TY - THES A1 - Kocic, Nikola T1 - Bestimmung des Keimbildungsexponenten für die Kristallisation von Polymeren durch nicht-isotherme DSC-Analysen T1 - Determination of the nucleation parameter for the crystallization of polymers by non-isothermal DSC-analysis N2 - Thermoplastische Kunststoffe (sog. Thermoplaste) lassen sich in einem be-stimmten Temperaturbereich beliebig oft schmelzen und in einer gewünschten Form erstarren. Grundvoraussetzung für eine bestimmte Anwendung eines thermoplastischen Bauteils sind die Gebrauchseigenschaften des Materials, die im Wesentlichen vom Ablauf der Erstarrung abhängen. Die Moleküle einiger Thermoplaste können bei der Erstarrung geordnete kristalline Bereiche bilden. Dies sind die sog. teilkristallinen Kunststoffe, deren Erstarrungsprozess Kristallisation genannt wird. Die dabei entstehenden Kristallstrukturen werden zusammen mit deren Charakteristiken allgemein als Morphologie der teilkristallinen Kunststoffe bezeichnet. Die Morphologie hat einen signifikanten Einfluss auf die mechanischen, thermischen und optischen Eigenschaften des Materials. Dementsprechend stellen Kenntnisse über die Kristallisation eine wertvolle Hilfe bei der Vorhersage der Gebrauchseigenschaften eines teilkristallinen Kunststoffs dar. Um die Kristallisation zu starten, muss zunächst eine Energiebarriere überwunden werden, die an erster Stelle vom molekularen Aufbau des Kunststoffs abhängt. Somit weisen beispielsweise Kunststoffe mit linearen, regelmäßigen Molekülen und kleinen Seitengruppen eine niedrigere Energiebarriere und aus diesem Grund eine starke Neigung zur Kristallisation auf. Einige Zusatzstoffe wie z. B. unterschiedliche Additive, Farbstoffe oder Füllstoffe können die Energiebarriere und infolgedessen die Kristallisation eines teilkristallinen Kunststoffs wesentlich beeinflussen. Das Ziel dieser Dissertation war es, ein bestehendes Kristallisationsmodell zu erweitern und es an gefüllte oder additivmodifizierte teilkristalline Kunststoffe anzupassen. Das erweiterte Modell soll die Ermittlung eines Kristallisationspa-rameters, des sog. Keimbildungsexponenten, eines gefüllten oder additivmodifizierten teilkristallinen Kunststoffs bei der nicht-isothermen Kristallisation ermöglichen. Der Keimbildungsexponent ist mit der erwähnten Energiebarriere eng verbunden und bestimmt somit den Ablauf des Kristallisationsprozesses bzw. die daraus folgende Morphologie. Ein wesentlicher Schwerpunkt der Arbeit lag darin, die vorgeschlagene Modellerweiterung bei verschiedenen Abkühlgeschwindigkeiten zu überprüfen. Im Anschluss sollten die Beziehungen zwischen den berechneten Keimbildungsexponenten und experimentell ermittelten me-chanischen Eigenschaften (E-Modul, Streckspannung und Schlagzähigkeit) überprüft werden. Für die Untersuchungen wurden drei verschiedene Polymersysteme verwendet: PP / Talkum, HDPE / Talkum sowie PA6 / Bentonit. Hierbei weist der Füllstoff eine stark positive, schwach positive bzw. inhibierende Wirkung auf die Kristallisation der entsprechenden Polymermatrix auf. Hinsichtlich reiner Polymere wurde eine gute Übereinstimmung zwischen den ermittelten und Literaturwerten des Keimbildungsexponenten festgestellt. Die Zugabe von positiv wirkendem Talkum in PP bzw. HDPE führt zu einer Abnah-me des Keimbildungsexponenten, was zu dickeren Kristallen des jeweiligen Kunststoffs führte. Im Gegensatz dazu bewirkte die Bentonitzugabe einen zu-nehmenden Keimbildungsexponenten, was anschließend dünnere PA6-Kristalle zur Folge hat. Die durchgeführten Untersuchungen zeigen außerdem, dass die Füllstoffpartikelgröße einen ausgeprägten Einfluss auf den ermittelten Keimbildungsexponenten hat. Weiterhin wurde festgestellt, dass der ermittelte Keimbildungsexponent durch die (DSC)-Abkühlgeschwindigkeit beeinflusst wird. Es wurde ferner gezeigt, dass sich dieser Einfluss ab einer bestimmten Abkühlgeschwindigkeit (20 K/min im Falle des PP und HDPE bzw. 15 K/min im Falle des PA6) nicht mehr ändert, was zu einem konstanten Keimbildungsexponenten führt. Um den Einfluss der Abkühlgeschwindigkeit auf die modellierte Größe zu berücksichtigen, sind weitere Untersuchungen nötig. Die Ergebnisse der Arbeit zeigen weiterhin, dass der berechnete Keimbildungsexponent mit den experimentell ermittelten Werten für E-Modul, Streckspannung und Charpy-Schlagzähigkeit bei talkumgefülltem PP gut korreliert. Solche Korrelationen wurden jedoch bei den HDPE- und PA6-Proben nicht gefunden. Der Grund hierfür könnte eine ausgeprägte Orientierung der HDPE-Makromoleküle bzw. ein starker mikromechanischer Effekt des exfolierten Bentonits sein. Diese Effekte konnten im Rahmen der Arbeiten bestätigt werden. Die in dieser Arbeit erzielten Ergebnisse zeigen, dass die vorgeschlagene Mo-dellerweiterung auch bei gefüllten oder additivmodifizierten Kunststoffen zufriedenstellende Resultate liefert. Die entsprechende Berechnung erfordert dabei lediglich eine DSC-Messung, was im Vergleich zum Stand der Technik in einen niedrigeren Messaufwand resultiert. Die vorliegende Arbeit liefert daher einen signifikanten Beitrag zur Erstellung des Zusammenhangs zwischen der Kristallisation, der Morphologie und dem mechanischen Verhalten von teilkristallinen Polymeren. N2 - Thermosoftening polymers, also called thermoplastics, can be repeatedly melt-ed and solidified into a desired shape in a certain temperature range. The basic requirements for a particular application of a thermoplastic component are its functional characteristics, which significantly depend on the solidification pro-cess. The molecules of some thermoplastics can form ordered crystalline regions during the solidification process. These are so-called semi-crystalline polymers, whose solidification process is called crystallization. The resulting crystal struc-ture elements, together with their properties, are commonly referred to as the morphology of semi-crystalline polymers. The morphology has a significant in-fluence on the mechanical, thermal and optical properties of the material. Ac-cordingly, knowledge about the crystallization is a valuable aid in predicting the final properties of a semi-crystalline polymer. In order for the crystallization to start, it is necessary for an activation energy barrier to be overcome. The activation energy barrier depends on the molecular structure of the polymer. Polymers with linear, regular molecules and small side groups possess a low activation energy barrier and therefore crystallize most easily. Some ingredients, such as various additives, pigments or fillers, can significantly affect the energy barrier and consequently the crystallization of a semi-crystalline polymer. The aim of this thesis was to extend an existing crystallization model and adapt it to filled or additive-modified semi-crystalline polymers. The extended model should allow the determination of a crystallization parameter, the so-called nu-cleation parameter of filled or additive-modified semi-crystalline polymers during non-isothermal crystallization. The nucleation parameter is closely connected with the activation energy barrier and thus determines the crystallization process and consequentially the resulting morphology. An important task in this work was to verify the proposed model extension for different cooling rates. In addition, the correlations of the calculated nucleation parameter with experimentally determined mechanical properties (Young’s modulus, yield stress and impact strength) are established and discussed. In this research, three different polymer systems were used: PP / talc, HDPE / talc and PA6 / bentonite. In these three materials, the filler has a strong positive, a weak (positive) and a negative influence on the crystallization of a given polymer, respectively. A good agreement between the values of the nucleation parameter determined in this work and those found in literature was obtained as regards pure poly-mers. The addition of positive-acting talc in PP and HDPE leads to a decreased nucleation parameter, resulting in an increase of the crystal thickness of PP and HDPE. By contrast, the addition of bentonite increases the nucleation parameter of PA6 and therefore leads to a decrease in the crystal thickness of PA6. It was also shown that the filler particle size has a significant influence on the nucleation parameter. Furthermore, it was shown that the DSC cooling rate up to a certain value (20 K/min as regards PP und HDPE i.e. 15 K/min regarding PA6) has an influence on the determined nucleation parameter. Afterwards, the nucleation parameter reaches a plateau and shows no further changes with the cooling rate. To be able to add the influence of the cooling rate into the model, further studies are needed. Furthermore, it was shown that the obtained nucleation parameters correlates well with the Young modulus, yield stress and impact strength as regards PP filled with talc. In contrast to PP, such correlations were not found for HDPE and PA6 samples. The possible reason for the absence of correlations could be the orientation of the HDPE molecules, i.e. the strong reinforcing effects of the intercalated bentonite in PA6. These effects were confirmed in the scope of the work. The results obtained in this work show that the proposed model extension is applicable as regards filled semi-crystalline polymers. In comparison to the state of the art, the proposed model extension requires only a single DSC-measurement resulting in a lower measuring expenditure. Therefore, the pre-sent work provides a significant contribution to establishing the mathematical relationship between the crystallization, morphology and the mechanical behavior of semi-crystalline polymers. KW - Kristallisation KW - Polymer KW - Morphologie KW - Polymere KW - Keimbildung KW - Kalorimetrie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113950 ER - TY - THES A1 - Stichel, Thomas Günther T1 - Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren für die regenerative Medizin mittels Zwei-Photonen-Polymerisation T1 - Fabrication of scaffolds of hybrid polymers for regenerative medicine using two photon polymerization N2 - In der vorliegenden Arbeit wurde das Verfahren der Zwei-Photonen-Polymerisation von anorganisch-organischen Hybridpolymeren (ORMOCER®e) untersucht. Untersuchungsschwerpunkte bildeten dabei die theoretischen Betrachtungen der Wechselwirkung zwischen Laser und Hybridpolymer, die experimentelle Charakterisierung unterschiedlicher ORMOCER®e sowie die Aufskalierung der Technologie im Hinblick auf die Herstellung von Scaffold-Strukturen für die regenerative Medizin. Hierbei wurde u. a. ein innovativer Belichtungsaufbau entworfen und aufgebaut, der es erlaubt makroskopische, poröse Scaffold-Strukturen mit minimalen Strukturgrößen im Bereich von wenigen Mikrometern herzustellen. ORMOCER®e sind typischerweise für optische Anwendungen konzipiert, weisen allerdings z. T. biokompatible Eigenschaften auf. Das Material ORMOCER® MB-47 wurde von M. Beyer eigens für biologische Anwendungen synthetisiert. Es zeichnet sich durch Biokompatibilität, teilweiser Biodegradierbarkeit und hervorragende Strukturierbarkeit durch die Zwei-Photonen-Polymerisation aus. Das in dieser Arbeit verwendete Mikrostrukturierungssystem beinhaltet im Wesentlichen einen Ultrakurzpulslaser, der 325 fs Pulse bei 1030 nm emittiert (verwendet wird die zweite Harmonische bei 515 nm), ein hochpräzises Positionierungssystem, bestehend aus drei luftgelagerten Lineartischen mit einer Reichweite von 10 cm (y-, z-Richtung) bzw. 15 cm (x-Richtung) sowie diversen Objektiven zur Fokussierung. Mit diesen Komponenten lassen sich komplexe dreidimensionale Strukturen mit minimalen Strukturgrößen von bis unter 100 nm erzeugen. In Kapitel 5.1 wurden theoretische Untersuchungen im Hinblick auf das Wechselwirkungsverhalten zwischen der fokalen Intensitätsverteilung und dem Materialsystem zur Bildung eines Voxels durchgeführt, wobei das technische Wechselwirkungsvolumen und das chemische Wechselwirkungsvolumen samt den reaktionskinetischen Abläufen separat betrachtet wurde. Das technische Wechselwirkungsvolumen beschreibt die Wechselwirkung zwischen der fokalen Intensitätsverteilung und dem Materialsystem im Rahmen eines Schwellwertprozesses, der es erlaubt Strukturdimensionen unterhalb des Beugungslimits zu realisieren. Die theoretischen Untersuchungen diesbezüglich ergaben, dass sphärische Aberrationen die fokale Intensitätsverteilung (Intensity-Point Spread Function (IPSF)) in Abhängigkeit der Belichtungskonfiguration z. T. sehr stark beeinflussen. Darüber hinaus wurde durch Betrachtung des Schwellwertverhaltens ein mathematischer Zusammenhang zwischen der IPSF und der Leistungsabhängigkeit der Charakteristik des technischen Wechselwirkungsvolumens geschaffen. Das chemische Wechselwirkungsvolumen beschreibt das tatsächliche Volumen der stattfindenden Polymerisationsreaktion. Dieses geht über das des technischen hinaus, was eine Folge von raumeinnehmendem Kettenwachstum im Rahmen von reaktionskinetischen Teilprozessen ist. Durch die Simulationen dieser reaktionskinetischen Abläufe wurde das leistungsabhängige, zeitliche Verhalten der Reaktionsteilnehmer (Radikale, Monomer, Photoinitiator) und des Vernetzungsgrades ermittelt. Die Simulation wurden für sehr kurze Belichtungszeiten (< 10 ms) auf der Basis von gekoppelten Differentialgleichungen nach Uppal & Shiakolas durchgeführt. Dabei wurde der Einfluss der Teilchendiffusion sowie der Temperaturentwicklung als gering erachtet und in den Berechnungen vernachlässigt. Die Simulationsergebnisse zeigen, dass eine geringe Belichtungszeit nicht unbedingt durch größere Laserleistungen ausgeglichen werden kann, um einen bestimmten Vernetzungsgrad zu erzielen. Vielmehr führt eine höhere Leistung zu einem raschen Verbrauch des Photoinitiators im Reaktionsvolumen und damit einem schnelleren Erliegen der Polymerisationsreaktion. Um dennoch hohe Vernetzungsgrade erzielen zu können, sind die Reaktionsgeschwindigkeitskoeffizienten der Propagation und der Terminierung k_P und k_T sowie eine ausreichende Photoinitiatorkonzentration von entscheidender Bedeutung. Je größer das Verhältnis k_P/k_T, desto höhere Vernetzungsgrade können auch bei kurzen Belichtungszeiten realisiert werden, wobei ein wesentlicher Teil der Polymerisation als Dunkelreaktion stattfindet. Diese Erkenntnis ist für die Aufskalierung der Technologie der Zwei-Photonen-Polymerisation von großer Bedeutung, welche mit einer Verkürzung der Belichtungszeiten einhergehen muss. Des Weiteren zeigen die Simulationen, dass das spatiale Konversionsprofil eines Voxels ein lokales Minimum im Zentrum aufweisen kann. Dieses Phänomen tritt dann auf, wenn aufgrund der applizierten Leistung, welche gemäß des Profils der IPSF im Zentrum am höchsten ist, der Photoinitiator im Zentrum rasch verbraucht wird. In Kapitel 5.2 wurde die Voxelbildung, das Vernetzungsverhalten sowie die mechanischen Eigenschaften belichteter ORMOCER®e bei unterschiedlichen Parametern und Materialsystemen experimentell untersucht. An Hand von Voxelfeldern wurden die Voxelgröße, das Aspektverhältnis und das Voxelvolumen bei unterschiedlichen Laserleistungen ermittelt. Die Ergebnisse wurden mit den berechneten technischen Wechselwirkungsvolumina verglichen, wobei die Differenz von tatsächlicher Voxelgröße und technischem Wechselwirkungsvolumen als eine weitere charakteristische Größe eingeführt wurde. Dabei zeigte sich, dass besonders die Voxellänge von der Länge des technischen Wechselwirkungsvolumens derart abweicht, dass dies nicht durch raumeinnehmendes Kettenwachstum im Rahmen der Reaktionskinetik erklärt werden kann. Mögliche Erklärungsansätze basieren hierbei auf Wechselwirkungseffekte zwischen Lichtfeld und Material. Beispielsweise könnten durch den nichtlinearen optischen Kerr-Effekt oder die Polymerisation selbst Brechzahlinhomogenitäten induziert werden, welche die Voxelbildung durch Selbstfokussierung beeinflussen. Der Unterschied der Voxelbreite, also das laterale chemische Voxelwachstum, zur Breite des technischen Wechselwirkungsvolumens wurde hingegen mit Hilfe der Reaktionskinetik erklärt. Dabei zeigte sich, dass dieser Unterschied sowohl vom Material selbst als auch von der Fokussieroptik abhängt. Des Weiteren wurde die Polymerisationsrate der unterschiedlichen Materialien aus der Auftragung des Voxelvolumens gegenüber der Laserleistung durch lineare Approximation bestimmt. Hierbei wurde festgestellt, dass die Materialsysteme z. T. erhebliche Unterschiede aufweisen. Als das Materialsystem mit der höchsten Polymerisationsrate hat sich das auf Acrylaten als vernetzbare Gruppen basierende OC-V in Kombination mit dem Irgacure® Oxe02 Photoinitiator herausgestellt. Aus diesem Grund wurde es für die Herstellung von makroskopischen Strukturen durch die Zwei-Photonen-Polymerisation bevorzugt verwendet. Die unterschiedlichen Materialien wurden ferner mit Hilfe der µ-Raman-Spektroskopie auf ihr Vernetzungsverhalten untersucht. Konkret wurden hierbei Linienfelder unter Variation der Scan-Geschwindigkeit und der Laserleistung mit Hilfe der 2PP hergestellt und vermessen. Die Vernetzungsgrade wurden semi-quantitativ aus den Spektren ermittelt. Insgesamt wurden Vernetzungsgrade im Bereich zwischen 40 % und 60 % gemessen, wobei mit OC-V und 2 Gew.-% Irgacure® Ox02 die höchsten Vernetzungsgrade erzielt wurden. Des Weiteren hat sich gezeigt, dass die Konversionsgrade für die jeweiligen Materialsysteme bei allen Scan-Geschwindigkeiten sich auf einem im Rahmen der Fehlergrenzen gleichem Niveau befinden. Damit kann der durch Simulationen theoretisch prognostizierte Abfall des Sättigungskonversionsgrades mit zunehmender Scan-Geschwindigkeit mit entsprechend variierenden Belichtungszeiten nicht als verifiziert angesehen werden. Die verschiedenen Materialsysteme wurden außerdem bezüglich ihrer mechanischen Eigenschaften charakterisiert. Zu diesem Zweck wurden zylindrische Formkörper unter verschiedenen Bedingungen (1PP, 2PP, verschiedene Photoinitiatorkonzentrationen) hergestellt und Druckfestigkeitsmessungen durchgeführt, sowie die Dichten und die Vernetzungsgrade aus den Formkörpern bestimmt. Insgesamt wurden Elastizitätsmodule im Bereich zwischen 0,40 und 1,37 GPa und Bruchfestigkeitswerte zwischen 117 bis 310 MPa ermittelt. Es konnte festgestellt werden, dass die Konzentration des Photoiniators das Vernetzungsverhalten und damit die mechanischen Eigenschaften der Formkörper stark beeinflusst. Während geringe Konzentrationen zu geringeren Vernetzungsgraden und niedrigen Elastizitätsmodulen führten, zeigten die Formkörper höherer Konzentration ein deutlich spröderes Verhalten mit höheren Vernetzungsgraden und Elastizitätsmodulen. Das höchste Elastizitätsmodul wurde an Hand von Formkörpern vermessen, welche aus OC-V mit 2 Gew.-% Irgacure® Ox02 hergestellt wurden. Darüber hinaus wurde festgestellt, dass sich die mechanischen Eigenschaften von durch 2PP hergestellten Formkörpern durch die applizierte Laserleistung beeinflussen lassen. Die Ursache hierfür ist, dass durch die Laserleistung die Voxelgröße und damit der Überlapp zwischen den Voxeln eingestellt werden kann. Im Bereich des Überlapps findet dann eine Doppelbelichtung des Materials statt, was zu höheren Vernetzungsgraden führen kann. Außerdem wurden durch die 2PP bei hinreichend großen Belichtungsleistungen auch Formkörper realisiert, welche höhere Elastizitätsmodule und Bruchfestigkeitswerte aufwiesen als Körper, welche durch UV-Belichtung hergestellt wurden. Die Aufskalierung der Zwei-Photonen-Technologie wurde in Kapitel 5.3 behandelt. Neben einer ausführlichen Diskussion zu den Herausforderungen diesbezüglich, wurden zwei Belichtungsstrategien zur Herstellung von makroskopischen Scaffold-Strukturen eingesetzt und optimiert. Hierbei ist insbesondere der Badaufbau hervorzuheben, der es erlaubte Strukturen von prinzipiell unbegrenzter Höhe mit Hilfe der Zwei-Photonen-Polymerisation herzustellen. Eine wesentliche Herausforderung der Aufskalierung der 2PP ist die Beschleunigung des Prozesses. Aus den Betrachtungen geht hervor, dass für eine gravierende Beschleunigung der 2PP-Strukturierung neben der Scan-Geschwindigkeit auch das Beschleunigungsvermögen des Positionierungssystems entscheidend ist. Des Weiteren sind auch Parallelisierungsmethoden mit z. B. diffraktiven optischen Elementen nötig, um ausreichende Prozessgeschwindigkeiten zu erzielen. Der Standardaufbau mit Luftobjektiven wurde dazu verwendet millimetergroße Strukturen mit hoher Qualität aus ORMOCER®en herzustellen. Auch wenn die maximale Strukturhöhe durch den Arbeitsabstand des Objektivs beschränkt ist, hat sich gezeigt, dass dieser Aufbau sich für die einfache Herstellung von millimetergroßen Test-Scaffold-Strukturen eignet, welche z. B. für Zellwachstumsversuche oder mechanische Belastungstest eingesetzt werden können. Das biodegradierbare MB-47 wurde hierbei ebenfalls erfolgreich eingesetzt und u. a. für die Herstellung von Drug-Delivery-Strukturen verwendet. Der Badaufbau, basierend auf einem Materialbad mit durchsichtigem Boden, einem darin befindlichen und in der Vertikalen (z-Richtung) beweglichen Substrathalter sowie einer Belichtung von unten durch eine sich in der Ebene bewegende Fokussieroptik, wurde verwendet um eine Freiheitsstatue mit 2 cm Höhe sowie millimetergroße Scaffold-Strukturen mit Porengrößen im Bereich von 40 bis 500 µm in ORMOCER-V zu realisieren. Weitere Strukturierungsresultate mit z. T. anwendungsbezogenem Hintergrund sind die Gehörknöchelchen des menschlichen Ohrs in Lebensgröße, ein Scaffold in Form eines Steigbügels des menschlichen Ohrs, Test-Scaffold-Strukturen für mechanische oder biologische Untersuchungen sowie Drug-Delivery Strukturen. Es wurden Bauraten von bis zu 10 mm^3/h erzielt. Bezüglich der Prozessgeschwindigkeit und Strukturhöhe wurde bei Weitem noch nicht das Potential des luftgelagerten Positioniersystems ausgeschöpft. Dafür bedarf es einer Gewichtsoptimierung des bestehenden Belichtungsaufbau, um höhere Beschleunigungswerte und Scan-Geschwindigkeiten realisieren zu können. Unter Annahme einer effektiven Gewichtsoptimierung und der damit verbundenen Erhöhung der Beschleunigung auf 10 m/s^2 könnte eine Baurate bei einer Scan-Geschwindigkeit von 225 mm/s und einem Slice- und Hatch-Abstand von 15 und 10 µm von etwa 60 mm^3/h erzielt werden. Im Rahmen der Aufskalierung wurde ebenfalls der experimentelle Einsatz von diffraktiven optischen Elementen zur Fokus-Multiplikation untersucht. Die Experimente wurden mit Hilfe eines Elements durchgeführt, welches eine 2 x 2 Punkte-Matrix neben der ungebeugten 0. Ordnung bereitstellt und Bestandteil eines experimentellen Setups war, welches aus Linsen, Blenden und einem Objektiv zur Fokussierung bestand. Mit Hilfe der erzeugten Spot-Matrix wurden zum einen simultan vier Drug-Delivery-Strukturen hergestellt und zum anderen einzelne Scaffold-Strukturen realisiert. In jedem Fall wurde eine Beschleunigung des Prozess bzw. eine Erhöhung der Polymerisationsrate um den Faktor 4 für die verwendeten Parameter erreicht. Bei der Herstellung der Scaffolds wurden zwei unterschiedliche Strategien verfolgt. Während zum einen die Periodizität der inneren Scaffold-Struktur auf die Fokusabstände angepasst und damit simultan vier aneinandergereihte Einheitszellen hergestellt wurden, konnte zum anderen auch demonstriert werden, dass durch die geschickte Bewegung der Fokusse eine ineinander verschobene Struktur möglich ist. Der Vorteil der letzteren Strategie ist, dass auf diese Weise eine komplette Schicht gescannt werden kann und damit hohe Scan-Geschwindigkeiten realisiert werden können. Die erzielten Bauraten waren dennoch nicht größer als die Bauraten, die mit einem einzelnen Spot im Rahmen des Standardaufbaus oder des Badaufbaus erreicht wurden. Hierfür bedarf es weiterer Optimierung der Parameter und des Setups. Transmittiert fokussiertes Licht eine Grenzfläche zweier Medien mit unterschiedlichen Brechungsindizes, dann tritt sphärische Aberration auf, welche sich durch die Verbreiterung des Fokus besonders in axiale Richtung bemerkbar macht. Da diese im Rahmen der verwendeten Belichtungsstrategien die Strukturierungsergebnisse nachweislich beeinträchtigen, wurden experimentelle Untersuchungen sowie Optimierungsroutinen diesbezüglich durchgeführt. Im Zusammenhang mit dem Standardaufbau wurde eine Leistungsanpassung während der Strukturierung vorgenommen. Auf diese Weise wurde erreicht, dass bei variabler Fokustiefe im Material die maximale Intensität trotz sphärischer Aberration konstant gehalten wurde, wodurch sich die strukturelle Homogenität der Scaffolds entlang der axialen Richtung (optische Achse) deutlich verbesserte. Des Weiteren wurde der Badaufbau dazu verwendet, die axiale Intensitätsverteilung in-situ für diskrete Fokustiefen unter der Verwendung eines Objektivs mit der NA von 0,60 abzubilden. Zu diesem Zweck wurde aus hergestellten Voxelfeldern eine Voxelfeldfunktion ermittelt und mit der axialen IPSF korreliert. Dabei wurde angenommen, dass sich das chemische Wechselwirkungsvolumen vernachlässigbar gering vom technischen Wechselwirkungsvolumen unterscheidet. Die experimentellen Ergebnisse zeigten deutlich die für sphärische Aberrationen typischen Nebenmaxima auf. Die Lage bzw. Abstände dieser entsprachen in guter Übereinstimmung den jeweiligen Simulationen. Schließlich wurde noch die sphärische Aberration durch den Korrekturring der Objektive für verschiedene Deckglasdicken korrigiert. Die resultierende IPSF wurde ebenfalls mit Hilfe des Badaufbaus abgebildet, wobei keinerlei Nebenmaxima gefunden werden konnten. Die Breite des Hauptmaximums konnte deutlich verringert werden. Zusammengefasst lässt sich sagen, dass im Rahmen dieser Arbeit erhebliche Fortschritte bei der Aufskalierung der 2PP zur Erzeugung von Scaffold-Strukturen für die regenerative Medizin erzielt wurden. Die erreichten Strukturdimensionen und die Bauraten übertreffen alle bis dato bekannten Ergebnisse. Dabei wurden auch durch theoretische Betrachtungen und experimentellen Methoden grundlegende Erkenntnisse über die Reaktionsdynamik der durch die Zwei-Photonen-Absorption initiierten Polymerisationsreaktion gewonnen. Nichtsdestotrotz sind einige Fragestellungen offen sowie Problematiken des Prozesses vorhanden, die für eine Realisierung von makroskopischen Scaffold-Strukturen gelöst werden müssen. So sind die realisierten Bauraten noch zu gering, um in angemessener Zeit makroskopische Scaffolds-Strukturen herzustellen, welche deutlich größer als 1 cm^3 sind. Aus diesem Grund müssen weitere Verbesserungen bezüglich der Scan-Geschwindigkeit sowie des Einsatzes von diffraktiven optischen Elementen zur Erhöhung der Polymerisationsrate erzielt werden. Da bei der Verwendung von Multi-Spot-Arrays, welche mit Hilfe gewöhnlicher diffraktiver optischer Elemente erzeugt wurden, die Realisierung von beliebigen und detaillierten äußeren Scaffold-Formen eingeschränkt ist, empfiehlt es sich den Einsatz von Spatial Light-Modulatoren zu verfolgen. Diese fungieren als dynamisch modulierbares DOE, mit dem einzelne Spots gezielt ein- und ausgeblendet und Spotabstände dynamisch variiert werden können. Schließlich ist es vorstellbar, den Spatial Light-Modulator mit dem Badaufbau zu kombinieren, um uneingeschränkte, große Strukturen in annehmbarer Zeit mit hochaufgelösten Details herstellen zu können. Dieses Vorgehen bedarf allerdings noch der tiefgreifenden Untersuchung der Potentiale des Spatial Light-Modulators. Darüber hinaus weisen die theoretischen und experimentellen Untersuchungen zur Reaktionskinetik darauf hin, dass die Voxelentstehung ein komplexer Prozess ist, der möglicherweise auch durch nichtlineare optische Wechselwirkungseffekte abseits der Zwei-Photonen-Absorption beeinflusst wird. Daher sind hier weitere Untersuchungen und Berechnungen zu empfehlen, um z. B. den Einfluss einer intensitätsabhängigen Brechzahl auf die Voxelbildung quantifizieren zu können. Entsprechende Ergebnisse könnten schließlich dazu dienen, dass im Rahmen dieser Arbeit entwickelte Modell zur Voxelbildung, welches auf der getrennten Betrachtung von technischen und chemischen Wechselwirkungsvolumen basiert, zu verbessern. Ein leistungsfähiges Modell, welches die Voxelbildung in Abhängigkeit des Materials und der Fokussieroptik präzise vorhersagen kann, wäre für das Erzielen optimaler Strukturierungsergebnissen ein Gewinn. N2 - In this thesis, the two photon polymerization technique using ORMOCER®s was investigated thoroughly. The main aspects of matter were the theoretical investigations of the interaction between laser and polymer, the experimental characterization of the different ORMOCER®s, and the scale-up of the photon polymerization technique in order to fabricate scaffolds for the regenerative medicine. The latter was achieved by designing and building up an innovative exposure device[38] which enables the fabrication of scaffold structures with minimal structure sizes of a view microns. The experiments were done using UV sensitive anorganic-organic hybrid polymers, also known as ORMOCER®s. These are typically synthesized for optical applications, but some are also biocompatible. The ORMOCER® MB-47 was invented by M. Beyer for biological application and possesses biocompatibility, partial biodegradability, and advanced 2PP structuring behavior. The micro-structuring system used contains an ultra-short pulse laser which emits 325 fs pulses at 1030 nm (applied was 515 nm using second harmonic generation), a highly precise positioning system which consists of three air-bearing stages with a travel range of 10 cm (y, z direction) and 15 cm (x direction), respectively, and some objectives for focusing. With these components, complex three-dimensional structures with minimal structure size below 1 µm can be produced. In Capital 5.1, theoretical studies of the interaction between the focal intensity distribution and the material, which defines voxel growth, were performed. Therefore, the technical interaction volume and the chemical interaction volume were separately investigated. The technical interaction volume describes the threshold driven interaction between the focal intensity distribution and the material system, which allows the realization of structure sizes below the resolution limit (diffraction) of the wavelength used. The theoretical investigations showed that spherical aberration influences the focal intensity distributions (Intensity-Point Spread Function (IPSF)) which were calculated for different experimental exposure configuration. The results propose a severe influence with increasing focus depth into the material. Moreover, a formal relation between the IPSF and the technical interaction volume was derived by using the threshold assumption. By using the Gaussian beam assumption as IPSF, the analogy of the derived formula to the voxel growth model of Serbin et al. was recognized. The chemical interaction volume represents the actual volume of the polymerization reaction. Its amount exceeds the technical interaction volume due to the space-consuming chain growth during the polymerization. By the simulation of the reaction kinetics of the polymerization, the time- and power-depending behavior of the different reactants (radicals, monomer, photo initiator) as well as the degree of conversion was calculated. The simulations were done for very short exposure times (< 10 ms) by using a system of coupled differential equations which are based on a model invented by Uppal & Shiakolas. Therefore, the influence of diffusion and temperature was estimated to be small on short time scales and thus neglected. The results of the simulations show that a short exposure time cannot be necessarily compensated by high laser powers to achieve a certain degree of conversion. Higher laser power leads rather to a swift consumption of the photo initiator and thus to a disruption of the polymerization. In order to achieve high degrees of conversions, the reactive rate coefficients of the propagation and termination k_P and k_T as well as a sufficient amount of photo initiator concentration is essential. The larger the ratio k_P/k_T the higher degree of conversion can be realized even with short exposure times whereas a significant part of the reaction takes place during the dark period. This finding is important for the scale-up of the photon polymerization technique which has to involve shorter exposure times. Moreover, the simulations show that the spatial profile of the degree of conversion can feature a central minimum. This phenomenon occurs when the central maximum intensity of the IPSF consumes the entire photo initiators in short times which leads to a disruption of the polymerization. In Capital 5.2, the voxel growth, the behavior of conversion as well as the mechanical properties of hardened ORMOCER®s were experimentally investigated with different parameters and material systems. By means of voxel fields, voxel sizes, aspect ratios and voxel volumes at different laser powers were determined. The results were compared with the calculated technical interaction volume, whereas the difference was invented as a new characteristic value. It has been shown that the voxel length deviates clearly from the length of the technical interaction volume which cannot be explained by space-consuming chain growth during the polymerization. Instead, it was assumed that this observation is reasoned by interaction effects between light and material (optical Kerr effect, polymerization) leading to an inhomogeneous refractive index distribution and thus to self-focusing and self-trapping. In contrast to that, the difference between the voxel diameter and the diameter of the technical interaction volume was correlated with reaction kinetic influences. Additionally, the dependency of the voxel volume on the laser power was linear approximated in order to determine the polymerization rate of different material systems. Here, strong differences between the materials were identified. The material with the highest polymerization rate was OC-V with the Irgacure® Oxe02 photo initiator which consists of acrylates as cross-linkable group. Because of this, this material system was preferred for 2PP structuring of large scale structures. The different materials were investigated concerning their conversion behavior by means of µ-Raman spectroscopy. Therefore, fields of lines were produced by 2PP with varying scan speed and laser power and measured. The degree of conversion was then semi-quantitative extracted from the spectra. All in all, the degrees of conversion were determined to be in the range of 40 to 60 % for all materials. The material with the highest degree of conversion was the OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the measurements showed that the degree of conversion for each material system does not vary with the scan speed (exposure time) within the limits of measurement error. Thus, the simulations from Capital 5.1.3, which predicted that shorter exposure times cannot be necessarily compensated by higher laser powers, could not be confirmed. Furthermore, the mechanical properties of the different materials were characterized. Therefore, cylindrical samples were produced with different processes and parameters and tested with a compressive load. Also the densities and degrees of conversion were determined. All in all, elastic moduli between 0,40 and 1,37 GPa and load failures between 117 and 310 MPa were measured. It was detected that the photo initiator concentration influences the conversion behavior and thus the mechanical properties of the samples. While low concentrations led to lower degrees of conversion and lower elastic moduli, the samples produced with higher concentrations were more brittle with higher degrees of conversion and elastic moduli. The highest elastic modulus was measured for samples which were produced in OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the mechanical properties of samples produced with 2PP can be influenced by the utilized laser power. This is reasoned by the voxel sizes which can be adjusted by the laser power and which determine the overlap of vicinal voxels at distinct hatch and slice distances. In the overlap area double exposure takes place which can lead to higher degrees of conversion. It was found that with sufficient laser powers the 2PP leads to higher elastic moduli and load failures than the 1PP. Capital 5.3 deals with the scale-up of the photon polymerization technique. After the discussion of the challenges, two exposure strategies were used to produce macroscopic scaffold structures. Especially, the vat setup has to be emphasized which can be used to build structures with basically unlimited structure heights by means of the 2PP technique. One of the major challenges concerning the scale-up of the 2PP is the speed-up of the process. Therefore, the scan speeds as well as the acceleration of the positioning system play important roles. Moreover it was detected that further parallelizing techniques as the utilization of diffraction optical elements are needed in order to achieve a sufficient speed-up of the 2PP technology. The standard exposure setup with air objectives was used to fabricate millimeter-sized structures in ORMOCER®s which high quality. Though the maximal achievable structure height is limited by the working distance of the objective used, the setup is suitable for the fabrication of macroscopic scaffolds which can be utilized for biological or mechanical testing. Moreover, the biodegradable MB-47 was successfully used for the fabrication of Drug Delivery structures. The vat setup bases on a vat/bath as material reservoir with transparent bottom, a sample holder moveable in the vertical (z) direction, and an upside down x-y-scanning objective. The sample can be moved upwards which enables one to build structures whose heights are not limited by the working distance of the employed objective anymore. This setup was used to fabricate a model of the statue of liberty with a height of 2 cm and millimeter-sized scaffolds with pore sizes in the area between 40 and 500 µm in ORMOCER®-V. Moreover, the human ossicles in life size, a scaffold in the shape of the human stapes, different test scaffold structures for mechanical and biological investigations and drug delivery structures were build. The achieved maximum building rate was 10 mm^3/h. So far, the speed-up and scale-up potentials of the air-bearing positioning system haven’t been exhausted when using the vat setup. Therefore, the setup has to be optimized regarding weight and stability in order to realize higher accelerations of up to 10 m/s^2. This would enable build rates of up to 60 mm3/h with a scan speed of 224 mm/s and slice and hatch distances of 15 and 10 µm. Moreover, the speed-up by means of diffractive optical elements was experimentally investigated. Therefore, an optical setup was constructed which includes the diffractive optical element, some lenses, an objective, and a blind to blank the zero order. By this a 2 x 2 spot matrix was generated which was used for the simultaneous fabrication of four drug delivery structures and the production of single scaffold structures. In both cases an increase of the polymerization rate was achieved regarding to structuring without diffractive optical elements. For the fabrication of the scaffold structures two different scan strategies were performed. Using the first one, a scaffold was built up by the simultaneous structuring of four scaffolds’ gyroid unit cells. After finishing these cells, more cells were stitched to them until a millimeter-sized scaffold was achieved. For this strategy, it’s important that the size of the unit cell design is adjusted to the focal matrix distances. With the second strategy a scanning of the whole spot matrix along the whole scaffold flank is performed. By this it was possible to produce a pile of interleaved beams which represents a woodpile-like scaffold. The fact that the produce lines of each layer are as long as scaffold flank leads to the advantage that higher scan speeds and thus build rates can be achieved than with the first strategy. Nevertheless, the realized maximum build rates weren’t exceeding the build rates which were reached by using the standard setup or the vat setup. Thus, more optimization of parameters and setup is needed. If focused laser lights transmits through an interface of two materials with different refractive indices, spherical aberration occurs which leads to blurring of the focal intensity distribution especially in the axial direction. When using air objectives this blurring affects the structuring results. Hence theoretical and experimental investigations were done in order to optimize exposure routines. When using the standard exposure setup, power adoption was performed during the structuring process which allows holding the maximum focal intensity constant at varying focal depths in the presence of spherical aberration influences. By this, a clear improvement of the scaffolds’ quality and homogeneity along the axial direction was achieved. Furthermore, the vat setup with the NA 0.60 objective was used to perform an experimental in situ mapping of the focal axial intensity distribution for different focal depths. A voxel field function was extracted from produced voxel fields and correlated with the axial intensity distribution. Therefore, it was assumed that the chemical interaction volume is equal to the technical interaction volume. The experimental results showed clearly the presence of side maxima which are typical for spherical aberration influences. The distances between them were predicted quite exactly by theoretical simulations. Finally, the spherical aberrations were reduced by the correction collar of the objective. The resulting intensity distribution was also mapped with the vat setup and no side maxima were found for the experimental intensity distribution. Moreover the contrast of the main maximum was clearly improved. Overall, it can be concluded that within this work a noticeable progress in the scale-up of the two-photon polymerization technique was achieved which is important for the fabrication of scaffold structures for the regenerative medicine. The realized structure dimensions and build rates exceed all, so far, known specifications of structures fabricated by two-photon polymerization. Moreover, basic knowledge of the most important aspects of the scale-up was discovered by thoroughly theoretical and experimental investigations. Nevertheless, there is still much improvement necessary to establish the two photon polymerization technique as a competitive tool for the production of scaffold structures which are larger than 1 cm^3. Higher scan speeds and advanced setups with diffractive optical elements must be applied to achieve build rates in the range over 1 cm^3/h. Due to the lack in flexibility of usual diffractive optical elements, it is recommended to use spatial light modulators which are dynamic adjustable diffractive optical elements. With them it is possible to vary the spot intensity distribution, spot number as well as the spot distances during the process. Finally, it is imaginable that in future the vat setup combined with a spatial light modulator can be used for the fabrication of large macro structures with finest details in adequate time. But therefore, it is necessary to perform thoroughly investigations concerning the potentials of spatial light modulators. Moreover, the theoretical and experimental investigations on the reaction kinetics show that voxel growth is a complex process which is possibly affected by nonlinear optical interactions aside from the two-photon absorption phenomenon. Thus, intensive study should be done in order to, for example, quantify the influence of an intensity-dependent refractive index on the voxel growth. Maybe, results could be used to improve the voxel growth model of this work which bases on the separate consideration of the technical and chemical interaction volumes. A powerful tool enabling the prices prediction of voxel growth characteristics depending on material and focusing optics would help to improve the detail quality of fabricated scaffolds. KW - Tissue Engineering KW - Polymere KW - Mikrofertigung KW - Two-photon polymerization KW - Two-photon absorption KW - Scaffold fabrication KW - Zwei-Photonen-Polymerisation KW - Zweiphotonenabsorption KW - Reaktionskinetik KW - Raman-Spektroskopie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130161 ER - TY - THES A1 - Schelter, Jürgen T1 - Elektronentransferprozesse in gemischtvalenten Systemen, Redoxkaskaden und Polymeren auf Basis von Triarylaminredoxzentren T1 - Electron transfer processes in mixed valence compounds, redox cascades and polymers based on triarylamine redox centres N2 - Im Rahmen dieser Arbeit wurden Elektronentransferprozesse in Systemen, die auf Triphenylaminredoxzentren basieren, mit Hilfe spektroskopischer und elektrochemischer sowie spektroelektrochemischer Methoden studiert. Im ersten Teil der vorliegenden Arbeit wurden Bistriarylaminsysteme analog zu N,N,N’,N’-Tetra(4-methoxyphenyl)-1,4-phenylendiamin (1) untersucht, deren Radikalkationen eine für gemischtvalente Systeme typische breite und insbesondere bei 1 stark asymmetrische IVCT-Absorptionsbande zeigen. Die Analyse dieser Banden nach Hush sowie einem modifizierten Modell, das der Vibronic coupling-Theorie angelehnt ist, deutet auf die Abnahme der elektronischen Kopplung mit zunehmender Vergrößerung des zentralen Phenylenspacers durch Naphthalin- (2) bzw. Anthracenspacer (3) und damit größerer sterischer Hinderung hin. Gleichzeitig nimmt aber mit der Vergrößerung des -Systems des Spacers auch die Reorganisationsenergie  ab. Insgesamt verhalten sich alle drei Verbindungen sehr ähnlich, was insbesondere das Verhältnis von Absorptionsmaximum der IVCT-Bande zum zweifachen Wert der elektronischen Kopplung betrifft. Legt man vor allem das modifizierte Vibronic coupling-Modell zugrunde, so liegt dieses Verhältnis bei 1+, 2+ und 3+ sehr nahe bei 1, so daß alle drei Systeme sehr nahe am Übergang von Robin-Day-Klasse II zu Klasse III liegen. Weiterhin wurden über einen 1,4-Diethinylphenyl-Spacer verbrückte Bistriarylaminsysteme untersucht, bei denen durch Variation der Spacereinheit (1,4-Diethinylphenyl (5), 1,4-Diethinylnaphthalin (6), 1,4-Diethinyl-2,5-dimethoxyphenyl (10)) die Energie eines Brückenzustandes im Vergleich zu Zuständen, bei denen das Radikal an einem Triarylaminzentrum lokalisiert ist, schrittweise abgesenkt wird. Die auftretenden Elektronentransferprozesse können mit Hilfe eines Dreiniveaumodells mit zwei voneinander unabhängigen Elektronentransferkoordinaten beschrieben werden. Es zeigt sich, daß bei elektronenarmen Spacern, wie z.B. bei 5+, der Elektronentransfer nach einem Superexchange-Mechanismus erfolgt. Bei der Verwendung einer elektronenreichen Dimethoxy-substituierten Brücke wie in 10+ kann der Elektronentransfer neben dem Superexchange- auch nach einem Hopping-Mechanismus erfolgen. Bei Verbindungen, die einen 9,10-Diethinylanthracenspacer (8+ und 9+) enthalten, liegt der Brückenzustand energetisch sogar deutlich tiefer als der Zustand mit einem oxidierten Triphenylaminredoxzentrum. Im zweiten Abschnitt wurden gerichtete Elektronentransferprozesse an Redoxkaskaden und Dendrimeren, die auf Triarylaminredoxzentren basieren, studiert. Die Möglichkeit, die Redoxpotentiale von Triphenylaminzentren durch Substituenten zu beeinflussen, erlaubt die Synthese von Kaskaden mit einem vorgegebenen Redoxgradienten. Innerhalb einer Kaskade, die ein Acridin-Fluorophor, ein 4-Chlor-substituiertes sowie ein 4-Methoxy-substituiertes Triphenylaminredoxzentrum enthält (18), kann nach Anregung des Acridin-Chromophors in polaren Lösungsmitteln ein ladungsgetrennter Zustand erreicht werden, worauf sowohl statische und zeitaufgelöste Fluoreszenzmessungen als auch transientenspektroskopische Untersuchungen hinweisen. Die Lebensdauer kann durch Verlängerung der Redoxkaskade durch ein weiteres Aminzentrum deutlich vergrößert werden. In unpolaren Lösungsmitteln erfolgt dagegen keine Ladungstrennung über die gesamte Kaskade. Ebenso tritt bei 20 (Kaskade aus Acridin, 4 Methoxy-substituiertem Triphenylamin und 4-Chlor-substituiertem Aminzentrum), wo der Redoxgradient entgegen zu 18 gerichtet ist, kein Ladungstransfer auf. Im dritten Teil dieser Arbeit wurden Verbindungen untersucht, die neben 1,4 Phenylendiamineinheiten in para-Position unsubstituierte Triphenylamine enthalten und sich elektrochemisch polymerisieren lassen. Die Eigenschaften der dotierten redoxaktiven Polymere werden durch die enthaltenen p-Phenylendiamin- und Benzidin-Substrukturen dominiert, wofür hauptsächlich die geringe Wechselwirkung der einzelne Redoxzentren untereinander verantwortlich ist. Impedanzspektroskopische Untersuchungen zeigen eine Zunahme der Leitfähigkeit der dotierten Polymerfilme, wobei der Ladungstransfer vermutlich durch Hopping zwischen den p-Phenylendiamin- und Benzidinuntereinheiten erfolgt. N2 - In this work electron transfer processes in systems containing triphenylamine redox centres were studied by spectroscopic and electrochemical as well as spectroelectrochemical methods. In the first part of this work bistriarylamine systems in analogy to N,N,N’,N’-tetra(4-methoxyphenyl)-1,4-phenylenediamine (1) were investigated. The radical cations of the studied compounds show broad and especially in the case of 1 highly asymmetric intervalence charge transfer absorptions that are typical for the mixed valence systems. The analysis of these IVCT bands according to Hush and a modified model related to the vibronic coupling theory shows that by substitution of the central phenylene spacer with naphthalene (2) or anthracene (3) respectively steric hindrance is increased. At the same time the Marcus reorganisational energy  decreases by increasing the size of the spacer’s -system. In general all three studied systems show very similar behaviour which can be seen from the relation of the energy of the IVCT band maximum to twice the value of the electronic coupling element. Especially within the modified vibronic coupling model this relation is very close to 1 for 1+, 2+ and 3+ which suggests that all three systems lie very near the Robin-Day class II to III borderline. Furthermore bistriarylamine systems connected via a 1,4-diethinylphenylene spacer have been investigated. Variation of the central spacer unit (1,4-diethynylphenylene (5), 1,4-diethynylnaphthalene (6) 1,4-diethynyl-2,5-dimethoxyphenylene (10)) allows for the stepwise decrease of the energy of a bridge oxidised state relative to the energy of states where the radical cation is localised at a triarylamine redox centre. The implied electron transfer processes could be described by a three state model with two independent electron transfer coordinates. In the case of electron deficient spacers like in 5+ electron transfer proceeds via a superexchange mechanism. With electron rich dimethoxy substituted bridges (10+) electron transfer occurs via superechange as well as by a hopping mechanism. In systems containing a 9,10-diethynylanthracene spacer the bridge oxidised state is energetically favoured over the states with an oxidised triphenylamine redox centre. In the second part directed electron transfer processes were studied in redox cascades and dendrimers based on triarylamine redox centres. The possibility to modify the redox potential of triphenylamine centres with substituents allows for the synthesis of cascades containing a specific redox potential gradient. Within a cascade which constitutes of an acridine fluorophor, a 4-chloro substituted triphenylamine as well as a 4-methoxy substituted triphenylamine redox centre (18) it is possible to obtain a charge separated state after excitation of the acridine chromophor in polar solvents as has been shown by time dependent fluorescence measurements as well as transient absorption investigations. The lifetime of the charge separated state can be increased dramatically by enlargement of the redox cascade with a further triphenylamine redox centre. In contrast no charge separation over the whole cascade could be observed in non-polar solvents. Also no charge separation occurs in 20 (a cascade containing acridine, a 4-methoxy substituted triphenylamine and a 4-chloro substituted amine redox centre) because here the redox potential gradient is directed contrary to 18. In the third part of this work electrochemically polymerisable systems containing 1,4-phenylenediamine units and unsubstituted and triphenylamines were studied. The properties of the doped redox active polymers are dominated by the p-phenylenediamine and benzidine substructures, a fact that can be explained mainly by the very weak interaction of the single redox centres. Electrochemical impedance measurements show an increase of the conductance of the doped polymer films. Charge transfer probably proceeds via hopping between the p-phenylenediamine and benzidine units. KW - Elektronentransfer KW - Triarylamine KW - Intervalenzverbindungen KW - Polymere KW - electron transfer KW - triarylamines KW - mixed valence compunds KW - polymers Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8379 ER - TY - THES A1 - Fichera, Mario Augusto T1 - Festkörper-NMR-Untersuchungen an thermischen Abbauprodukten von flammgeschützten Polymeren T1 - Solid state NMR investigations on thermal decomposition products of flame retarded polymers N2 - In der vorliegenden Arbeit wurden Untersuchungen an Rückständen von thermisch abgebauten, flammgeschützten Polymeren vorgenommen, mit dem Ziel, die Struktur und den Phasenbestand der eingebauten Flammschutzmittel und der Polymere sowie deren Wechselwirkungen als Funktion der Temperatur und umgebenden Atmosphäre (N2 und Luft) zu charakterisieren. Ein wichtiges Werkzeug, das Informationen über den amorphen Zustand der Abbauprodukte und deren thermisch bedingte Phasenumwandlungen in andere amorphe oder kristalline Strukturen sowie Aussagen über die Nahordnungen der betrachteten Kernspinsorte liefert, stellt in dieser Arbeit der Einsatz der Festkörper-NMR-Spektroskopie dar. Hierbei sind neben Einzelimpuls- (SP), rotor-synchronisierte Spin-Echo- (RSE) und Kreuzpolarisationstechniken (CP) auch REDOR- (Rotational echo double resonance) und TRAPDOR- (Transfer of population in double resonance) Messungen zur Anwendung gekommen. Zusätzlich konnten aus den 11B- und 31P-NMR-Experimenten quantitative Aussagen über den relativen Borat- und Phosphor bzw. Phosphat-Anteil im festen Rückstand getroffen werden, wobei insbesondere für die 31P-Kerne eine quantitative Erfassung der kristallinen und amorphen Phosphatphasen durchgeführt wurde. Im ersten System wurden die Flammschutzmittel roter Phosphor (Prot) und Mg(OH)2 in HIPS kombiniert. Aus den Ergebnissen umfangreicher NMR-Experimente konnte abgeleitet werden, dass der größte Teil des eingesetzten Prot hauptsächlich in amorphen (Mg-Ortho-, -Di-, -Ketten- und Ringphosphaten) und weniger in kristallinen Phosphatphasen verbleibt. Zudem konnte für den Parameter der Temperatur und aus der Verfügbarkeit von Sauerstoff (N2-Atmosphäre/Luft) einen deutlicher Einfluss auf den Abbauprozess und die Bildung der Phosphatphasen (kristallin/amorph) nachgewiesen werden. Aus dem Vergleich der Ergebnisse der Temperversuche mit den Ergebnissen der Verbrennungsversuche im Cone Calorimeter konnte ein anaerober Abbauweg bestätigt werden. In einem zweiten System wurden die thermischen Reaktionen zwischen den Flammschutzadditiven BDP und Zinkborat sowie ihren Einfluss auf den thermischen Abbau eines PC/ABS-Blends untersucht. Der thermisch belastete Rückstand wird unabhängig von der Atmosphäre von amorphen Phosphatgruppen dominiert. Dabei konnten die während der Temperprozesse gebildeten Verbindungen α Zn3(PO4)2 und BPO4 als Folge einer Festphasenreaktion zwischen den eingesetzten Flammschutzadditiven identifiziert werden, wobei das α Zn3(PO4)2/BPO4 Verhältnis als Indikator für einen aeroben bzw. anaeroben Abbauprozess dient, der für die Feuerrückstände eindeutig einen anaeroben Abbau liefert. N2 - This study aims at the structural characterisation of embedded flame retardants and polymers. Analysis includes determination of the phase contents as well as description of their mutual interactions as a function of their thermal history in different atmospheres (air and nitrogen). Solid-state NMR spectroscopy is the most important tool applied in this thesis. This technique enables structural information about the amorphous state of the decomposed products, determination of the thermal and thermo-oxidative conversion in different amorphous and crystalline structures, and predictions about the short-range order of the observed nuclei. In this context measurements of single pulse (SP), rotor-synchronised spin echo (RSE) and cross polarisation (CP) experiments, as well as REDOR (Rotational echo double resonance) and TRAPDOR- (Transfer of population in double resonance) have been conducted. Additionally, 11B SP and 31P RSE experiments have been used to study quantitatively the borate and both phosphorus and phosphate contents in the solid residues. Particular emphasis was put on quantifying crystalline and non-crystalline phosphate phases. The first system consists of a combination of the flame retardants red phosphorus (Pred) and Mg(OH)2 in HIPS. From the results of extensive NMR experiments it was deduced that most of inserted red phosphorus remains in amorphous phosphates phases (ortho, pyro, and chain/ring phosphates) besides some crystalline phosphate phases. Decomposition characteristics such as temperature and the availability of oxygen (N2 atmosphere/air) show a significant influence on the decomposition process and the formation of phosphate phases (crystalline/amorphous). By comparing the results of the annealing processes to the results of the cone calorimeter measurements an anaerobic decomposition way was confirmed. In a second system, thermal reactions between the two flame retardants BDP and zinc borate as well their influence on the thermal decomposition of a PC/ABS blend were investigated. The thermally residues are independently of the atmosphere dominated by amorphous phosphate units. During the thermal decomposition the formation of α-Zn3(PO4)2 and BPO4 could be identified as solid reaction products of the inserted flame retardants. In addition, the α Zn3(PO4)2/BPO4 ratio served as an indicator of aerobic or anaerobic decomposition processes, proving an anaerobic decomposition mechanism for the fire residues. KW - Festkörper-NMR-Spektroskopie KW - Flammschutzmittel KW - Phosphor KW - Phosphate KW - Polymere KW - amorph KW - kristallin KW - solid state NMR spectroscopy KW - flame retardants KW - phosphorus KW - amorphous KW - crystalline Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26684 SN - 978-3-9812072-1-7 ER - TY - THES A1 - Bittner, Andreas T1 - Innovative Materialkonzepte für elektrochemische Energiespeicher T1 - Innovative Material Concepts for Electrochemical Energy Storage N2 - Im Rahmen der vorliegenden Arbeit wurde ein neuer Beschichtungstyp für die Elektrodenmaterialien von Lithium-Ionen-Akkumulatoren entwickelt und charakterisiert. Dieser besteht aus einem speziellen anorganisch-organischen Hybridpolymer, das sich bezüglich seiner Zusammensetzung und Funktion gegenüber bestehenden Beschichtungsmaterialien abhebt. Das anorganisch-organische Netzwerk des Hybridpolymers konnte mittels Feststoff-NMR-Messungen vollständig aufgeklärt werden. Dabei zeigte sich ein stabiles anorganisches Gerüst aus hoch vernetzten Polysiloxan-Einheiten. Zusätzliche organische Modifizierungen liegen als lange bewegliche Ketten mit funktionellen Polyethylenoxid-Einheiten vor oder sind in Form von Polyethern und Diolen vernetzt. Mit dieser speziellen Netzwerkstruktur ist es möglich, Materialeigenschaften zu erzeugen, die über solche von rein anorganischen und rein organischen Beschichtungen hinausgehen. Zu den mit verschiedenen Methoden nachgewiesenen Eigenschaften zählen eine hohe ionische Leitfähigkeit von 10\(^{-4}\) S/cm, eine hohe Elastizität mit E = 63 kPa, eine hohe elektrochemische Stabilität bis 5,0 V vs. Li/Li\(^+\) und eine hohe thermische Stabilität. Eine weitere Besonderheit des neuen Beschichtungsmaterials ist die mehrstufige Vernetzung der anfänglichen Prekursoren zu einem Hybridpolymer-Sol und dem abschließenden Hybridpolymer-Gel. Die im Beschichtungssol vorliegende Teilvernetzung der Vorstufen konnte detailliert mittels Flüssig-NMR-Messungen untersucht und beschrieben werden. Aus den Messungen ließ sich folgern, dass die organisch und anorganisch vernetzbaren Gruppen im Sol teilweise vernetzt vorliegen. Die sterisch erreichbaren Si-OR-Gruppen der so entstandenen Oligomere sind vorwiegend nicht hydrolysiert, wodurch deren anorganische Anbindung an die OH-Gruppen der Partikeloberflächen kinetisch bevorzugt ist. Damit lassen sich besonders homogene und vollständig bedeckende Beschichtungen der Elektrodenmaterialien erzeugen. Dies konnte mit verschiedenen physikalischen und chemischen Methoden nachgewiesen werden: simulationsgestützte Rückstreuanalysen mittels REM, hochaufgelöste TEM-Aufnahmen sowie Elementanalysen durch EDX und XPS. Nach der Optimierung des nasschemischen Beschichtungsprozesses über Rotationsverdampfen ergaben sich für die verschiedenen Elektrodenmaterialien Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) jeweils etwa 20 nm dicke Beschichtungen mit Hybridpolymer. Die Frage nach deren Lösungsmittelbeständigkeit konnte durch die Analyse von behandelten Proben mit TG, REM, XPS und ICP-OES aufgeklärt werden. Dabei zeigte sich sowohl für die Behandlung mit NMP, dem klassischen Lösungsmittel bei der Elektrodenfertigung mit PVDF-Binder, als auch für die Behandlung mit dessen umweltschonenderem Ersatzstoff Aceton eine gute Beständigkeit der Beschichtung. Die Beschichtung löste sich in den Lösungsmitteln an, blieb allerdings als geschlossene nanoskalige Beschichtung erhalten. Lediglich gegenüber dem Lösungsmittel H\(_2\)O, das in Kombination mit dem neuen Binder CMC eingesetzt wird, wurde eine mangelnde Schichtstabilität deutlich. Das dafür verantwortliche Quellverhalten der Beschichtung konnte mittels Dünnschicht-Modellsystem und daran durchgeführten REM-, IR- und EPA-Untersuchungen aufgeklärt werden. Die Optimierung des Hybridpolymer-Materials bezüglich einer besseren H\(_2\)O-Beständigkeit übersteigt den Rahmen dieser Arbeit und liefert die Grundlage für weitere künftige Forschungsarbeiten. Aufgrund der vollständigen Bedeckung der neuen Beschichtung, ihrer besonderen Eigenschaften und ihrer Beständigkeit bei der klassischen Elektrodenfertigung ist es möglich, die Elektrodenmaterialien grundlegend hinsichtlich ihrer wichtigsten Eigenschaften zu verbessern. Hierfür wurden sowohl über die NMP- als auch über die Aceton-Route Elektroden gefertigt und zu Halbzellen und Vollzellen verarbeitet. Die REM-Analyse der Elektroden zeigte, dass die Partikelbeschichtungen keinen negativen Einfluss auf die Homogenität und Morphologie der Elektroden ausüben. Damit war es möglich, jeweils einen direkten Vergleich von beschichteten und unbeschichteten Materialien hinsichtlich ihrer elektrochemischen Performance anzustellen. Für die Kathodenmaterialien Li(Ni,Co,Mn)O\(_2\) und Li(Mn,Ni)\(_2\)O\(_4\) ergaben die Zyklenfestigkeits- und Impedanzmessungen klare Verbesserungen durch die Beschichtung. Verbunden mit einer Verbesserung der Energiedichte erhöhte sich bei beiden Materialien die Zyklenfestigkeit um mehr als 60 %. Bei Li(Mn,Ni)\(_2\)O\(_4\) zeigt sich die Verbesserung in einer erhöhten Zellspannung durch das vergleichsweise hohe Redoxpotential des Materials von etwa 4,7 V vs. Li/Li\(^+\), während sich bei Li(Ni,Co,Mn)O\(_2\) die Hochvoltfähigkeit des Materials verbessert, was mit einer vergrößerten Speicherkapazität verbunden ist. Dabei ist herauszustellen, dass für keines der Materialien ein negativer Einfluss der dünnen Beschichtung auf die Leistungsdichte festgestellt werden konnte. Der erwartete Mechanismus für die verbesserte Elektrodenfunktion durch das Hybridpolymer ist die Bildung einer physikalischen Schutzschicht in Form einer Li\(^+\)-leitfähigen Membran. Diese umgibt das Elektrodenmaterial vollständig, ermöglicht die Ladungsträgerinterkalation und schützt die Elektrode gleichzeitig vor irreversiblen Reaktionen mit dem Elektrolyten. Damit verbunden ist eine verminderte Mn-Auslösung und eine verminderte Entwicklung von isolierenden Deckschichten aus Reaktionsprodukten wie LiF, Li\(_2\)O, Li\(_2\)CO\(_3\), was sich positiv auf die Alterung der Batteriezellen auswirkt. Die Funktion der Beschichtung wurde primär auf den Kathodenmaterialien demonstriert. Doch auch auf der Anodenseite wurde ihre Anwendungstauglichkeit aufgezeigt, was das große Potential der Beschichtung für eine breite Anwendung in Lithium-Ionen-Batterien verdeutlicht. N2 - Concerning its application on the electrode materials of lithium-ion batteries, in this thesis a new type of coating was developed and investigated. The new coating consists of an inorganic-organic hybrid polymer, which significantly differs from existing coating materials regarding composition and function. Its specific inorganic-organic network was characterized by solid-state NMR, which revealed stable inorganic domains consisting of highly cross-linked polysiloxane units with organic modifications. These modifications are long and flexible chains with functional polyethylene oxide units as well as networks cross-linked via polyethers and diols. With its special structure, the hybrid polymer shows material properties which surpass those of pure inorganic and pure organic materials. The properties were validated by different methods and include a high ionic conductivity of 10\(^{-4}\) S/cm, a high elasticity of E = 63 kPa, a high electrochemical stability of 5.0 V vs. Li/Li\(^+\), and a high thermal stability. Another distinctive feature of the new coating is its gradual network formation, starting with the initial precursors, leading to a hybrid polymer sol and ending with the final hybrid polymer gel. The partial cross-linkage of the precursors in the sol was investigated with liquid-state NMR. Based on the measurements it could be concluded that the organically and inorganically cross-linkable groups are partly interconnected in the sol. The sterically accessible Si-OR groups are predominantly not hydrolyzed. So an inorganic linkage of the hybrid polymer sol’s oligomers to the OH groups of the particles’ surfaces is kinetically favored, which enables the creation of particularly homogeneous and entire particle coatings. This was shown by several physical and chemical methods of measurement: simulation-based backscattered electron analysis via SEM, high-resoluted images via TEM and elemental analysis by means of EDS and XPS. After optimization of the wet chemical coating processes via rotary evaporation, hybrid polymer coatings of approximately 20 nm were realized on Li\(_4\)Ti\(_5\)O\(_{12}\), Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\). The solvent resistance of the coatings was investigated by TG, SEM, XPS and ICP-OES. These measurements revealed a good resistance against NMP, the classical solvent for the electrode production with PVDF binder. Similar results were obtained for the environmentally friendly solvent acetone. However, a partial dissolution was observed in both solvents. Nevertheless, a closed nanocoating remained on the particles’ surfaces after solvent treatment. Only for the solvent H\(_2\)O, which is used in combination with the binder CMC, an insufficient resistance became evident, caused by a swelling of the coating that was detected by means of a thin film model system and measurements with SEM, IR, and EPA. An optimization of the hybrid polymer material considering the H\(_2\)O resistance would exceed the scope of this work and provides the basis for future scientific research. Based on the flawless new coating, its specific properties and its resistance during the classical electrode production, it is possible to fundamentally improve electrode materials regarding their most important characteristics. For that reason electrodes were fabricated with NMP and with acetone as solvent and processed to half and full cells. Analysis with SEM revealed that the hybrid polymer coating had no impact on the homogeneity and morphology of the composite electrodes, enabling a direct comparison of the coated and uncoated materials with regard to their electrochemical performance. For the cathode materials, Li(Ni,Co,Mn)O\(_2\) and Li(Mn,Ni)\(_2\)O\(_4\), cycling and impedance measurements showed that by the coating both materials have a considerably improved cycling stability of more than 60 %, going along with an increased energy density. Regarding Li(Mn,Ni)\(_2\)O\(_4\) the improvement is expressed in an increased cell voltage compared to typical materials because of its high redox potential of about 4.7 V vs. Li/Li\(^+\). In the case of Li(Ni,Co,Mn)O\(_2\) an improved high voltage stability enables higher operating voltages and consequently higher capacities. It has to be pointed out that no negative influence of the thin coating on the power density could be detected. The formation of a physical protection layer in the form of a Li\(^+\) conducting membrane is the expected mechanism for the improved electrode function by the hybrid polymer, hence, protecting the electrode against undesired reactions with the electrolyte. As a consequence the Mn leaching and the evolution of insulating surface layers consisting of reaction products like LiF, Li\(_2\)O and Li\(_2\)CO\(_3\) is suppressed, leading to a reduced aging of the electrode materials. The coating function was primarily demonstrated for the cathode materials, but its suitability was also shown on the anode side, revealing the large potential of the coating for a broad application in lithium-ion batteries. KW - Lithium-Ionen-Akkumulator KW - Beschichtung KW - Polymere KW - Lithium-Ionen-Batterie KW - beschichtetes Elektrodenmaterial KW - anorganisch-organisches Hybridpolymer KW - lithium-ion battery KW - coated electrode material KW - inorganic-organic hybrid polymer KW - core-shell particles KW - improved cyle life KW - Kern-Schale-Partikel KW - verbesserte Zyklenfestigkeit Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152300 ER - TY - THES A1 - Kehrein, Josef T1 - Simulationsstudien zur ortsspezifischen Biokonjugation maßgeschneiderter Polymere T1 - Simulation Studies on the Site-Specific Bioconjugation of Polymers N2 - Polymer-Biokonjugationen, vornehmlich mit dem Goldstandard PEG, führen zu einer verbesserten Pharmakokinetik, beeinflussen aber auch die konformative Stabilität von Proteinen. Bisherige Mutationsstudien, in denen überwiegend (Asn)PEG4 -Konjugate der Beta-faltblattstrukturreichen, humanen Pin 1 WW-Domäne untersucht wurden, postulieren auf einer Proteindesolvatation beruhende Stabilisierungsmechanismen: eine Stärkung intramolekularer Salzbrücken und NH-pi-Bindungen, sowie entropisch günstige Wasserverdrängungen um apolare Aminosäuren und Hydroxylgruppen. Ziel dieser Arbeit ist es, die Protein-Polymer-Dynamik auf molekularer Ebene zu charakterisieren, um damit rationale Ansätze zum Design neuer Biokonjugate voranzutreiben und mögliche PEG-Alternativen zu etablieren. Hierzu wurde eine Vielzahl an Deskriptoren mittels Molekulardynamik-Simulationen der WW-Konjugate gewonnen und mit publizierten Stabilitätsdaten in multivariaten Regressions- und logistischen Klassifikationsmodellen korreliert. Die gewonnenen QSPR-Modelle decken im Vergleich zu einer bereits publizierten, kristallstrukturbasierten Richtlinie einen größeren und strukturell vielfältigeren Datensatz an Konjugaten ab und zeigen gleichzeitig, auch für ein Konjugat der Src SH3-Domäne, eine deutlich verbesserte Leistung. Die Modelldeskriptoren beschreiben sowohl eine Modulation der Solvatation als auch Protein-Polymer-Interaktionen. Metadynamik-Simulationen zeigten zudem die Polymerdynamik während einer partiellen Proteinentfaltung auf. Mithilfe weiterer Simulationen von Konjugaten des alpha-helikalen Her2-Affibodys wurde die Dynamik von PEG und verschiedener Alternativen (LPG, PEtOx, PMeOx) systematisch studiert. PEG interagierte mit positiv geladenen Lysinen und Argininen in der Nähe hydrophober Aminosäuren. LPG zeigte zusätzliche Wechselwirkungen der Hydroxylgruppen mit Aspartaten und Glutamaten. POx-Polymere interagierten mit Phenylalaninen, Tyrosinen und über Carbonylgruppen mit HB-Donatoren. Größere Konjugate (10 - 50 kDa PEG/LPG/PEtOx) des antiviralen Biologikums Interferon-alpha2a wurden mittels gaußbeschleunigter MDs und einer CG-Simulation analysiert. Charakteristische Wechselwirkungspartner stimmten mit den Beobachtungen zu Oligomer-Konjugaten überein. In Einklang mit experimentellen Daten der Kooperationspartner zu den 10-kDa-Varianten deuteten zusätzliche Constrained-Network-Analysen, welche die Proteinflexibilität evaluieren, auf eine thermische Destabilisierung hin. Die Bioaktivität der untersuchten Konjugate wurde weiterhin erfolgreich mit den Gyrationsdurchmessern der modellierten Strukturen korreliert. N2 - Bioconjugation of polymers, mainly the gold standard PEG, can improve pharmakokinetic properties but also modulate conformational stability of proteins. Mutation studies on (Asn)PEG4 conjugates of the beta-sheet rich human Pin 1 WW domain suggest various desolvation effects playing a crucial role: strengthening of intramolecular salt-bridges and NH-pi bonds, as well as entropically favorable water expulsion around hydrophobic patches and hydroxyl groups. The goal of this study is to characterize protein-polymer dynamics on a molecular level to drive forward rational design of new bioconjugates and establish viable PEG alternatives. A variety of descriptors was calculated from molecular dynamics simulations of WW conjugates and correlated with published stability data generating multivariate regression and logistic classification models. Compared to a previously published crystal structure-based guideline, QSPR models covered a structurally more diverse and bigger dataset and showed significantly improved predictions, including for a conjugate of the Src SH3 domain. Model descriptors captured modulations of solvation as well as protein-polymer interactions. Metadynamics simulations depicted PEG dynamics upon partial protein unfolding. Combined with simulations for conjugates of the alpha-helical Her2 affibody, data was further used to systematically dissect the dynamics of PEG and its alternatives LPG, PEtOx and PMeOx. PEG interacted with lysines and arginines near hydrophobic patches. LPG additionally adressed aspartates and glutamates via its hydroxyl groups. POx variants interacted with phenylalanines, tyrosines, as well as hydrogen bond donors via carbonyl groups. Larger conjugates (10 - 50 kDa PEG/LPG/PEtOx) of antiviral biologic Interferon-alpha2a were analyzed via Gaussian accelerated MDs and an exemplary CG simulation. Interaction patterns agreed with observations for oligomer conjugates. In accordance with experimental data of collaboration partners for 10 kDa variants, constrained network analyses, assessing protein flexibility, suggested a thermal destabilization upon bioconjugation. Bioactivity of conjugates was further successfully correlated with diameters of gyration of modeled structures. KW - Konjugate KW - Polymere KW - Molekulardynamik KW - QSPR KW - Polymer-Biokonjugate KW - Molekulardynamik-Simulationen KW - QSPR-Modeling KW - Poly(ethylenglykol) KW - Poly(2-oxazolin) KW - Poly(glycerol) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-289589 ER - TY - THES A1 - Schummer, Bernhard T1 - Stabilisierung von CdS Nanopartikeln mittels Pluronic P123 T1 - Stabilization of CdS nanoparticles using Pluronic P123 N2 - Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb äußerst interessant, da seine Bandlücke als Nanopartikel verschiebbar ist. Für die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandlückenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS für einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandlückenverschiebung dort nicht auftritt. Wissenschaftler bemühen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in wässrigen Lösungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien für die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, müssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandlücke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der Lösung von CdS im Trägerstoff, da CdS in den meisten Flüssigkeiten nicht löslich ist und ausfällt. Die Stabilisierung in wässrigen Lösungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigsäure EDTA erfolgreich durchgeführt. Mit EDTA können jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem können Parameter wie Größe und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr ähnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser löslich sind (Bsp. Kurkumin). Ein vielversprechender Lösungsweg ist dort, die Wirkstoffe in große Trägerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut löslich sind. In meiner Arbeit habe ich genau diesen Ansatz für CdS verfolgt. Als Trägerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gewählt, da es die größte Masse bei gleichzeitig höchstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenlänge hat. P123 ist ein ternäres Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei Böcken, dem mittlere Block Polypropylenoxid PPO und den beiden äußeren Blöcken Polyethylenoxid PEO. Der Buchstabe P steht für pastös, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molekülen kann bewusst über geringe Temperaturänderungen gesteuert werden. Bei ungefähr Raumtemperatur liegen Mizellen vor, die sich bei höheren Temperaturen von sphärischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Flüssigkristall. Ich habe in meiner Arbeit zunächst P123 mit Hilfe von Röntgenstreuung untersucht. Anders als andere Methoden gibt Röntgenstreuung direkten Aufschluss über die Morphologie der Stoffe. Röntgenstreuung kann die Mischung von P123 mit CdS abbilden und lässt darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. Für die Stabilisierung der Nanopartikel ist es zunächst notwendig die richtigen Temperaturen für die Ausgangslösungen und gemischten Lösungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch für die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung für Flüssigkeiten fürs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschlüsseln. Diese Röntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu können. Röntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Flüssigkeit und in verschiedenen Konzentrationen analysiert werden kann. Für die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabhängige Verhalten von P123 präzise mit Röntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. Für 5 wtp konnten die Größen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration für diese Konzentration konnten dank des neu eingeführten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgeschätzt, sowie eine Hysterese zwischen dem Heizen und Abkühlen festgestellt werden. Für die Konzentration von 10 wtp wurden kleinere Temperaturschritte gewählt und die Messungen zusätzlich absolut kalibriert. Es wurden die Größen und Streulängendichten SLD der Unimere und Mizellen präzise bestimmt und ein vollständiges Form-Phasendiagramm erstellt. Auch für diese Konzentration konnte eine Hysterese eindeutig an der Größe, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen über die Hydrierung und Hysterese komplexer Kern-Hülle Modelle zu machen. Für die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergrößert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abhängigkeit der Temperatur. Durch das Mischen zweier Lösungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbfärbung der Lösung, und somit die Bildung des CdS, in Abhängigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. Höhere Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandlücke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandlücke von ungefähr 0,05 eV im Vergleich zum Festkörper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die flüssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht ändert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Flüssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizität stabilisiert. Die Anfangs definierten Kriterien für eine erfolgreiche Stabilisierung wurden erfüllt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Flüssigkristalls, als auch im Kern der Mizelle zu stabilisieren. N2 - Aim of this work was the stabilization of cadmium sulphide CdS with Pluronic P123, a polymer. CdS is a semiconductor, which is used for photonics and for optical applications. It is highly interesting since its band gap can be shifted if it has the size of a nanoparticle. Due to this band gap shift and the fact that CdS is absorbing in the visible range, it is highly attractive material. This is known as the quantum size effect. As a solid, CdS is less interesting in this area because of the non-existing band gap shift. Scientists endeavor to stabilize CdS as a nanoparticle, since CdS is hydrophobic in aqueous solutions and thus a strongly aggregating system. Two criteria of a successful stabilization process were set. Firstly, CdS has to be homogeneously distributed in the solution and must not aggregate. Secondly, the nanoparticles must be smaller then 100A. During my thesis I produced such particles and stabilized them homogeneously in an aqueous solution, which meant to hinder the further growth of those nanopaticles while shifting their band gap. The challenge is not the production, but the encapsulation of CdS in a carrier, since CdS is not soluble in most solutions and precipitates. Such a stabilization in an aqueous solution was succeeded by Prof. Dr. Rempel with ethylenediaminetetraacetic acid EDTA as a stabilizer for the first time. But with EDTA only very small concentrations of CdS can be stabilized. Moreover, properties like size and reaction speed during the stabilization of the CdS nanoparticles cannot be adjusted or influenced. This problem is also known from medical agents, which should be administered in high doses, but are not or barely soluble in water like Curcumin. A promising solution is to encapsulate these medical agents in big carrier, so-called micelles, which themselves are soluble in water. In my thesis I followed this approach for CdS. As a carrier/micelle the well known copolymer Pluronic P123 was used. Compared to other Pluronics, P123 was chosen since it offers the biggest mass with the highest proportion of polypropylene oxide PPO compared to the total chain length. P123 is a ternary polyether and is produced industrially by BASF. It consists of three blocks, where the middle one is PPO and the outer blocks are polyethylene oxide PEO. The letter P stands for pasty while the first two numbers in P123 multiplied with 300 equal the molar mass and the last number multiplied with 10 equals the mass proportion of PEO. The formation of micelles can be triggered on purpose with a change in temperature. Micelles are present at approximately room temperature \cite{Manet2011}, which transform from spherical to worm-like micelles at higher temperatures. Above a certain concentration of 30 weight percent, the micelles will form a liquid crystal. In my work I first examined P123 with X-ray scattering. Unlike other methods, X-ray scattering gives direct information about the morphology of the substances. X-ray scattering can also be used to study the mixture of P123 with CdS and indicates, whether the goal of encapsulate stable CdS nanoparticles in P123 could be achieved. To stabilize the nanoparticles, it is first necessary to find the right temperatures for both the staring point and the end point of the stabilization process. For this purpose, P123 has to be examined much more precisely than the current state of knowledge in the literature. For this purpose as well as for the analysis of the stabilized CdS, I have developed a new instrument at the chair of X-ray microscopy, as well as a temperature controllable sample holder for liquids in vacuum to decipher morphological properties from scattering amplitudes and angles. This X-ray scattering system was designed and built in order to be able to measure P123 in small concentrations in the laboratory. Small-angle X-ray scattering is particularly suitable as a measurement method, since the sample can be analyzed with a high statistical relevance in liquid and in various concentrations. For the concentrations 5, 10 and 30 wtp, the temperature-dependent behavior of P123 could be precisely measured and presented using small-angle X-ray scattering. The sizes of the unimers and micelles could be determined for 5 wtp without an absolute calibration. With a newly introduced parameter kappa, the dehydration of the micelles with increasing temperature could be estimated, despite the lack of the absolute calibration for this concentration, as well as a hysteresis between heating and cooling. Smaller temperature steps were chosen for the concentration of 10 wtp, furthermore the measurements were also absolutely calibrated. The sizes and scattering length densities SLDs of the unimers and micelles were precisely determined and a complete shape-phase diagram was created. Also for this concentration, a hysteresis was clearly shown in terms of size, SLD and the parameter kappa, as well as dehydration of the micellar nucleus. This proves that the parameter kappa is suitable for making statements about the hydrogenation and hysteresis of complex core-shell models in the case of measurements that are not absolutely calibrated. For the concentration of 30 wtp an FCC structure could be detected between 23°C and 35°C. The lattice constant of the FCC structure increases from 260 A to 289 A depending on the temperature. By mixing two solutions, CdCl2 in a 30 wtp P123 and Na2S in 30 wtp P123, CdS could be successfully stabilized. The yellow coloration of the solution, and thus the formation of CdS, was examined as a function of time with the help of a camera. It was found that the formation of the CdS nanoparticles takes between 30 and 300 seconds, depending on the concentration and temperature protocol and follows a logistical growth function. Higher concentrations of CdS cause a more rapid increase in growth function. Using UV-Vis spectroscopy it could be shown that the band gap of CdS remains constant at 2.52 eV with increasing concentration. The shift in the band gap of approximately 0.05 eV compared to the solid state, indicates a CdS particle diameter of 80 A. With SAXS it could be shown that the liquid-crystalline structure of the P123 does not change at two different concentrations of CdS, of 0.005 and 0.1 M. The CdS is stabilized between the micelles due to the formation of the liquid crystal and in the core of the micelles due to their hydrophobicity. The initially defined criteria for successful stabilization were met. P123 is an excellent polymer to stabilize hydrophobic CdS nanoparticles, both through the formation of a liquid crystal and in the core of the micelles. KW - Röntgen-Kleinwinkelstreuung KW - Polymere KW - Cadmiumsulfid KW - Röntgen-Weitwinkelstreuung KW - Nanopartikel KW - Stabilisierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238443 ER - TY - JOUR A1 - Pöppler, Ann‐Christin A1 - Lübtow, Michael M. A1 - Schlauersbach, Jonas A1 - Wiest, Johannes A1 - Meinel, Lorenz A1 - Luxenhofer, Robert T1 - Strukturmodell von Polymermizellen in Abhängigkeit von der Curcumin‐Beladung mithilfe von Festkörper‐NMR‐Spektroskopie JF - Angewandte Chemie N2 - Detaillierte Einblicke in die Struktur von mit Wirkstoffen beladenen Polymermizellen sind rar, aber wichtig um gezielt optimierte Transportsysteme entwickeln zu können. Wir konnten beobachten, dass eine Erhöhung der Curcumin‐Beladung von Triblockcopolymeren auf Basis von Poly(2‐oxazolinen) und Poly(2‐oxazinen) schlechtere Auflösungseigenschaften nach sich zieht. Mitthilfe von Festkörper‐NMR‐Spektroskopie und komplementären Techniken ist es möglich, ein ladungsabhängiges Strukturmodell auf molekularer Ebene zu erstellen, das eine Erklärung für die beobachteten Unterschiede liefert. Dabei belegen die Änderungen der chemischen Verschiebungen und Kreuzsignale in 2D‐NMR‐Experimenten die Beteiligung des hydrophoben Polymerblocks an der Koordination der Curcumin‐Moleküle, während bei höherer Beladung auch eine zunehmende Wechselwirkung mit dem hydrophilen Polymerblock beobachtet wird. Letztere könnte elementar für die Stabilisierung von ultrahochbeladenen Polymermizellen sowie das Design von verbesserten Wirkstofftransportsystemen sein. KW - Auflösungsraten KW - Festkörper-NMR KW - Mizellen KW - Nahordnung KW - Polymere Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212513 VL - 131 IS - 51 ER - TY - THES A1 - Lang, Katharina T1 - Synthese leitfähiger elastischer Materialkomposite durch Verwendung metallischer Nanodrähte T1 - Synthesis of conductive elastic material composites by using metallic nanowires N2 - Silbernanodrähte (AgNW) wurden in verschiedene Hybridpolymere und in eine als Referenz dienende Silikonzusammensetzung eingebaut. Durch Spincoating konnten transparente leitfähige Filme erhalten werden. Deren jeweilige Nanodrahtverteilung, thermische Aktivierung und visuelle Transparenz wurden charakterisiert. Die Perkolationsschwelle der Filme hängt dabei von der individuellen durchschnittlichen AgNW-Länge ab. Eine beträchtliche Leitfähigkeit wurde während des mechanischen Streckens bis zu 30 % aufrechterhalten. Mikrostrukturierte Hybridpolymer-Verbundfilme wurden durch UV-Lithographie erhalten. ... N2 - In the context of the present work, silver nanowires were successfully synthesized using a modified polyol process according to Sun et al.[43-45]. The reproducibility of the synthesis was increased by adjusting the reaction parameters. Silver nanowires with an average length of the of ~ 12 µm and diameters of around 50 nm were obtained. The investigations of the silver nanowires were carried out on an optical level, using LSM and SEM (Section 5.1 / Section 9). In this work silver nanowire batches of different lengths were used in the manufacture of composite systems with regard to compatibility. Correspondingly, the selected resin systems from chapter 5.2 with different polarities were introduced. ... KW - Verbundwerkstoff KW - Nanodraht KW - Polymere KW - Elastizität KW - Elastizität KW - Hybridpolymere KW - Komposit Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248253 ER - TY - THES A1 - Bissinger, Philipp T1 - Synthese, Struktur und Reaktivität Basen-stabilisierter Borane und Diborene T1 - Synthesis, Structure and Reactivity of Base Stabilized Boranes and Diborenes N2 - Umsetzungen N-heterocyclischer Carbene mit Boranen führen zur Bildung von „Lewis-Säure-Base-Addukten“. In Abhängigkeit des Substitutionsmusters der eingesetzten Borane bzw. Carbene eignen sich die erhaltenen Addukte als Ausgangsverbindungen zur Realisierung verschiedener Strukturmotive. Mit geeigneten Übergangsmetallfragmenten gelingt die Darstellung von sigma-Boran-Komplexen bzw. Basen-stabilisierter Boryl-Komplexe, welche mittels spektroskopischer Methoden sowohl im Festkörper, als auch in Lösung untersucht wurden. Ebenfalls gelingt die Synthese Basen-stabilisierter Borirane und einer tetraedrischen Borid-Spezies. Zudem wird ein selektiver Zugang zu Basen-stabilisierten Diborenen entwickelt, wobei deren Bindungssituation und Reaktivität im Detail diskutiert wird. So kann das B=B-Fragment in polymere Spezies eingebunden werden oder als Ligand an Übergangsmetalle koordinieren. N2 - Reaction of boranes with N-heterocyclic carbenes results in the formation of „Lewis-acid-base-adducts“. Depending on the substitution pattern of the boranes and carbenes, respectively, these adducts represent versatile starting materials for the realization of a diversity of different structural motifs. Treatment with suitable transition-metal fragments for instance afforded sigma-borane complexes and base-stabilized boryl complexes. These species are characterized in the solid state by X-ray diffraction, as well as by spectroscopy in solution. In addition, the synthesis of base-stabilized boriranes and a tetrahedral boride species is described. Moreover, a selective approach for the synthesis of base-stabilized diborenes is developed and their bonding situation and reactivity is studied in detail. Thus, the B=B moiety can be incorporated into polymeric structures or act as a ligand in the coordination sphere of transition-metals. KW - Borane KW - Carbene KW - Lumineszenz KW - Polymere KW - boron KW - inorganic chemistry KW - carbenes KW - luminescence KW - polymers KW - Bor KW - Anorganische Chemie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79144 ER - TY - THES A1 - Turkin, Arthur T1 - Vom Monomer zum Polymer: Iterative Synthese und optische Spektroskopie von Squarain-Oligomeren T1 - From Monomer to Polymer: Iterative Synthesis and Optical Spectroscopy of Squaraine-Oligomers N2 - Mittels einer Schutzgruppenstrategie wurden Squarain-basierte monodisperse Oligomere synthetisiert. Die lösungsmittelabhängigen Konformationen (Random Coil vs. Helix) wie auch der Faltungsprozess der Homooligomere wurden mittels optischer Spektroskopie, verschiedener NMR-Experimenten, Kleinwinkelneutronenstreuungsexperimenten sowie quantenchemischen Berechnungen näher beleuchtet. Die optisch-spektroskopischen Beobachtungen wurden mithilfe der Exzitonenkopplungstheorie und einer Orientierungs- und Winkelabhängigkeit der Übergangsdipolmomente der Oligomere erklärt. Der hohe Windungsabstand der helikalen Konformation führt zu einer Interkalation von Lösungsmittel, wodurch eine Art Klathrat gebildet wird. Zusätzlich wurden mittels eines Frenkel-Exzitonenmodells die Absorptions- und Fluoreszenzspektren modelliert. Es konnten die Exzitonendelokalisationslängen abgeschätzt und die Auswirkung der energetischen und strukturellen Unordnungen auf die Absorptions- und Fluoreszenzspektren bestimmt werden. Die Absorptionsspektren werden vorwiegend durch strukturelle Unordnungen verbreitert, die Fluoreszenzspektren dagegen von energetischen Übergangsenergieabweichungen. Weiterhin wurden auch alternierende Squarain-Cooligomere synthetisiert und mittels optischer Spektroskopie untersucht. Es wurde, abhängig von dem gewählten Lösungsmittel, eine Verschiebung der Hauptbande beobachtet, was durch einen Random Coil vs. helikale-/schlaufenartige Konformation erklärt wird. Gestützt wurde dies mittels quantenchemischen Berechnungen der jeweiligen Konformationen. Abschließend wurden alternierende Squarain-Copolymere synthetisiert, in verschiedenen Größen aufgetrennt und mittels optischer Spektroskopie untersucht. Mittels EEI2D-Experimenten wurde die Exzitonendynamik in Abhängigkeit von der Kettenlänge eingehender untersucht. Hierbei wird eine steigende, aber relativ abnehmende Kohärenzlänge bestimmt, die Auswirkungen auf die Exzitonendynamik hat. Der Exzitonentransport weist erst wellenförmiges und dann subdiffuses Verhalten auf. N2 - A protecting group strategy was employed to synthesise squaraine-based monodisperse oligomers. The solvent-dependent conformations (random coil vs. helix) as well as the folding process of the homooligomers were examined in more detail using optical spectroscopy, various NMR experiments, small-angle neutron scattering experiments, and quantum chemical calculations. The optical-spectroscopic observations were explained using exciton coupling theory and an orientation and angle dependence of the transition dipole moments of the oligomers. The high pitch of the helical conformation leads to solvent intercalation, thereby forming a type of clathrate. In addition, the absorption and fluorescence spectra were modeled using a Frenkel exciton model. The exciton delocalization lengths were estimated and the effect of the energetic and structural disorders on the absorption and fluorescence spectra were determined. The absorption spectra are mainly broadened by structural disorder, while the fluorescence spectra are broadened by energetic transition energy deviations. Alternating squaraine cooligomers were also synthesised and analysed by optical spectroscopy. Depending on the chosen solvent, a shift of the main band was observed, which is explained by a random coil vs. helical/loop-like conformation. This was supported by quantum chemical calculations of the respective conformations. Finally, alternating squaraine copolymers were synthesised, separated into different sizes and analysed by optical spectroscopy. Exciton dynamics as a function of chain length were investigated in more detail using EEI2D experiments. Here, an increasing but relatively decreasing coherence length was determined, which affects the exciton dynamics. The exciton transport shows wavelike and then sub-diffusive behaviour. KW - Squarain KW - Oligomere KW - Polymere KW - Helix-Knäuel-Umwandlung KW - Chemische Synthese KW - Optische Spektroskopie KW - Squarain-Farbstoff KW - Helix-Knäuel-Umwandlung KW - J- and H-Aggregate KW - Optical Spectroscopy KW - Squaraine-Dye KW - J- and H-Aggregates KW - Helix-Coil-Transition Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257950 ER -