TY - THES A1 - Klöckner, Jessica Vanessa T1 - Design Subtyp-selektiver Agonisten und Antagonisten muskarinischer Rezeptoren T1 - Design of subtype selective agonists and antagonists of muscarinic receptors N2 - Die Subtypselektivität von Liganden für einzelne Rezeptoren, deren Aktivierung und die anschließende Signalweiterleitung sind bis heute weitestgehend ungeklärt. Die hier synthetisierten Liganden-Gruppen sollen helfen, die verschiedenen Prozesse am muskarinischen Rezeptor und seinen Subtypen zu verstehen. Die Einzelprojekte werden im Folgenden vorgestellt. 1) Um mittels FRET-Mikroskopie den Einfluss von allosteren Modulatoren, die sich von W84 bzw. Naphmethonium ableiten, in Bezug auf die Konformationsänderung aktivierter Rezeptoren untersuchen zu können, wurden die bekannten allosteren Bausteine sowie eine Reihe neuer Derivate synthetisiert. Alle untersuchten Substanzen zeigten einen hemmenden Effekt auf die mit dem Agonisten Iper-oxo vorstimulierten Rezeptoren. Das heißt, die Verbindungen ließen sich als negative allostere Modulatoren charakterisieren. 2) Da Iperoxo aufgrund seiner großen agonistischen Aktivität ein interessantes Werkzeug für die Grundlagenforschung darstellt, war es von großer Bedeutung, eine schnelle und reproduzierbare Synthese zu gewährleisten. Ausgehend von Propargylalkohol wurde in einer Mannich-Reaktion 4-Dimethylamino-but-2-en-1-ol gebildet, was mit dem zuvor hergestellten 3-Nitro-Δ2-isoxazolin zur Iperoxo-Base umgesetzt wurde. Neben einer deutlichen Ausbeutesteigerung ist nun die Reproduzierbarkeit im Gegensatz zu der von Dallanoce et al. publizierten Synthese gewährleistet. 3) Um den Einfluss der Kettenlänge der Hybride Iper-6-Phth und Iper-6-Naph auf die agonistische Aktivität und Subtypselektivität der Substanzen untersuchen zu können, wurde versucht, Hybride verschiedener Kettenlängen herzustellen. Dabei konnte Iper-4-Phth erhalten werden. 4) Weiterhin sollte der Einfluss der Alkylkette am Stickstoff-Atom auf die Wirksamkeit in Bezug auf Affinität und Zellantwort des Iperoxo-Moleküls ohne allosteren Modulator analysiert werden. Hierzu wurden die N-alkylierten Iperoxo-Derivate mit den Kettenlängen C2 bis C10 synthetisiert.. Mithilfe von Radioligand-Bindungsstudien und der dynamischen Massenumverteilung sollte die konformative Änderung des Rezeptors durch Aktivierung und die Signalweiterleitung untersucht werden. Durch Verlängerung der N-Alkylkette zeigte sich ein Wirksamkeitsverlust, d. h. die Dosis-Wirkungs-Kurven der prozentualen Zellantwort wurden im Vergleich zu denen des Iperoxos nach rechts verschoben. In Untersuchungen an der Rezeptor-Mutante CHO-hM2-Y1043.33A zeigte sich zudem, dass für den maximalen Effekt eine deutlich höhere Konzentration der Iperoxo-Derivate benötigt wird, wobei dieser Wirksamkeitsverlust im Vergleich zum Rezeptor-Wildtyp für Iperoxo selbst am stärksten ausgeprägt ist. Allerdings weisen Iperoxo und seine N-alkylierten Derivate an dieser Mutante eine höhere intrinsische Aktivität auf als die Kontrollverbindungen Oxotremorin M, C1-IP-C1 und Acetylcholin. Weiterhin konnte gezeigt werden, dass Iperoxo ebenso wie Oxotremorin, Acetylcholin, aber auch die kurzkettigen Iperoxo-Derivate neben dem Gi-Signalweg auch den Gs-Weg aktivieren können, wohingegen die langkettigen Derivate eine Gi-Signalwegs-Selektivität aufweisen. 5) In Analogie zu den N-alkylierten-Iperoxo-Derivaten sollten Untersuchungen mit den Antagonisten N-Alkyl-Atropin und -Scopolamin durchgeführt werden. In beiden Fällen zeigte das N-Methyl-Derivat eine höhere Affinität zum Rezeptor als der jeweilige Antagonist selbst, was auf die durch Alkylierung generierte positive Ladung zurückzuführen ist. Durch Verlängerung der Alkylketten ist jeweils eine Abnahme der Affinität zu beobachten. Die Affinität findet ebenfalls in beiden Fällen mit dem Butyl-Derivat ihr Minimum. Der anfängliche Affinitätsverlust lässt sich durch die zunehmende sterische Hinderung des Moleküls erklären, der spätere Anstieg bei einer Alkylkette länger als C4 deutet auf eine Wechselwirkung dieser langen Alkylkette mit einer weiteren (allosteren) Bindungsstelle hin. 6) Ausgehend von Iperoxo sollten dualstere Liganden entwickelt werden, die durch geeignete allostere Modulatoren selektiv nur einen Rezeptor-Subtyp adressieren und diesen durch Iperoxo aktivieren sollten. Als allostere Bausteine sollten die M4-selektiven Thienopyridine und die M1-selektiven Chinolone verwendet werden. 7) Zur Fluoreszenzmarkierung sollte Iperoxo-Base zudem mit dem Farbstoff Py-1 umgesetzt werden. N2 - The subtype-selectivity of ligands for receptors and the corresponding subtypes, their activation and the subsequent signalling is still largely unknown. The synthesized groups of ligands, described here were designed to understand the various processes at the muscarinic receptor subtypes. The single projects will be discussed below. 1) In order to examine the influence of allosteric modulators derived from W84 and Naphmethonium on the conformation of an activated receptor by means of FRET-microscopy, the allosteric building blocks were synthesized. All substances showed an inhibitory effect on the receptors pre-treated with the agonist iperoxo. That is to say that they behave as negative allosteric modulators. 2) Due to its high potency iperoxo is an important tool for basic research. In the past the availability of this compound was limited because of the elaborate chromatography and low reproducibility of the existing synthesis developed by Dallanoce et al.109 Thus a new synthesis pathway was established. By means of a Mannich reaction and using 2-propyn-1-ol alcohol as a starting material the amino-butinol was obtained. Product was converted to iperoxo-base by the reaction with 3-nitro-Δ2-isoxazolin. Besides reducing the reaction time and increasing the overall yield - compared to the known synthesis of Dallanoce et al. - the reproducibility was now ensured. 3) To investigate the influence of the chain-length in the hybrid compounds iper-6-phth and iper-6-naph on the agonistic activity and the subtype-selectivity, efforts were made to develop derivatives with different N-alkyl-chains. The synthesis of iper-4-phth was successful. 4) Furthermore the influence of the N-alkyl-chain-length on the potency of iperoxo having no allosteric building block was to be examined. Therefore the iperoxo-base was N-alkylated with different bromoalkanes (ethyl-decyl). It was aimed to study the change of the conformation on receptor activation and signalling by means of radioligand binding studies und dynamic mass redistribution. The elongation of the N-alkyl-chain length resulted in a loss of potency compared to iperoxo. All iperoxo derivatives lose potency at the CHO-hM2-Y1043.33A-receptor-mutant compared to the receptor wildtype, which was especially pronounced with iperoxo itself. However, for this receptor-mutant iperoxo and its N-alkylated derivatives had a higher intrinsic activity than the control compounds oxotremorine-M, C1-IP-C1 and acetylcholine. Beyond this, it could be demonstrated that iperoxo, as well as oxotremorine M, acetylcholine and the short-chain derivatives have the ability to activate not only the Gi-, but also the GS-signal-pathway, whereas the long-chain derivatives show selectivity for the Gi-pathway. 5) In analogy to these agonistic derivatives the antagonists atropine and scopolamine were N-alkylated. In both cases radioligand binding studies revealed that the methyl derivatives had a higher affinity to the receptor than both antagonists themselves. This might be caused by the generated positively charged nitrogen atom. The extension of the chain length leads to a loss of affinity, which has a minimum at the butyl-derivatives in both antagonists. The initial loss of affinity is ascribed to the steric hindrance and the subsequent gain of affinity for derivatives with a longer chain length indicates an interaction of this alkyl-chain with a second (allosteric) binding-site. For the special arrangement in the binding pocket it is essential to know the exact configuration of the ligand. The synthesized N-alkylated antagonists were examined via NMR-spectroscopy. By using the NOE-effect, the position of the methyl-groups and the alkyl-chains, respectively, were revealed. Contrary to expectations all derivatives bear their methyl-group in axial position. 6) On the basis of iperoxo, dualsteric ligands should be developed which selectively address only one muscarinic subtype, using a suitable allosteric modulator and simultaneously activate the receptor via iperoxo. As allosteric building blocks the M4-selective thienopyridines and the M1-selective quinolones should be used. 7) Besides radioligand binding studies the introduction of fluorescence markers provides an alternative to investigate the affinity of GPCR ligands. For this reason iperoxo should be coupled with the fluorescence marker py-1. KW - Muscarinrezeptor KW - Selektivität KW - Agonist KW - Antagonist KW - Muskarinrezeptor KW - Agonist KW - Antagonist KW - Subtypselektivität KW - muscarinic receptor KW - subtype selectivity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77403 ER - TY - THES A1 - Muth, Mathias T1 - Synthese und Charakterisierung allosterer Modulatoren muscarinischer M2-Rezeptoren : Strukturvariationen der Bis(ammonium)alkan-Verbindung W84 T1 - Synthesis and characterisation of allosteric modulators of the muscarinic M2-receptor - structural variations of the bis(ammonio)alkane-compound W84 N2 - Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung allosterer Modulatoren muscarinischer Rezeptoren. Allostere Modulatoren binden an einer topographisch anderen Stelle am Rezeptor als klassische orthostere Liganden und sind so in der Lage, die Dissoziation und die Assoziation orthosterer Agonisten und Antagonisten zu beeinflussen. Die fünf Subtypen des Muscarinrezeptors M1-M5 unterscheiden sich vor allem in der Aminosäuresequenz der in den äußeren Bereichen des Rezeptorproteins vorhandenen Loops, während sie im Bereich des Rezeptorkanals, wo die orthostere Bindungsstelle lokalisiert ist, eine hohe Sequenzhomologie aufweisen. Die gemeinsame Bindungsstelle allosterer Modulatoren des M2-Rezeptors befindet sich im weniger konservierten extrazellulären Bereich. Somit sind allostere Modulatoren in der Lage, spezifisch an einen der Rezeptorsubtypen zu binden. Als Leitstruktur zum Entwurf der im Rahmen dieser Arbeit synthetisierten Verbindungen diente die Bis(ammonium)alkanverbindung W84. Über Weg A wurden Phthalsäure- bzw. Naphthalsäureanhydridderivate in einer Kondensationsreaktion mit dem entsprechenden N,N-Dimethylpropan-1,3-diaminderivat zum jeweiligen Phthalimidopropylaminderivat umgesetzt. Durch die Reaktion von zwei Äquivalenten des Amins mit einem Äquivalent 1,6-Dibromhexan wurden dann die symmetrischen W84-Derivate erhalten. Um die unsymmetrischen W84-Derivate zu erhalten, musste zunächst das jeweilige Phthalimidopropylamin einseitig durch 1,6-Dibromhexan alkyliert werden. Im letzten Schritt wurden äquimolare Mengen der alkylierten Verbindung und eines Phthalimidopropylamins umgesetzt. Da sich im Laufe der Arbeit die Methylierung an Position 2 der Propylketten als kritische Position zur Beeinflussung der Gleichgewichtsbindung herausstellte, wurden Verbindungen hergestellt, die an den Propylketten Alkylgruppen verschiedener Länge tragen. Aus diesem Grund wurde Syntheseweg B entwickelt. Zunächst wurden in mehreren Stufen, ausgehend von Malonsäurediethylester, einfach und zweifach mit Alkylgruppen substituierte 1,3-Dibrompropanderivate hergestellt. Diese wurden dann mit Kaliumphthalimid zu den jeweiligen 3-Brompropylphthalimidderivaten umgesetzt. Zwei Äquivalente dieser 3-Brompropylphthalimide reagierten mit einem Äquivalent N,N,N’,N’-Tetramethyl-1,6-hexandiamin zu den entsprechenden symmetrischen W84-Derivaten. Ein weiteres Ziel der Arbeit bestand darin, stark fluoreszierende W84-Derivate herzustellen. Die fluoreszierenden Eigenschaften N-substituierter Naphthalimide könnten zur direkten Charakterisierung allosterer Interaktionen oder zur Verfolgung des „Rezeptor-Traffickings“ mittels Fluoreszenzkorrelationsspektroskopie genutzt werden. Deshalb wurden in Position 3 und 4 des Naphthalimidringes des potentesten allosteren Modulators Aminogruppen eingeführt. Hexamethonio-Derivate beeinflussen in nennenswertem Maße bisher nur die Bindung von Antagonisten am M2-Rezeptor. Da die allostere und die orthostere Bindungsstelle räumlich nahe zusammenliegen, wurde der Versuch unternommen, einen orthosteren Agonisten und einen allosteren Modulator in einem Molekül miteinander zu verknüpfen. Es wurden zwölf Hybridmoleküle aus einem Teil des hochaffinen allosteren Modulators 3a und Derivaten des Muscarinagonisten Oxotremorin-M, verbunden durch aliphatische Spacer verschiedener Länge, hergestellt. In pharmakologischen Testungen soll aufgeklärt werden, ob es möglich ist, mit einem Agonist/Alloster-Hybridmolekül gleichzeitig die orthostere und die allostere Bindungsstelle zu besetzen. Die pharmakologische Testung der synthetisierten Verbindungen erfolgte durch Radioligandbindungsstudien. Der allostere Effekt der Testsubstanzen wurde indirekt über die Verzögerung der Dissoziation des radioaktiv markierten orthosteren Antagonisten [3H]N-Methylscopolamin bestimmt. Alle bisquartären Testverbindungen weisen deutlich höhere Affinitätswerte als die Leitstruktur W84 auf. Die 1,8-Naphthalimid-substituierten Verbindungen mit gleichzeitiger zweifacher Methylierung erwiesen sich als hochaffin und zugleich positiv kooperativ. Die wirksamste Verbindung dieser Serie ist Verbindung 3a (Naphmethonium), deren Affinität zum NMS-besetzten Rezeptor im einstelligen nanomolaren Bereich liegt (pEC50 = 8.36). Somit stellt Naphmethonium den potentesten in der Literatur bekannten allosteren Modulator des M2 Rezeptors dar. Mittels QSAR-Analysen wurden die ermittelten Affinitäten zum freien und zum NMS-besetzten Rezeptor in Zusammenhang mit verschiedenen physikochemischen Parametern gebracht. Die Affinität zum NMS-besetzten Rezeptor der Verbindungen der Serie 2 lässt sich mit hoher Güte durch das Volumen eines lateralen N-Methylimids in Kombination mit der benachbarten Dimethylierung der Propylkette beschreiben. Somit wird deutlich, dass zur Erzielung von positiver Kooperativität die Kombination aus einem hochaffinen aromatischen Imid in direkter Nachbarschaft zu einer 2,2-Alkylpropylkette essentiell ist. N2 - The present work deals with the synthesis and characterization of allosteric modulators of muscarinic receptors. Allosteric modulators bind to a topographically different site than classical orthosteric ligands and, thus, are capable of influencing both the dissociation and the association of orthosteric agonists and antagonists. Allosteric modulators are capable of binding selectively to specific subtypes. The bis(ammonio)alkane-type compound W84 served as a lead for the compounds synthesized in this work. Via pathway A, phthalic- and naphthalic anhydride derivatives were converted with N,N-dimethylpropane-1,3-diamines to the phthalimidopropylamine derivatives. The symmetrical W84-derivatives were obtained by the conversion of two equivalents of the amine with one equivalent 1,6 dibromohexane. To obtain the non-symmetrical W84-derivatives the phthalimidopropylamines were unilaterally alkylated by 1,6-dibromohexane. In the last step equimolar amounts of the monoalkylated compound and a phthalimidopropylamine were connected. During our studies the methylation of position 2 of the propylene chains was identified as critical position for the influence on equilibrium binding. Therefore, compounds with varying alkyl substituents were synthesized. First, starting from malonic diethyl ester, 1,3-dibromo-propane derivatives carrying one or two ethyl-, propyl- or iso-butyl groups, respectively, were synthesized first. The latter were converted to the corresponding 3-bromopropylphthalimid derivatives with potassium phthalimide. In the last step two equivalents of the bromopropyl-phthalimides reacted with one equivalent tetramethyl-1,6-hexane-diamine to the symmetrical hexamethonio-derivatives. A further aim of the work was to synthesize highly fluorescent W84-derivatives. The fluorescent properties of N-substituted naphthalimides could be utilized for the direct characterization of allosteric interactions. Therefore, amino groups were introduced in positions 3 and 4 of the naphthalimide moiety. Until now, only the binding of antagonists of the M2 receptor was influenced by hexamethonio derivatives. Because of the spatial proximity of the orthosteric to the allosteric binding site it was tried to combine an agonist and an allosteric modulator in one molecule. Twelve hybride molecules consisting of a part of a highly affin allosteric modulator and of derivatives of the muscarinic agonist oxotremorine-M were synthesized. In the pharmacological evaluation it will be elucidated if it is possible for an agonist/alloster-hybride molecule to bind simultaneously to the orthosteric and the allosteric site. The pharmacological testing of the compounds was accomplished by radioligand binding studies . The allosteric effect of the compounds was determined by measurement of the inhibition of the dissociation of the radioactive marked orthosteric antagonist [3H]N-methylscopolamine. All compounds revealed higher affinitiy values than the lead structure W84. The most potent compound of that series is compound 3a (naphmethonium) that reveals an affinity to the NMS-occupied receptor in the low nanomolar range (pEC50 = 8.36). Taking all results together, the highest affinity values in combination with positive cooperativity were obtained for W84-derivatives carrying at least one naphthalimide moiety directly connected to a 2,2-dimethylpropyl chain. By the introduction of different alkyl groups in the propylene chains it was possible to verify the critical position with respect to the cooperative behaviour of W84-derivatives. QSAR-studies were performed in order to check whether the pharmacologically determined affinities to the free and to the NMS-occupied receptor can be explained by physicochemical properties of the compounds. The affinity to the NMS-occupied receptor of the compounds of series 2 can be described using the volume of one lateral N-methylimide in combination with the dimethylation of the neighbored propylene chain. Summarizing these results it can be concluded that the compounds feature a dominant side with regard to allosteric potency. To achieve positive cooperativity the combination of an affinity generating lateral aromatic imide moiety connected to a 2,2-alkylated propylene chain is essential. KW - Muscarinrezeptor KW - allosterischer Effektor KW - W84 KW - Analoga KW - Chemische Synthese KW - GPCR KW - allostere Modulation KW - Muscarinrezeptor KW - GPCR KW - allosteric modulation KW - muscarinic receptor Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8839 ER -