komponente in der Relaxationskinetik der Ströme aus. Ipre konnten mit dem Binden der Protonen an den Transporter innerhalb des elektrischen Feldes der Membran in Verbindung gebracht werden. Somit führte die Analyse der presteady-state Ströme zur Aufklärung des ersten Schritts - dem Binden der Protonen - im Transportzyklus von ZmSUT1. Interessanterweise reduzierte der kompetitive Inhibitor Sucralose die langsame Komponente der presteady-state Ströme in Abhängigkeit von der Sucralosekonzentration, während die schnelle Komponente von Ipre unbeeinflusst blieb. Um dieses Verhalten erklären zu können und einen weiteren Schritt im Transportzyklus von ZmSUT1 zu studieren, wurde die Methode der Spannungsklemmen-Fluorometrie zur Untersuchung der Konformationsänderung von ZmSUT1 etabliert. Tatsächlich gelang es, zum ersten Mal die intramolekulare Bewegung eines pflanzlichen Transportproteins zu visualisieren. Detaillierte Analysen zeigten, dass die Konformationsänderungen von ZmSUT1, unabhängig von Saccharose, mit einer schwachen pH-Abhängigkeit auftraten. Interessanterweise wurde die Beweglichkeit des Transporters durch die Applikation des kompetitiven Inhibitors Sucralose deutlich reduziert. Dieser Effekt deutet, zusammen mit dem Sucralose-induzierten Verschwinden der langsamen Komponente der Ipre darauf hin, dass Sucralose den Transporter in seiner auswärts-gerichteten Konformation arretiert. Somit repräsentiert die Zugänglichkeit der extrazellulären Protonenbindestelle und folglich die Konformationsänderung den Geschwindigkeits-bestimmenden Schritt im Reaktionszyklus von ZmSUT1. Zusammenfassend gelang es in dieser Arbeit, das Binden der Protonen und den Zusammenhang mit der Bewegung des Proteins, von einer auswärts-gerichteten in eine einwärts-gerichtete Konformation, aufzuklären. Mit der Hilfe der Erkenntnisse aus dieser Arbeit konnte ein mechanistisches Modell für den Transportzyklus von ZmSUT1 entwickelt werden, anhand dessen alle Ergebnisse schlüssig erklärt und diskutiert werden konnten. N2 - Higher plants produce carbohydrates via photosynthesis in mesophyll cells of their leaves. These autotrophic cells export the excess of photoassimilates (source-tissue) to supply heterotrophic tissues, such as fruits and roots (sink-tissues), with carbon compounds. According to the Munch hypothesis, osmolytes generate the hydrostatic pressure difference between the source- and sink-tissues that drives the mass flow within the phloem vasculature. In most higher plants the non-reducing disaccharide sucrose represents the main mobile carbohydrate. Proton-driven sucrose transporter play a pivotal role in loading the phloem vessels for long distance transport of sucrose throughout the entire plant body. The strongly hyperpolarized plant membrane potential and the exceptional ability of sucrose carriers to accumulate sucrose quantities of more than 1 M in phloem cells, indicate that plants evolved transporters with unique functional properties. The transporter protein can achieve this task only because proton and sucrose transport are tightly coupled to each other. The knowledge about individual steps in the transport cycle of sucrose carriers is, however, still fragmentary. Within the scope of this work, the sucrose transporter ZmSUT1 from maize was expressed in the heterologous expression system of Xenopus oocytes. ZmSUT1 was found to mediate sucrose-induced proton currents in the µA range, predestinating this carrier for precise electrophysiological measurements of kinetic parameters in Xenopus oocytes. A basic electrophysiological characterization revealed that ZmSUT1 do not transport the synthetic sweetener sucralose but is competitively inhibited by this sucrose derivate. Having this tool in hands, individual steps of the ZmSUT1 transport cycle were dissected and quantified with sophisticated electrophysiological and fluorescence-based methods. Thereby transient currents in the absence of any substrate, which disappeared in the presence of saturating sucrose quantities, could be measured. These so-called presteady-state currents were composed of a fast and a slowly decaying current component and could be associated with the binding of protons to a binding site at the transporter within the electrical field of the membrane. Thus, the study of presteady-state currents allowed us to individually characterize the first step in the transport cycle of ZmSUT1 – the binding of protons to ZmSUT1. Interestingly, the slow current component disappeared in the presence of the competitive inhibitor sucralose. To understand this behavior and to elucidate conformational rearrangements within the carrier associated with the transport of sucrose, we visualized movements of ZmSUT1 using the voltage clamp fluorometry technique. Indeed, we for the first time were able to monitor conformational changes of a plant transport protein. Detailed analysis revealed that conformational changes of ZmSUT1 occur in the absence as well as in the presence of its substrate. However, upon application of the inhibitor sucralose the movements of the ZmSUT1 proteins were markedly reduced. This fact, taken together with the disappearance of the slow presteady-state component, let us conclude that sucralose seem to lock ZmSUT1 in its outward-facing conformation. The rate-limiting step of the reaction cycle is determined by the accessibility of the extracellular proton binding site and thus by conformational changes of the ZmSUT1 protein. Taken together our studies resolved the first step in the reaction cycle of a plant sucrose transporter - the binding of protons to the carrier - and its interrelationship with the alternating movement of the protein. Based on these results a mechanistic transport model of plant sucrose transporters was drawn and discussed. KW - Mais KW - Saccharose KW - Symport KW - ZmSUT1 KW - Transport KW - Saccharose KW - Spannungsklemmen-Fluorometrie KW - VCF KW - presteady-state Ströme KW - sucrose KW - transport KW - voltage clamp fluorometry KW - presteady-state Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78949 ER -