TY - THES A1 - Friedrich, Alexandra T1 - Beeinflussung des Na+-D-Glukose-Kotransporters SGLT1 und der Na+-Nukleosidtransporter CNT durch Peptidmotive des Regulatorproteins RS1 im Darm T1 - Effects of RS1-derived peptides on Na+-D-glucose cotransporter SGLT1 and Na+- nucleoside cotransporters CNTs in small intestine N2 - Der Natrium-D-Glukose Kotransporter 1 (SGLT1) spielt eine wichtige Rolle bei der Aufnahme von Glukose aus dem Darmlumen in die Enterozyten des Darms. Anhand von Untersuchungen an Xenopus laevis-Oozyten konnte in unserem Labor das Protein RS1 als posttranslationales Regulatorprotein für SGLT1 und diverse andere Transporter ermittelt werden. Es wurde eine regulatorische Domäne aus RS1 mit vielen potentiellen Phosphorylierungsstellen isoliert (RS1-Reg) und gezeigt dass RS1-Reg die Abschnürung von Transporter enthaltenen Vesikeln vom Transgolgi-Netzwerk hemmt. Neben SGLT1 reguliert RS1 auch die konzentrierenden Nukleosidtransporter (CNTs) am TGN. Die Regulation der Transporter ist vom Phosphorylierungszustand von RS1-Reg abhängig. So wurde durch Versuche an Oozyten von Xenopus laevis und Injektion von RS1-Reg Mutanten gezeigt, dass die Phosphorylierung von RS1-Reg an einigen Stellen zu einer Inhibition von SGLT1 führte, während der Nukleosidtransporter CNT1 durch die dephosphorylierte Mutante herunterreguliert wurden. Neben der phosphorylierungsabhängigen Regulation konnte für SGLT1 auch gezeigt werden, dass die Herunterregulation nur unter Niedrigzucker-Bedingungen erfolgte, nicht jedoch bei hohen Glukosekonzentrationen. Für die CNTs war eine derartige Zuckerabhängigkeit nicht zu beobachten. Im Rahmen der vorliegenden Studie wurde untersucht, ob die Ergebnisse aus den Oozytenmessungen auch in vivo in einem Säugetier gezeigt werden können. Hierzu wurden Mutanten der regulatorischen Domäne (RS1-Reg) des Maus-Proteins, welche den phosphorylierten Zustand simulierten (RS1-Reg (S19E)), oder die Phosphorylierung verhinderten (RS1-Reg (S19A)) eingesetzt. Diese wurden an ein Nanohydrogel gekoppelt, um eine Aufnahme in die Enterozyten im Darm zu gewährleisten. Es wurde in der RS1KO-Mausohne funktionelles RS1 gezeigt, dass auch im in vivo-System eine Herunterregulation von SGLT1 durch mRS1-Reg (S19E), nicht jedoch durch mRS1-Reg (S19A) erfolgte, während die CNTs nur durch mRS1-Reg (S19A) inhibiert wurden. Des Weiteren führte mRS1-Reg (S19A) in der Wildtypmaus bei niedrigen Zuckerkonzentrationen zu einer Stimulation von SGLT1, was für eine Kompetition mit dem endogenen RS1-Proteins spricht. Es konnte indirekt der Beweis erbracht werden, dass über Nanohydrogele längere Proteine in die Zelle gebracht werden können und dort funktionell freigesetzt werden. N2 - The Sodium-D-glucose cotransporter 1 (SGLT1) is important for the uptake of glucose from the intestinal lumen into the enterocytes. In experiments with Xenopus-laevis oocytes, which were performed in our laboratory, we identified protein RS1 as a regulatory protein for SGLT1. A sequence of 80 aminoacids was identified to be the regulatory domain of RS1 (RS1-Reg) and prevents the constriction of transporter-containing vesicles from the transgolgi-network (TGN). Besides SGLT1, RS1 is able to regulate concentrative nucleoside transporters (CNTs) and the organic cation transporter 2 (OCT2). The regulation of the transporters depends on the phosphorylation-state of RS1-Reg. While SGLT1 is inhibited by the phosphorylated form of the regulatory domain, CNTs are regulated by the dephosphorylated form. In addition, the regulation of SGLT1 depends on the glucose concentration of the cells. RS1 only inhibits SGLT1 under low glucose conditions, while the regulation of CNTs is independent of glucose. In the following study we analyzed whether the results of the oocyte measurements could be reproduced in vivo. For this, we used mutants of the mouse regulatory domain (mRS1-Reg). In one mutant, the phosphorylation was mimicked (mRS1-Reg (S19E)), in a second mutant, phosphorylation was prevented (mRS1-Reg (S19A)). The mutants were coupled to nanohydrogels, to enable the uptake into enterocytes. By usage of a mouse-strain without functional RS1 and a wildtype-mouse-strain, I was able to discriminate between direct effects of the mutant and competition of mutants with endogenous RS1. Only mRS1-Reg (S19E) down regulates SGLT1, but not mRS1-Reg (S19A), while CNTs were downregulated by mRS1-Reg (S19A) but not by mRS1-Reg (S19E). In the wildtype-mouse mRS1-Reg (S19A) leads to an increase of SGLT1-activity which could be due to a competition with the endogenous RS1. The fact, that some peptides were able to regulate transporters leads to the conclusion, that longer proteins can be transported into cells by nanohydrogels and that these proteins are released in the cells in a functional active state. KW - Glucosetransport KW - SGLT1 KW - RS1 KW - Regulation KW - Glatter Krallenfrosch KW - Oozyte KW - Glucosetransportproteine KW - Darm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127394 ER - TY - THES A1 - Kühlkamp, Thomas T1 - Der plasmamembran assoziierte Transportregulator RS1 bindet Ubiquitin und gelangt in den Zellkern T1 - The plasma membrane associated transport modifier RS1binds ubiquitin und migrates into the nucleus N2 - Die vorliegende Arbeit liefert wichtige Erkenntnisse über die subzelluläre Verteilung und die Funktion des RS1-Proteins vom Schwein (pRS1), einem Regulator von Plasmamembran-transportern. Das grün fluoreszierende Protein (GFP) wurde mit pRS1 fusioniert und in LLC-PK1 Zellen exprimiert. Das GFP-pRS1 Fusionsprodukt (96 kD) konnte an der Plasmamembran, im Zytosol und im Zellkern entdeckt werden. Bei GFP-Fusion mit trunkierten pRS1-Proteinen zeigte sich, dass der C-Terminus die Kernlokalisierung beeinflusst. Dagegen wurde die Kernlokalisierung durch eine Trunkierung des N-Terminus nicht gestört. Im C-Terminus des pRS1 konnte von AS 579 bis 616 eine Ubiquitin associated domain (UBA) identifiziert werden, die auch in den anderen bisher bekannten RS1-Proteinen aus Mensch, Kaninchen und Maus konserviert vorliegt. Eine Ubiquitin-Affinitätschromatographie zeigte, dass das pRS1-Protein Ubiquitin auf nicht kovalente Weise bindet. Nach der Trunkierung der UBA-Domäne war keine Wechselwirkung des pRS1-Proteins mit Ubiquitin mehr feststellbar. Ein konserviertes Di-Leucin-Endozytose-Motiv (pRS1 AS 366/67) deutet eine Funktion des pRS1-Proteins bei der Internalisierung von Plasmamembranproteinen an. Deshalb wurde das Endozytoseverhalten von pRS1 überexprimierenden LLC-PK1 Zellen untersucht, wobei sich zeigte, dass diese Zellen eine deutlich höhere Aufnahme des Endozytosefarbstoffes RH 414 aufwiesen als Zellen, die pRS1 nicht überexprimierten. Die in dieser Arbeit gesammelten Daten zum RS1-Protein wurden zusammen mit früher erhobenen Ergebnissen zum RS1-Protein im Rahmen eines Modells zusammengefasst. In diesem hypothetischen Modell wird angenommen, dass RS1 ein Adapterprotein ist, welches die ubiquitinabhängige Endozytose von Plasmamembrantransportern vermittelt und als Signalmolekül in den Zellkern gelangen kann, wo es an der Transcriptionsrepression des SGLT1 beteiligt ist. N2 - This work discribes investigations about the subcellular distribution and function of the plasma membrane-associated protein RS1, an regulator of plasma membrane transporters like the Na+-D-glucose cotransporter SGLT1 or the organic cation transporter OCT2 (Vehyl et al., 1993; Reinhardt et al., 1999; Valentin et al., 2000). The green fluorescent protein (GFP) was fused to RS1 from pig (pRS1) and expressed in LLC-PK1 cells. The GFP-pRS1 protein could be detected at the plasma membrane, in the cytoplasma and in the nucleus. Expression of various truncated forms of GFP-pRS1 showed that the N-terminal half of pRS1 (amino acids 1-328) is not necessary for the migration of pRS1 into the nucleus. In contrast, truncations of the C-terminus inhibited translocation into the nucleus. The C-terminus of pRS1 contains a conserved ubiquitin associated domain (UBA) at amino acids 579 to 616. Affinity chromatography with ubiquitin-conjungated Sepharose beads showed a noncovalent binding of pRS1 to immobilized ubiquitin, which was abolished in the presence of an excess of free ubiquitin. Further analysis schowed that the C-terminal 111 amino acids were indispensable for ubiquitin binding. A conserved di-leucine signal (pRS1 336/337) is a well known endocytosis motif and points to an involvement of pRS1 in the internalisation of plasma membrane proteins. This hypothesis was supported by the finding of an increased uptake of the intercalating membrane dye RH 414 in a pRS1-overexpressing LLC-PK1 cell line. Based on this findings together with previous data, a model for the physiological role of RS1 was proposed. In this model, RS1 serves as an adaptor which links ubiquitinated plasma membrane transporters such as SGLT1 to the endocytosis machinery. Moreover RS1 migrates into the nucleus and is involved in the transcriptional suppression of SGLT1. KW - Ubiquitin KW - Carrier-Proteine KW - Plasmamembran KW - Zellkern KW - RS1 KW - SGLT1 KW - UBA KW - Ubiquitin KW - Plasmamembrane KW - Zellkern KW - Endocytose KW - RS1 KW - SGLT1 KW - UBA KW - ubiquitin KW - plasma membrane KW - nucleus KW - endocytosis Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1179507 ER - TY - THES A1 - Oßwald, Christina T1 - Fettsucht mit erhöhter D-Glukose-Absorption im Dünndarm durch Inaktivierung des Regulatorproteins RS1 bei Mäusen T1 - Mice without the regulatory protein RS1 exhibit increased D-glucose reabsorption in small intestine and develop obesity N2 - RS1 ist ein 67-68 kD großes, ubiquitär exprimiertes Protein, das sich an der Innenseite der Plasmamembran befindet und in den Zellkern wandern kann. Durch immunhistochemischen Untersuchungen an Dünndarmschnitten der Maus konnte RS1 das erste Mal in dieser Arbeit im Kern und an der Membran von Enterozyten gezeigt werden. RS1 wird von einem intronlosen Single Copy Gen kodiert und ist fähig Ubiquitin über eine Ubiquitin-assoziierte (UBA) Domäne zu binden. Es reduziert die Konzentration einiger Proteine in der Plasmamembran. Durch Expressionsversuche in Xenopus Oozyten wurde gezeigt, dass RS1 die Menge des Na+-D-Glukosekotransporters SGLT1 in der Plasmamembran transkriptionsunabhängig reduziert. Entsprechend seiner dualen Lokalisation beteiligt sich RS1 aber auch an der Transkriptionsregulation im Zellkern. In der vorliegenden Arbeit konnten Informationen über die physiologische Funktion des membranassoziierten Regulatorproteins RS1 gewonnen werden. Nach Erstellung einer RS1-knock-out Maus wurde sichergestellt, dass ein erfolgreiches Rekombinationsereignis stattgefunden hatte und RS1 tatsächlich nicht mehr exprimiert wurde. Die RS1-knock-out Mäuse waren postnatal lebensfähig, vermehrten sich gut und entwickelten eine Fettsucht mit 30 % mehr Körpergewicht, 80 % mehr Fett und um 40 % vergrößerten Fettzellen. Bei den transgenen Mäusen war weder die Nahrungsaufnahme gesteigert, noch die motorische Aktivität verringert. In der Bürstensaummembran des Dünndarmepithels konnte bei den RS1-knock-out Mäusen die siebenfache Menge an Protein des Na+-abhängigen D-Glukosekotransporters SGLT1 detektiert werden, während die Konzentration des passiven Glukosetransporters GLUT2 in der basolateralen Membran nicht verändert war. Die Zunahme der SGLT1-Proteinmenge war posttranskriptional bedingt. Bei der RS1-knock-out Maus wirkt sich der in Oozyten beobachtete Effekt an der Plasmamembran aus, während der an konfluenten LLCPK1 Zellen gezeigte Effekt im Zellkern nicht zum Tragen kommt. Die transgenen Tiere resorbierten die doppelte Menge an D-Glukose im Dünndarm. Das spricht dafür, dass bei der RS1-knock-out Maus der „turnover“ des SGLT1 beeinflusst sein muss, da die siebenfache SGLT1-Proteinmenge einem verdoppelten Transport über den SGLT1 gegenübersteht. Die RS1-knock-out Mäuse zeigten normale Insulinspiegel und reguläre oralen Glukosebelastungstests. Bei gefütterten Mäusen waren die Serumleptinspiegel ähnlich wie bei Wildtypmäusen, die typische Reduzierung des Serumleptinspiegel konnte bei den Mäusen ohne RS1 aber nicht beobachtet werden. Untersuchungen an Fettzellexplantaten ergaben, dass die Sekretion von Leptin bei RS1- knock-out-Explantaten erhöht war, während die Leptinsynthese und die insulinabhängige Regulation der Leptinsekretion nicht verändert waren. Mit der RS1-knock-out Maus wurde ein neues Fettsuchtmodell geschaffen. RS1 spielt eine physiologisch wichtige Rolle bei der Regulation der D-Glukoseaufnahme im Darm. Der visceralen Adipositas liegt wahrscheinlich eine gesteigerte Nahrungsutilisation durch die verbesserte Glukoseaufnahme über den SGLT1 im Darm zugrunde. Die gesteigerte Glukoseabsorption ist ursächlich für den Anstieg der Fettmasse. Die Fettzellen vergrößern sich und sezernieren dann mehr Leptin. Es ist davon auszugehen, dass die RS1-knock-out Mäuse eine veränderte Nahrungsutilisation aufgrund der verbesserten Glukoseaufnahme im Dünndarm aufweisen. Die Adipositas demzufolge ein sekundärer Effekt. Gleichzeitig kann aber nicht ausgeschlossen werden, dass RS1 direkt auf die Zellen des weißen Fettgewebes wirkt und bei Wildtypmäusen die Sekretion des Leptins aus Vesikeln hemmt. N2 - RS1 is a 67-68-kDa ubiquitously expressed protein, which is localized below the plasma membrane and within the nucleus. In this work, by immunohistochemistry on small intestine of wildtype mice, RS1 protein could be located to nucleus and plasma membrane of enterocytes the first time. An intronless single copy gene encodes RS1. RS1 is able to bind ubiquitin with an ubiquitin associated (UBA) domain, reduces concentration of some proteins in the plasma membrane. Coexpression experiments with RS1 and SGLT1 demonstrated that RS1 decreased the plasma membrane concentration of SGLT1 in Xenopus laevis oocytes. These effects were independent of transcription. In addition, consistent with the dual localization of RS1, transcriptional regulation has been observed in the nucleus. This work tries to elucidate the biological role of the plasma membrane–associated regulatory protein RS1. We generated RS1 knock-out mice and exploited them for experimental approaches. After generating RS1-knock-out mice, we verified correct homologous recombination and lack of expression of RS1 gene product. RS1-knock-out mice are viable, breed well, and are obese. Their body weight is increased by 30 %, body fat by 70 %, and mean fat cell volume by 40 % compared with wildtype animals. However, neither food intake was increased nor the motor activity was reduced in RS1-knock-out mice. In brush-border membranes of small intestine, the amount of protein of the Na+-dependent D-glucose transporter SGLT1 was increased sevenfold whereas protein expression of the glucose transporter GLUT2 did not differ. The increased amount of SGLT1 protein was not associated with higher expression of mRNA levels, indicating that regulation occurs on posttranscriptional level. At variance with the transcriptional upregulation of SGLT1 observed in confluent LLC-PK1 cells with reduced RS1 expression, the small intestinal upregulation of SGLT1 in RS1-knock-out mice is an effect at the plasma membrane, observed after expression in oocytes. The capacity of small intestinal D-glucose uptake in RS1-knock-out mice was 2fold increased compared to wildtype. This was due to a 7fold posttranscriptional upregulation of SGLT1 protein. The data suggest that the turnover of SGLT1 is changed. Plasma insulin levels were normal in RS1-knock-out mice. Plasma levels of glucose responded adequately upon oral glucose loading. In fed mice lacking RS1, serum leptin was similar as in wildtype, however, the typical starvation-induced reduction of serum leptin was not observed. In fat tissue explants of RS1-knock-out mice, leptin secretion was increased whereas expression of leptin as well as insulindependent regulation of leptin secretion were not changed. The RS1-knock-out mouse represents a novel model of obesity. RS1 plays a physiologically important role of regulation of D-glucose absorption in small intestine. Enhanced food utilization as a consequence of increased glucose absorption in the small intestine accounts for visceral type of adipositas of RS1-knock-out mice, probably. The increased glucose absorption leads to the rise in fat mass. The fat cells become larger and secret more leptin. KW - Fettsucht KW - Glucose KW - Darmresorption KW - Molekulargenetik KW - Zuckeraufnahme KW - Na+-DGlucosekotransporter KW - SGLT1 KW - Adipositas KW - Regulatorprotein KW - sugar uptake KW - SGLT1 KW - obesity KW - regulatory protein KW - Na+-glucosecotransporter Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8000 ER -