TY - THES A1 - Miller, Kirill T1 - Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) für Anwendungen in nicht von-Neumann-Rechnerarchitekturen T1 - Investigation of nanostructures based on LaAlO\(_3\)/SrTiO\(_3\) for applications in non von Neumann architectures N2 - Die Dissertation beschäftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfläche beider Übergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine Fülle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfläche prozessiert wurde und eine bemerkenswerte Trialität aufweist. Dieses Bauelement kann unter anderem als ein herkömmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zusätzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall hängt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts lässt sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen verändern. Darüber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine ergänzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsströmen innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt. N2 - The dissertation focuses on the analysis of oxide nanostructures. The basis of the devices consists of the LaAlO3/SrTiO3 heterostructure. A quasi two-dimensional electron gas is formed at the interface of the two transition metal oxides, which in turn exhibits a plethora of remarkable properties and characteristics. Two different components were realized using lithographic processes. The first is a planar nanowire with lateral gates, which was processed on the sample surface and exhibits remarkable triality. Among other things, this device can act as a conventional field-effect transistor, whereby the charge transport is manipulated by the laterally applied voltage. In addition, storage properties could also be observed, so that the entire component can function as a so-called memristor. In this case, the charge transport depends on the accumulation of electrons on the floating gates. The memristance of the nanowire can be altered using light power in the nanowatt range and with the aid of short voltage pulses. In addition, electron accumulation can also be observed in the form of a memcapacitive characteristic. In addition to the nanowire, a cross structure containing a complementary ferromagnetic electrode was also realized. This novel device is used to investigate the conversion between spin and charge currents within the nanoscale structure. Here, the strong spin-orbit coupling in the quasi two-dimensional electron gas is utilized. KW - Memristor KW - Heterostruktur-Bauelement KW - Spin-Bahn-Wechselwirkung KW - Grenzfläche KW - Übergangsmetalloxide KW - LaAlO\(_3\)/SrTiO\(_3\) KW - Transportspektroskopie KW - Spin-Ladungs-Umwandlung KW - Memkondensator KW - Nanoelektronik Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354724 ER - TY - THES A1 - Rückert, Martin Andreas T1 - Rotationsdriftspektroskopie T1 - Rotational Drift Spectroscopy N2 - Die wachsende Verfügbarkeit von magnetischen Nanopartikeln (MNPs) mit funktionalisierten Partikeloberflächen eröffnet weitreichende Möglichkeiten für chemische, biologische und klinische Analysemethoden. Durch Funktionalisierung kann eine gezielte Interaktion mit Molekülen bewirkt werden, die im Allgemeinen auch die Beweglichkeit der MNPs verändern. Methoden zur Charakterisierung von MNPs wie bspw. AC-Suszeptometrie, Magnetorelaxometrie (MRX) oder Magnetic Particle Spectroscopy (MPS) können diese Änderung der Beweglichkeit bei MNPs messen, wenn es sich um MNPs handelt, deren magnetisches Moment im Partikel fixiert ist. Damit ist mit funktionalisierten MNPs indirekt auch die spezifische Messung von Molekülkonzentrationen möglich. MNPs können zudem in biokompatibler Form hergestellt werden und sind dadurch auch als in-vivo Marker einsetzbar. Das 2005 das erste Mal veröffentlichte Magnetic Particle Imaging (MPI) kann als ein mittels Gradientenfeldern um die räumliche Kodierung erweitertes MPS betrachtet werden. Dank biokompatibler MNPs handelt es sich dabei um eine in-vivo-taugliche, nicht-invasive Bildgebungsmethode. Mit funktionalisierten MNPs als Marker ist damit im Prinzip auch molekulare Bildgebung möglich, die durch Detektion der beteiligten Moleküle (Biomarker) Stoffwechselprozesse räumlich abbilden kann. Im Vergleich zur Bildgebung von Gewebe- und Knochenstrukturen lassen sich die diagnostischen Möglichkeiten durch molekulare Bildgebung erheblich erweitern. Rotationsdriftspektroskopie (Rotational Drift Spectroscopy, RDS) ist eine in dieser Arbeit entwickelte Methode für die induktive Messung der Beweglichkeit von MNPs in flüssiger Suspension. Es verwendet die Rotationsdrift von MNPs in rotierenden magnetischen Feldern als Grundlage und bietet das Potential die Änderungen der Beweglichkeit von MNPs mit einer Empfindlichkeit messen zu können, welche potentiell um mehrere Größenordnungen höher sein kann als mit den oben erwähnten Verfahren. Die vorliegende Arbeit konzentriert sich auf die Verwendbarkeit dieses Effekts als Spektroskopiemethode. Die Eigenschaften des RDS-Signals sind jedoch auch als Grundlage für räumliche Kodierung vielversprechend. In weiterführenden Projekten soll daher auch die Entwicklung von Rotationsdriftbildgebung (Rotating Drift Imaging, RDI) als ein nicht-invasives Verfahren für molekulare Bildgebung angestrebt werden. Der Grundgedanke von RDS entlehnt sich aus einem in 2006 veröffentlichten Sensordesign basierend auf magnetische Mikropartikel in einem schwachen rotierenden Magnetfeld. Das rotierende Magnetfeld ist dabei so schwach gewählt, dass sich das Partikel aufgrund der viskosen Reibung nicht mehr synchron mit dem externen Feld drehen kann. Die Frequenz der resultierenden asynchronen Rotationsdrift liegt unterhalb der Frequenz des externen Rotationsfelds und ist Abhängig von der viskosen Reibung. Aufgrund dieser Abhängigkeit können Änderungen im Reibungskoeffizienten des Partikels über Änderungen in der Rotationsdriftfrequenz gemessen werden. RDS zielt darauf ab, diese Rotationsdrift bei suspendierten MNPs über deren makroskopische Magnetisierung messen zu können. Damit wird u.a. auch die nicht-invasive Messung von MNPs innerhalb opaker biologischer Proben möglich. MNP-Suspensionen sind großzahlige Nanopartikel-ensembles und können nicht wie ein einzelnes Mikropartikel gemessen werden. Für die induktive Messung ist vor dem Start eine Ausrichtung aller magnetischen Momente nötig, da sich deren makroskopische Magnetisierung andernfalls zu Null addiert. Aufgrund von Rotationsdiffusion bleibt diese Ausrichtung nur eine begrenzte Zeit bestehen, so dass auch die eigentliche Messung des RDS-Signals nur eine begrenzte Zeit möglich ist. Diese Ausrichtung wurde in den ersten Experimenten durch einen kurzen Magnetfeldpuls erzeugt. In der Empfangsspule ist die Induktion durch das Rotationsfeld typischer Weise um mehrere Größenordnungen höher als das zu erwartende Signal und muss durch einen Tiefpass unterdrückt werden. In diesem Tiefpassfilter ruft jedoch die Einkopplung des Anfangspulses eine Pulsantwort hervor, die ebenso mehrere Größenordnungen des zu erwartenden Signals betragen kann und ähnlich langsam wie typische Signale abklingt. Die Unterdrückung dieser Pulsantwort stellte in den ersten Experimenten die größte Hürde da. Der erste Aufbau hatte eine Relaisschaltung zur Pulsunterdrückung und resultierte in einer Totzeit von 3 ms zwischen Anfangspuls und Start der Messung. Aufgrund dieser Totzeit waren die ersten Messungen auf größere Agglomerate und Sedimente von MNPs beschränkt, da nur in diesem Fall eine hinreichend lange Zerfallsdauer der Probenmagnetisierung vorlag. Das Verhalten derartiger Partikelsysteme ist jedoch aufgrund von mechanischer und magnetischer Interpartikelwechselwirkung vergleichsweise komplex und theoretisch schwer modellierbar. Das primäre Zielsystem für RDS hingegen, Eindomänenpartikel mit im Partikel fixierter Magnetisierung und Punktsymmetrie bzgl. des Reibungstensors, erlaubt die Aufstellung einer parametrisierten Funktion für den Signalverlauf. Es ermöglicht somit aufgrund der besseren Berechenbarkeit eine solidere Auswertung des RDS-Signals. Um Eindomänenpartikel in wässriger Suspension mit typischen Partikeldurchmessern um 100 nm messen zu können ist eine Verkürzung der Totzeit auf mindestens 1/10 erforderlich. Prinzipiell kann diese Problematik durch die Verwendung schneller Halbleiterschalter in Verbindung mit einer präzise abstimmbaren induktiven Entkopplung des Spulensystems gemindert werden. Simulationen des RDS-Signals für verschiedene RDS-Sequenzen zeigen jedoch noch zwei weitere Möglichkeiten auf, die ohne aufwändigen Eingriffe in der Hardware auskommen. Zum einen kann durch orthogonales Frequenzmischen mit geeignetem Frequenz- und Phasenverhältnis eine Ausrichtung der magnetischen Momente bewirkt werden. Da die benötigten Frequenzen vollständig im Sperrband des Tiefpassfilters liegen können, lässt sich damit die Pulsantwort bei hinreichend „weichem“ Umschalten zwischen der Polarisierungssequenz und der RDS-Sequenz vollständig vermeiden. Darüber hinaus zeigt sich, dass es bei Anwesenheit eines schwachen Offsetfelds (< 10 % der Rotationsfeldamplitude) zu einer Ausrichtung der magnetischen Momente kommt, wenn das magnetische Rotationsfeld seine Richtung ändert und diese Änderung nicht abrupt erfolgt, sondern das Rotationsfeld übergangsweise in ein linear oszillierendes Feld übergeht. Hingegen wird die Wirkung des Offsetfelds durch das Rotationsfeld vor und nach dem Wechsel nahezu vollständig neutralisiert, so dass damit das Störsignale generierende Schalten eines Offsetfelds ersetzt werden kann. Es ist auf diese Weise nicht möglich, Echosequenzen zu erzeugen, da hier bei der für Echosequenzen benötigten Richtungsumkehr des Rotationsfelds die zuvor aufgeprägte Phasenverteilung durch das Offsetfeld zerstört wird und somit anstelle einer Signalechogenerierung eine neue RDS-Messung gestartet wird. Obwohl es Echosequenzen mit Anfangspuls erlauben, mehr MNP Parameter zu messen, bietet dieser Ansatz dennoch entscheidende Vorteile. So ergibt sich eine massive Vereinfachung der Hardware und es sind bei gleicher Rotationsfrequenz deutlich höhere Wiederholraten möglich. Die Vermeidung von Schaltvorgängen durch die Verwendung von Offsetfeldern ermöglicht es, mit dem ursprünglichem Aufbau auch Partikelsysteme zu untersuchen, deren Relaxationszeit weit unter 3 ms liegt. Hier zeigt sich, dass sich für unterschiedliche Partikelsysteme teils sehr charakteristische Signalmuster ergeben. Diese lassen sich grob in drei Kategorien einteilen. Die erste Kategorie sind suspendierte Eindomänenpartikel mit einer nicht vernachlässigbaren Relaxationszeit. Hier handelt es sich um das bevorzugte Zielsystem für RDS, das durch die Langevin-Gleichung beschrieben werden kann. Die zweite Kategorie sind Partikelsysteme, bei denen die Relaxationsdauer vernachlässigbar ist. In diesem Fall kann der Signalverlauf mit der Langevinfunktion beschrieben werden. Die dritte Kategorie umfasst alle übrigen Partikelsysteme, insbesondere Suspensionen von MNP-Clustern, die u.a. aufgrund von Interpartikelwechselwirkung komplexe Signalverläufe ergeben, die sich praktisch nicht berechnen lassen. Spektroskopische Untersuchungen sind damit dennoch durch das Anlegen entsprechender Referenzdatenbanken möglich (Fingerprinting). Multiparametrisches RDS, d.h. die Wiederholung der Messung für z.B. unterschiedliche Amplituden oder unterschiedliche Viskositäten des Suspensionsmediums, erzeugt aufgrund mehrerer nichtlinearer Abhängigkeiten massive Unterschiede im resultierenden multidimensionalen Datensatz. Das verspricht die Erreichbarkeit hoher spektroskopischer Trennschärfen bei geeigneter Partikel- und Sequenzoptimierung. Die Simulationen und experimentellen Ergebnisse dieser Arbeit zeigen grundsätzliche Hürden und Möglichkeiten für das ebenfalls in dieser Arbeit eingeführte RDS auf. Es zeigt damit grundlegende Aspekte auf, die für die Entwicklung von RDS-Hardware und die Optimierung von MNP-Suspensionen nötig sind. Mit RDS wird in weiterführenden Arbeiten die Entwicklung von hochempfindlichen Bioassays und die Erweiterung um die räumliche Kodierung angestrebt (RDI), da der zugrunde liegende Effekt zugleich sehr vielversprechend als Grundlage für molekulare Bildgebung ist. N2 - The growing availability of magnetic nanoparticles (MNPs) with functionalized particle surfaces opens up far-reaching possibilities for chemical, biological and clinical analytical methods. Functionalization can cause targeted interaction with molecules, which generally also change the mobility of MNPs. Methods for characterizing MNPs such as AC-susceptometry, magnetorelaxometry (MRX), or magnetic particle spectroscopy (MPS) can measure this change in mobility in MNPs if they are MNPs whose magnetic moment is fixed in the particle. Thus, functionalized MNPs can indirectly be used to specifically measure molecular concentrations. MNPs can also be produced in biocompatible form, making them useful as in vivo markers. Magnetic Particle Imaging (MPI), first published in 2005, can be viewed as an MPS extended by spatial coding using gradient fields. Thanks to biocompatible MNPs, it is an in vivo, non-invasive imaging method. With functionalized MNPs as markers, molecular imaging is thus in principle also possible, which can spatially map metabolic processes by detecting the molecules involved (biomarkers). Compared to imaging of tissue and bone structures, the diagnostic possibilities can be considerably extended by molecular imaging. Rotational drift spectroscopy (RDS) is a method developed in this work for inductively measuring the mobility of MNPs in liquid suspension. It uses the rotational drift of MNPs in rotating magnetic fields as a basis and offers the potential to measure the changes in the mobility of MNPs with a sensitivity that can potentially be several orders of magnitude higher than the methods mentioned above. The present work focuses on the applicability of this effect as a spectroscopy method. However, the properties of the RDS signal are also promising as a basis for spatial coding. Therefore, in further projects, the development of Rotating Drift Imaging (RDI) as a non-invasive method for molecular imaging will also be pursued. The basic idea of RDS is borrowed from a sensor design published in 2006 based on magnetic microparticles in a weak rotating magnetic field. The rotating magnetic field is chosen so weak that the particle cannot rotate synchronously with the external field due to viscous friction. The frequency of the resulting asynchronous rotational drift is below the frequency of the external rotating field and is dependent on the viscous friction. Due to this dependence, changes in the friction coefficient of the particle can be measured via changes in the rotational drift frequency. RDS aims to be able to measure this rotational drift in suspended MNPs via their macroscopic magnetization. Among other things, this will enable the non-invasive measurement of MNPs within opaque biological samples. MNP suspensions are large number nanoparticle ensembles and cannot be measured like a single microparticle. For inductive measurement, alignment of all magnetic moments is necessary before starting, otherwise their macroscopic magnetization adds up to zero. Due to rotational diffusion, this alignment remains only for a limited time, so that the actual measurement of the RDS signal is also possible only for a limited time. This alignment was created in the first experiments by a short magnetic field pulse. In the receiving coil, the induction due to the rotating field is typically several orders of magnitude higher than the expected signal and must be suppressed by a low-pass filter. In this low-pass filter, however, the injection of the initial pulse elicits a pulse response that can likewise be several orders of magnitude of the expected signal and decays similarly slowly to typical signals. Suppression of this pulse response was the major hurdle in the initial experiments. The initial setup had a relay circuit for pulse suppression and resulted in a dead time of 3 ms between the initial pulse and the start of the measurement. Due to this dead time, the first measurements were limited to larger agglomerates and sediments of MNPs, since only in this case there was a sufficiently long decay time of the sample magnetization. However, the behavior of such particle systems is comparatively complex and difficult to model theoretically due to mechanical and magnetic interparticle interactions. In contrast, the primary target system for RDS, single domain particles with magnetization fixed in the particle and point symmetry with respect to the friction tensor, allows the establishment of a parameterized function for the signal course. Thus, it allows a more solid evaluation of the RDS signal due to its better computability. In order to measure single domain particles in aqueous suspension with typical particle diameters around 100 nm, a reduction of the dead time to at least 1/10 is required. In principle, this problem can be mitigated by using fast semiconductor switches in conjunction with precisely tunable inductive decoupling of the coil system. Simulations of the RDS signal for various RDS sequences, however, reveal two other possibilities that do not require extensive intervention in the hardware. First, orthogonal frequency shuffling with suitable frequency and phase ratios can be used to cause alignment of the magnetic moments. Since the required frequencies can lie entirely within the stopband of the low-pass filter, this allows the pulse response to be completely avoided with sufficiently "soft" switching between the polarization sequence and the RDS sequence. Furthermore, it is shown that in the presence of a weak offset field (< 10 % of the rotating field amplitude), there is an alignment of the magnetic moments when the rotating magnetic field changes direction and this change does not occur abruptly, but the rotating field transitions to a linear oscillating field. On the other hand, the effect of the offset field is almost completely neutralized by the rotating field before and after the change, so that the switching of an offset field, which generates interference signals, can thus be replaced. It is not possible to generate echo sequences in this way, since here the previously imposed phase distribution is destroyed by the offset field when the direction of the rotation field is reversed, which is required for echo sequences, and thus a new RDS measurement is started instead of signal echo generation. Although echo sequences with an initial pulse allow more MNP parameters to be measured, this approach still offers decisive advantages. For example, there is a massive simplification of the hardware and significantly higher repetition rates are possible at the same rotation frequency. The avoidance of switching processes by using offset fields makes it possible to investigate particle systems with relaxation times far below 3 ms with the original setup. Here it is shown that for different particle systems partly very characteristic signal patterns result. These can be roughly divided into three categories. The first category is suspended single domain particles with a non- negligible relaxation time. This is the preferred target system for RDS, which can be described by the Langevin equation. The second category is particle systems where the relaxation time is negligible. In this case, the signal response can be described by the Langevin function. The third category includes all other particle systems, in particular suspensions of MNP clusters, which, due to interparticle interactions, among other things, yield complex signal courses that cannot be calculated in practice. Spectroscopic investigations are nevertheless possible by creating corresponding reference databases (fingerprinting). Multiparametric RDS, i.e. repeating the measurement for e.g. different amplitudes or different viscosities of the suspension medium, generates massive differences in the resulting multidimensional data set due to several nonlinear dependencies. This promises the achievability of high spectroscopic discriminatory power with suitable particle and sequence optimization. The simulations and experimental results of this work highlight fundamental hurdles and opportunities for RDS, which is also introduced in this work. It thus highlights fundamental aspects necessary for the development of RDS hardware and the optimization of MNP suspensions. With RDS, further work will aim to develop highly sensitive bioassays and extend them to include spatial encoding (RDI), as the underlying effect is at the same time very promising as a basis for molecular imaging. KW - Magnetteilchen KW - Nanopartikel KW - Spektroskopie KW - Magnetpartikelspektroskopie KW - magnetic nanoparticles KW - rotating magnetic field Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-268631 ER - TY - THES A1 - Stahlhut, Philipp T1 - Konzeption und Aufbau einer Nanofokus Labor CT Anlage in Reflexionsgeometrie auf Basis eines Rasterelektronenmikroskops T1 - Design and construction of a nanofocus laboratory CT system in reflection geometry based on a scanning electron microscope N2 - In der vorliegenden Arbeit werden die Konzeption und Realisierung eines Computertomographen zur Materialanalyse auf Basis eines Rasterelektronenmikroskops mit einem räumlichen Auflösungsvermögen im Nanometerbereich diskutiert. Durch einen fokussierten Elektronenstrahl, der mit einer Beschleunigungsspannung von 30 kV auf eine mikrostrukturierte Wolframnadel mit einem Spitzenradius von bis zu 50 nm gezielt wird, entsteht ein kleiner Röntgenbrennfleck über den mit geometrischer Vergrößerung hochauflösende Projektionen eines zu untersuchenden Objekts erzeugt werden. Durch Rotation des Testobjekts werden Projektionen aus verschiedenen Blickwinkeln aufgenommen und über einen speziellen Rekonstruktionsalgorithmus zu einem 3-dimensionalen Bild zusammengefügt. Bei der Beurteilung der Einzelkomponenten des Geräts wird insbesondere auf Struktur, Form und den elektrochemischen Herstellungsprozess der Röntgenquelle eingegangen. Eine ausreichend genaue Positionierung von Messobjekt und Röntgenbrennfleck wird über Piezoachsen realisiert, während die Stabilität des Röntgenbrennflecks über die Elektronenoptik des Rasterelektronenmikroskops und die Form der Quellnadel optimiert wird. Das räumliche Auflösungsvermögen wird über die Linienspreizfunktion an Materialkanten abgeschätzt. Für eine Wolfram-Block-Quelle ergibt sich dabei ein Auflösungsvermögen von 325 nm – 400 nm in 3D, während der Quellfleck einer Wolframnadel das Auflösungsvermögen der Anlage auf 65 nm – 90 nm in 2D und 170 nm – 300 nm in 3D bei Messungen an einem AlCu29-Testobjekt anhebt. Außerdem werden die Auswirkungen der Phasenkontrastcharakteristik der Röntgenquelle auf die rekonstruierten Bilder nach Anwendung eines Paganin-Filters diskutiert. Dabei zeigt sich, dass durch Anwendung des Filters ein verbessertes Signal-zu-Rausch-Verhältnis auf Kosten der räumlichen Bildauflösung erzielt werden kann. Eine Vergleichsmessung mit einem kommerziell verfügbaren Röntgenmikroskop zeigt die Stärken des vorgestellten Systems bei Untersuchung von stark absorbierenden Messobjekten. Das kompakte Design erlaubt eine Weiterentwicklung in Richtung eines nanoCT-Moduls als Upgrade Option für Rasterelektronenmikroskope im Gegensatz zu den weitaus teureren bisher verbreiteten nanoCT-Geräten. N2 - The presented thesis discusses the conceptual design and realization of a computed tomography system for material analysis based on a scanning electron microscope with a spatial resolution in the nanometer range. A focused electron beam accelerated through a field of 30 kV aimed at a microstructured tungsten needle with a tip radius of up to 50 nm creates a small X-ray focal spot enabling high-resolution projections of an object via geometric magnification. By rotating the object, projections from different angles are recorded and combined into a 3-dimensional image using a special reconstruction algorithm. When assessing the individual components of the device, particular attention is paid to the structure, shape and the electrochemical manufacturing process of the X-ray source. Sufficiently accurate positioning of the sample and the X-ray focal spot is realized via piezo axes, while the stability of the focal spot is optimized via the electron optics of the scanning electron microscope and the shape of the source needle. The spatial resolution is estimated via the line spread function at material edges. For a tungsten block source, this results in a spatial resolution of 325 nm – 400 nm in 3D, while the source spot of a tungsten needle increases the spatial resolution of the system to 65 nm – 90 nm in 2D and 170 nm – 300 nm in 3D for measurements on an AlCu29 test object. In addition, the effects of the phase contrast characteristics of the X-ray source on the reconstructed images after applying a Paganin phase retrieval filter are discussed. It is shown that by applying the filter, an improved signal-to-noise ratio can be achieved at the expense of spatial image resolution. Comparable measurements with a commercially available X-ray microscope shows the strengths of the presented system when investigating strongly absorbing samples. The compact design allows development towards a nanoCT-module as an upgrade option for scanning electron microscopes, reaching a similar resolution as the nanoCT-devices that are commercially available up to now but at reduced costs. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Laborgerät KW - Materialanalytik KW - Reflexionsgeometrie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302648 ER - TY - THES A1 - Jung, Johannes T1 - Wechselwirkungen zwischen Kantenzuständen auf dem topologisch kristallinen Isolator Pb\(_{1-x}\)Sn\(_x\)Se T1 - Interactions between edge states on the topologically crystalline insulator Pb\(_{1-x}\)Sn\(_x\)Se N2 - Einerseits besteht die einfachste Möglichkeit zum Ladungs- und Informationstransport zwischen zwei Punkten in deren direkter Verbindung durch eindimensionale Kanäle. Andererseits besitzen topologische Materialien exotische und äußerst vorteilhafte Eigenschaften, weshalb es nahe liegt, dass schon bald neue Anwendungen aus ihnen realisiert werden. Wenn diese beiden Entwicklungen zusammenkommen, dann ist ein grundlegendes Verständnis von Quanteninterferenz oder Hybridisierungseffekten in eindimensionalen, topologischen Kanälen von fundamentaler Wichtigkeit. Deshalb werden in der vorliegenden Arbeit Wechselwirkungen von eindimensionalen, topologisch geschützten Kantenzuständen, die an ungeradzahligen Stufenkanten auf der (001)–Oberfläche von Pb1−xSnxSe auftreten, untersucht. Aufgrund der lateralen Lokalisierung auf wenige Nanometer um eine Stufenkante herum und der Notwendigkeit zwischen gerad- und ungeradzahligen Stufenkantenhöhen zu unterscheiden, bieten sich die Rastertunnelmikroskopie und -spektroskopie als Methoden an. Die neu entdeckten Kopplungs- bzw. Wechselwirkungseffekte zwischen benachbarten Kantenzuständen treten auf, sobald der Stufe zu Stufe Abstand einen kritischen Wert von dkri ≈ 25nm unterschreitet. Dieses Kriterium kann durch verschiedene räumliche Anordnungen von Stufenkanten erfüllt werden. Infolgedessen werden sich kreuzende, parallel verlaufende und zusammenlaufende Stufenkanten genauer untersucht. Bei letzteren verändert sich entlang der Struktur kontinuierlich der Abstand und damit die Kopplungsstärke zwischen den beiden Randkanälen. Infolgedessen wurden drei Koppelungsregime identifiziert. (I) Ausgehend von einer schwachen Wechselwirkung zeigt der für die Kantenzustände charakteristische Peak im Spektrum zunächst eine Verbreiterung und Verminderung der Intensität. (II) Mit weiter zunehmender Wechselwirkung beginnt sich der Zustand in zwei Peaks aufzuspalten, sodass ab dkri ≈ 15nm an beiden Stufenkanten durchgehen eine Doppelpeak zu beobachten ist . Mit weiter abnehmendem Abstand erreicht die Aufspaltung Werte von einigen 10 meV, während sich die Intensität weiter reduziert. (III) Sobald zwei Stufenkanten weniger als etwa 5nm voneinander getrennt sind, konvergieren aufgrund der schwindenden Intensität und des sinkenden energetischen Abstands der beiden Peaks zu den van Hove Singularitäten die Spektren an den Stufenkanten gegen das Spektrum über einer Terrasse. i Die Aufspaltung verläuft in den Bereichen I und II asymmetrisch, d. h. ein Peak verbleibt ungefähr bei der Ausgangsenergie, während der andere mit zunehmender Kopplung immer weiter weg schiebt. Bezüglich der Asymmetrie kann kein Unterschied festgestellt werden, ob die zusammenlaufenden Stufenkanten eine Insel oder Fehlstelleninsel bilden oder ob die Stufenkanten sogar gänzlich parallel verlaufen. Es zeigt sich keine Präferenz, ob zunächst der niederenergetische oder der hochenergetische Peak schiebt. Erst im Regime starker Kopplung (III) kann beobachtet werden, dass beide Peaks die Ausgangsenergie deutlich verlassen. Im Gegensatz dazu kann bei sich kreuzenden Stufen ein erheblicher Einfluss der Geometrie, in Form des eingeschlossenen Winkels, auf das Spektrum beobachtet werden. Unabhängig vom Winkel existiert am Kreuzungspunkt selbst kein Kantenzustand mehr. Die Zustände an den vier Stufen beginnen, abhängig vom Winkel, etwa 10-15nm vor dem Kreuzungspunkt abzuklingen. Überraschenderweise zeigt sich dabei, dass im Fall rechtwinkliger Stufen gar keine Aufspaltung zu beobachten ist, während bei allen anderen Winkeln ein Doppelpeak festgestellt werden kann. Diese Entdeckung deutet auf Orthogonalität bezüglich einer Quantenzahl bei den beteiligten Kantenzustände hin. Neben einer nur theoretisch vorhergesagten Spinpolarisation kann dieser Effekt auch von dem orbitalem Charakter der beteiligten Dirac–Kegel verursacht sein. Da der topologische Schutz in Pb1−xSnxSe durch Kristallsymmetrien garantiert ist, wird als letzter intrinsischer Effekt der Einfluss von eindimensionalen Defekten auf die Kantenzustände untersucht. Berücksichtigt werden dabei ein nicht näher klassifizierbarer, oberflächennaher Defekt und Schraubversetzungen. In beiden Fällen kann ebenfalls eine Aufspaltung des Kantenzustands in einen Doppelpeak gezeigt werden. Im zweiten Teil dieser Arbeit werden die Grundlagen für eine Wiederverwendung von (Pb,Sn)Se–Oberflächen bei zukünftige Experimenten mit (magnetischen) Adatomen geschaffen. Durch Kombination von Inoenzerstäubung und Tempern wird dabei nicht nur eine gereinigte Oberfläche erzeugt, sondern es kann auch das Ferminiveau gezielt erhöht oder gesenkt werden. Dieser Effekt beruht auf eine Modifikation der Sn– Konzentration und der von ihr kontrollierten Anzahl an Defektelektronen. Als letztes sind erste Messungen an Cu- und Fe–dotierte Proben gezeigt. Durch die Adatome tritt eine n–Dotierung auf, welche den Dirac–Punkt des Systems in Richtung des Ferminiveaus verschiebt. Sobald er dieses erreicht hat kommt es zu Wechselwirkungsphänomenen an freistehenden Stufenkanten. Dies führt zu einer Doppelpeakstruktur mit einer feinen Aufspaltung von wenigen meV. Das Phänomen ist auf ein schmales Energiefenster beschränkt, bei dem die Lage des Dirac–Punkts nur etwa 5 meV (in beide Richtungen) von der des Ferminiveaus abweichen darf. N2 - First, the simplest possibility of transporting charges and information between twopoints is given by there direct connection due to one dimensional channels. Second,topological materials have exotic and extremely advantageous properties, which makethem suitable for further applications. If these two come together, then a basic understandingof quantum interference or hybridization effects in one-dimensional, topologicalchannels is of fundamental importance. Therefore, in the present work, interactionsof one dimensional, topologically protected edge states, hosted at odd numbered stepedges on the (001) surface of (Pb,Sn)Se, are investigated.Due to the lateral localization to a few nanometers around a step edge and the needto differentiate between even and odd numbered step heights, scanning tunneling microscopyand spectroscopy are the tools of choice. The newly discovered coupling orinteraction effects between neighboring edge states appear as soon as their distancedecrease below a critical value of dcri ≈ 25 nm. This criterion can be met by variousspatial arrangements of step edges. As a result, crossing, parallel and converging stepedges are examined more closely.With the latter, the distance and thus the coupling strength between the two edgechannels changes continuously along the structure. As a result, three coupling regimeswere identified. (I) Starting from a weak interaction, the peak in the spectrum that ischaracteristic of the edge states initially shows a broadening and reduction in intensity.(II) With increasing interaction, the state begins to split into two peaks, so thatfrom dcri ≈ 15nm a double peak can be observed at both step edges. As the distancecontinues to decrease, the splitting reaches values of a few 10 meV, while the intensitycontinues to drop. (III) As soon as two step edges are separated by less than about 5nm, the spectra at the step edges converge against the spectrum over a terrace due tothe decreasing intensity and the decreasing energetic distance of the two peaks to thevan Hove singularities.iiiThe split is asymmetrical in areas I and II, which means that one peak remains roughlyat the original energy, while the other shifts further and further away with increasingcoupling. With regard to the asymmetry, no difference can be determined whether theconverging step edges form an island, a vacancy island or even run completely parallel.There is no preference as to whether the low energy or high energy peak shifts. Onlyin the regime of strong coupling (III) both peaks clearly leave the initial energy.In contrast to this, a considerable influence of the geometry on the spectrum can beobserved, with the included angle as parameter, for intersecting steps. Independentof the angle, there is no longer an edge state at the intersection itself. The statesat the four edges start to decay, depending on the angle, about 10-15nm before thepoint of intersection. Surprisingly, it turns out that in the case of right angled steps nosplitting at all can be observed, while a double peak can be found for all other angles.This discovery indicates orthogonality with respect to a quantum number in the edgestates involved. In addition to a theoretically predicted spin polarization, this effectcan also be caused by the orbital character of the Dirac cones involved.Since the topological protection in Pb1−xSnxSe is guaranteed by crystal symmetries,the last intrinsic effect to be examined is the influence of one dimensional defects onthe edge states. A near-surface defect, which cannot be classified in any more detailand a screw dislocation are taken into account. In both cases, a splitting of the edgestate into a double peak can also be shown.In the second part of this thesis the basis for reuse of surfaces in future experimentswith (magnetic) adatoms is created. The combination of sputtering and annealing notonly creates a cleaned surface, but in addition it tunes the Fermi level in a controllableway. This effect is based on a modification of the Sn concentration and the associatednumber of holes.Finally, the first measurements on Cu and Fe-doped samples are shown. The adatomscause n-doping, which shifts the Dirac point of the system in the direction of theFermi level. As soon as he has achieved this, there is an interaction phenomenon at thefreestanding step edges. This leads to a double peak structure with a fine split of a fewmeV. This phenomenon is limited to a narrow energy window in which the position ofthe Dirac point may only deviate by about 5 meV (in both directions) from that of theFermi level. KW - Topologischer Isolator KW - Rastertunnelmikroskopie KW - PbSnSe KW - Scanning tunneling microscopy KW - edge states KW - Kantenzustand Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298616 ER - TY - THES A1 - Gram, Maximilian T1 - Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich T1 - New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT range N2 - Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. N2 - The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kernspinresonanz KW - Spin-Lock KW - T1ρ KW - T1rho KW - Kardio-MRT KW - Rotary Excitation KW - Myokardiale T1ρ-Quantifizierung KW - Felddetektion KW - funktionelle MRT Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-322552 ER - TY - THES A1 - Lutter, Fabian T1 - Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in Röntgen nano-CT T1 - Element sensitive imaging - Use of chromatic pixel arrays in X-ray nano-CT N2 - Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen Möglichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein Röntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergrößerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie fähig. Der Ausgangspunkt für die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich möglich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Auflösung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erhöht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Auflösung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabhängig und genauer bewegen, wodurch es möglich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl für das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. Für das Röntgentarget werden Monte-Carlo Simulationen zur Brennfleckgröße, welche entscheidend für die erreichbare Auflösung ist, durchgeführt und mit Auflösungstests verglichen. Der Röntgendetektor wird hinsichtlich seiner spektralen Auflösung überprüft, welche hauptsächlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer höher auflösenden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchstück einer CPU, mit beiden Methoden unter der Voraussetzung einer ähnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal größeres Volumen analysiert werden, was jedoch eine geringere räumliche Auflösung als die FIB Tomographie mit sich bringt. Da die spektrale Auflösung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast für leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Darüber hinaus ist es am XRM-II nanoCT möglich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt. N2 - The general topic of this thesis is the development and characterization of the XRM-II nanoCT system, as well as its possibilities for material separation in nano-computed tomographay. The XRM-II nanoCT system is an X-ray microscope integrated into a scanning electron microscope and is based on the principle of geometric magnification. In addition to two-dimensional radiographs, this system is also capable of three-dimensional imaging by using computed tomography. The starting point for the development is the XRM-II system, which is already capable of performing computed tomography in the nanometer range. The acquisition time is between 14 and 21 days, which is the reason why this system is impractical despite its high resolution. By adjusting the aperture settings on the scanning electron microscope, the beam current could be increased by a factor of 40, reducing the acquisition time to 24 hours, while the achievable resolution is still at \(167 \pm 9\) nm. By separating the object and target manipulator, their movement becomes independent and more precisely, resulting in the possibility of resolving even 50 nm sized structures. The characterization is done both for the complete system and separately for the decisive components such as target and detector. Monte Carlo simulations of the focal spot size, which is crucial for the achievable resolution, are performed for the X-ray target and are compared to resolution tests. The spectral resolution of the X-ray detector is checked, which is mainly influenced by the charge sharing effect. The complete system is characterized by the comparison of it to a higher resolving imaging method, the FIB Tomography. The exact same sample, a fragment of a CPU, is analyzed with both imaging methods under the restriction of a similar measurement time (24 h). In the nano-CT the examined volume is 12 times larger than in the FIB tomography, resulting in a lower spatial resolution. Since the spectral resolution of the detector is mainly limited by charge sharing, only materials with a large difference in atomic number can be separated using the detector's energy thresholds. In connection with an appropriate choice of target material, the absorption contrast for light materials such as \(SiO_2\) can be improved. Furthermore, it is possible to identify elements in the computed tomography on the XRM-II nanoCT system using the integrated EDX system. This is demonstrated on a three-way catalytic converter and on a NCA particle. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Röntgendetektor KW - Energieauflösung KW - Elementbestimmung KW - nano-CT KW - Röntgenmikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319955 ER - TY - THES A1 - Niehörster, Thomas T1 - Spektral aufgelöste Fluoreszenzlebensdauer-Mikroskopie mit vielen Farben T1 - Spectrally resolved fluorescence lifetime imaging microscopy with many colours N2 - Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode für biologische Proben, bei der Biomoleküle selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolekülen gleichzeitig möglich, wobei üblicherweise verschiedene Farbstoffe eingesetzt werden, die über ihre Spektren unterschieden werden können. Um die Anzahl gleichzeitig verwendbarer Färbungen zu maximieren, wird in dieser Arbeit zusätzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgelöster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenlängen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Auflösung von 32 Kanälen und gleichzeitig mit sehr hoher zeitlicher Auflösung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so für jedes Pixel die Beiträge der einzelnen Farbstoffe. Mit dieser Technik konnten pro Anregungslaser fünf verschiedene Färbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 Färbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun Färbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivität des sFLIM-Systems genutzt werden, um verschiedene Zielmoleküle voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war möglich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmoleküls geringfügig in Abhängigkeit von seiner Umgebung ändern. Weiterhin konnte die sFLIM-Technik mit der hochauflösenden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgelöste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser benötigt wurde. Die gleichzeitige Erfassung von mehreren photophysikalischen Messgrößen sowie deren Auswertung durch den Pattern-Matching-Algorithmus ermöglichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie für Mehrfachfärbungen. N2 - Fluorescence microscopy is an important and near-universal technique to examine biological samples. Typically, biomolecules are selectively labelled with fluorophores and then imaged with high contrast. This can be done for several target molecules simultaneously, using different fluorophores that are usually distinguished by their spectra. This thesis describes a method to maximize the number of simultaneous stainings. Not only the spectral information but also the temporal information of the fluorescence decay is exploited by means of spectrally resolved fluorescence lifetime imaging microscopy (sFLIM). Using a confocal laser scanning microscope, the sample is excited by three alternatingly pulsed lasers at 485 nm, 532 nm, and 640 nm. Fluorescence light is detected on 32 spectrally separated detection channels with high time resolution of a few picoseconds. Thus, in this setup, we record the excitation laser, the spectral channel, and the time of arrival for each fluorescence photon. This detailed multi-dimensional information is then processed by a pattern-matching algorithm that compares the fluorescence signal with reference patterns of the used fluorophores to determine the contribution of each fluorophore in each pixel. Using this technique we imaged five different stainings per excitation laser, implying that 15 simultaneous stainings should theoretically be achievable. Current constraints in the sample preparation procedure limited the number of simultaneous stainings to nine. In additional experiments, we exploited the sensitivity of the sFLIM system to image several different target molecules simultaneously with the same fluorophore, taking advantage of slight changes in the fluorescence behaviour of the fluorophore due to environmental changes. We also combined sFLIM with stimulated emission depletion (STED) to perform super-resolution multi-target imaging with two stainings that operated with one common STED laser. Thus, the simultaneous exploitation of several photophysical parameters, in combination with algorythmic evaluation, allowed us to devise novel modes of multi-target imaging in fluorescence microscopy. KW - Fluoreszenzmikroskopie KW - Fluoreszenzlebensdauer-Mikroskopie KW - Konfokale Mikroskopie KW - STED-Mikroskopie KW - Fluoreszenz KW - Mustervergleich KW - Pattern Matching KW - sFLIM KW - TCSPC KW - Mikroskopie KW - Microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-296573 ER - TY - THES A1 - Iff, Oliver T1 - Implementierung und Charakterisierung von Einzelphotonenquellen in zweidimensionalen Übergangsmetall-Dichalkogeniden und deren Kopplung an optische Resonatoren T1 - Implementation and characterization of single photon sources in two-dimensional transition-metal dichalcogenides and their coupling to optical resonators N2 - Schon heute bilden Einzelphotonenquellen einen wichtigen Baustein in der Photonik und Quanteninformation. Der Fokus der Forschung liegt entsprechend auf dem Finden und Charakterisieren dafür geeigneter Materialsysteme. Konkret beschäftigt sich die vorliegende Arbeit vorwiegend mit dem Übergangsmetall-Dichalkogenid (TMDC1 ) Wolframdiselenid und seinen Eigenschaften. Diese Wahl ist durch den direkte Zugang zu Einzelphotonenquellen begründet, die sich in dessen Monolagen ausbilden können. Diese Lichtquellen können über eine Modulation der Verspannung der Monolage gezielt aktiviert werden. Durch die, verglichen mit ihrem Volumen, riesige Kontaktfläche lassen sich Monolagen zudem mit Hilfe des Substrats, auf das sie transferiert wurden, wesentlich beeinflussen. Im Rahmen dieser Arbeit wurden Monolagen von WSe2 in unterschiedlichen Bauteilen wie zirkulare Bragg-Gittern oder vorstrukturierten, metallischen Oberflächen implementiert und die Photolumineszenz des TMDCs untersucht. Diese Arbeit belegt die Möglichkeit, Einzelphotonenquellen basierend aufWSe2 -Monolagen auf verschiedenste Weise modulieren zu können. Dank ihrer zwei- dimensionalen Geometrie lassen sie sich einfach in bestehende Strukturen integrieren oder auch in der Zukunft mit weiteren 2D-Materialien kombinieren. N2 - Single photon sources are an important building block in today’s photonics and quantum information. This is the reason why a big focus lies on the exploration of new, suitable material systems. Specifically, the work in hand mainly discusses the transition metal dichalcogenide (TMDC) tungsten diselenide and its properties. The reason for this is the easy access to single photon sources, which can be found in WSe2 monolayers. These can deterministically be activated by utilizing strain. As the interface between a transferred monolayer and its underlying substrate is huge compared to its volume, the substrate itself always has a big impact on the TMDC. In scope of this work, WSe2 monolayers were transferred on several devices like circular Bragg gratings or structured metal surfaces in order to investigate the optical response of the TMDC. This work therefore proves the concept of modulating single photon sources based on WSe2 monolayers in many different ways. Thanks to their two-dimensional nature, monolayers of TMDCs can easily be integrated in existing devices and combined with other 2D materials in the future. KW - Einzelphotonenemission KW - Photolumineszenz KW - Optik KW - Zweidimensionales Material KW - Schwache Kopplung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281404 ER - TY - THES A1 - Wiest, Wolfram T1 - Entwicklung einer Apparatur zur In-situ-Ermüdungsprüfung von Zahnimplantaten mittels Synchrotron Micro-CT T1 - Development of an apparatus for in-situ fatigue testing of dental implants using synchrotron micro-CT N2 - Die vorliegende Arbeit beschäftigt sich mit der volumenbildgebenden Untersuchung von mechanischen Ermüdungsprozessen in Titan-Zahnimplantaten. Im Vordergrund steht die Entwicklung einer neuen Messmethode der In-situ-Mikrotomografie am Synchrotron. Zahnimplantate werden beim Gebrauch mechanisch wiederholt belastet (Wechsellast). Nach vielen zyklischen Belastungen können aufgrund von mikroplastische Verformungen Ermüdungsschäden auftreten. Diese können im Extremfall zum Versagen und Verlust eines Implantats führen. Die Computertomographie ist eine sehr geeignete zerstörungsfrei Prüfmethode, um Zahnimplantate zu untersuchen. Diese Arbeit erweitert die bisherige CT-Methode insofern, dass In-situ-Beobachtungen bei mechanischer Belastung möglich sind. Die in dieser Arbeit untersuchten Zahnimplantate weisen an der Implantat-Abutment-Grenzfläche bei eintretender Ermüdung einen Mikrospalt auf. Dieser wird als Indikator für einsetzende Fatigue- Prozesse benutzt. Der in der Synchrotron CT verfügbare Inlinephasenkontrast ermöglicht eine verbesserte Bestimmung der Mikrospaltgröße. Da die schnellen Bewegungen der Ermüdungsprüfung mittels Standard-CT-Verfahren schwer zu erfassen sind, war die stroboskopische Aufnahmemethode das zielführende Messverfahren, um in-situ-Prüfung zu ermöglichen. Die 4 kommerziellen Zahnimplantattypen werden neben der In-situ-Fatigue Prüfung auch mittels klassischer Ermüdungsprüfung untersucht und mit der Neuen Messmethode verglichen. Die hier entwickelte In-situ-Fatigue-Prüfstation kann Proben bis zu 345 N tomographisch untersuchen. Neben den experimentellen Untersuchungen wird eine statische FEM-Betrachtung durchgeführt und mit experimentellen Messdaten verglichen. Zuletzt wird mit der entwickelten Messtation Knochenrisse in der Implantat Umgebung untersucht. N2 - The present work deals with the volume imaging investigation of mechanical fatigue processes in titanium dental implants. The focus is on the development of a new measurement method of in-situ microtomography at the synchrotron. Dental implants are exposed to repeated mechanical loads. After many cyclic loads, fatigue damage can occur due to microplastic deformation. These can lead to failure and loss of an implant. Computed tomography is a very suitable non-destructive testing method to examine dental implants. This work extended the existing method to the point where in situ CT observations under mechanical loading are achievable. The dental implants investigated in this work exhibit a microgap at the implant-abutment interface when fatigue occurs. This is used as an indicator for the occurrence of fatigue processes. The inline phase contrast available in synchrotron CT can be used to determine the size of the microgap. Since the fast motions of fatigue testing are difficult to capture using standard CT techniques, the stroboscopic imaging method was the used measurement technique, to enable in-situ testing. In addition to in-situ fatigue testing, the 4 commercial dental implant types are also examined and compared with each other by means of classical fatigue testing. The developed in-situ fatigue test station can tomographically investigate specimens up to 345 N. In addition to the experimental investigations, a static FEM analysis is performed and compared with experimental measurement data. Finally, the developed measuring station is used to investigate bone cracks in the implant environment. KW - Mikrocomputertomographie KW - Fatigue KW - In situ KW - Zahnimplantat KW - In situ KW - fatigue KW - microtomography KW - dental implant Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257702 ER - TY - THES A1 - Suchomel, Holger Maximilian T1 - Entwicklung elektrooptischer Bauteile auf der Basis von Exziton-Polaritonen in Halbleiter-Mikroresonatoren T1 - Development of electro-optical devices based on exciton polaritons in semiconductor microresonators N2 - Exziton-Polaritonen (Polaritonen), hybride Quasiteilchen, die durch die starke Kopplung von Quantenfilm-Exzitonen mit Kavitätsphotonen entstehen, stellen auf Grund ihrer vielseitigen und kontrollierbaren Eigenschaften einen vielversprechenden Kandidaten für die Entwicklung einer neuen Generation von nichtlinearen und integrierten elektrooptischen Bauteilen dar. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Untersuchung kompakter elektrooptischer Bauelemente auf der Basis von Exziton-Polaritonen in Halbleitermikrokavitäten. Als erstes wird die Implementierung einer elektrisch angeregten, oberflächenemittierenden Polariton-Laserdiode vorgestellt, die ohne ein externes Magnetfeld arbeiten kann. Dafür wird der Schichtaufbau, der Q-Faktor, das Dotierprofil und die RabiAufspaltung der Polariton-Laserdiode optimiert. Der Q-Faktor des finalen Aufbaus beläuft sich auf Q ~ 16.000, während die Rabi-Aufspaltung im Bereich von ~ 11,0 meV liegt. Darauf aufbauend werden Signaturen der Polariton-Kondensation unter elektrischer Anregung, wie ein nichtlinearer Anstieg der Intensität, die Reduktion der Linienbreite und eine fortgesetzte Verschiebung der Emission zu höheren Energien oberhalb der ersten Schwelle, demonstriert. Ferner werden die Kohärenzeigenschaften des Polariton-Kondensats mittels Interferenzspektroskopie untersucht. Basierend auf den optimierten Halbleiter-Mikroresonatoren wird eine Kontaktplattform für die elektrische Anregung ein- und zweidimensionaler Gitterstrukturen entwickelt. Dazu wird die Bandstrukturbildung eines Quadrat- und Graphen-Gitters unter elektrischer Anregung im linearen Regime untersucht und mit den Ergebnissen der optischen Charakterisierung verglichen. Die erhaltenen Dispersionen lassen sich durch das zugehörige Tight-Binding-Modell beschreiben. Ferner wird auch eine elektrisch induzierte Nichtlinearität in der Emission demonstriert. Die untersuchte Laser-Mode liegt auf der Höhe des unteren Flachbandes und an der Position der Γ-Punkte in der zweiten Brillouin-Zone. Die zugehörige Modenstruktur weist die erwartete Kagome-Symmetrie auf. Abschließend wird die Bandstrukturbildung eines SSH-Gitters mit eingebautem Defekt unter elektrischer Anregung untersucht und einige Eigenschaften des topologisch geschützten Defektzustandes gezeigt. Dazu gehört vor allem die Ausbildung der lokalisierten Defektmode in der Mitte der S-Bandlücke. Die erhaltenen Ergebnisse stellen einen wichtigen Schritt in der Realisierung eines elektrisch betriebenen topologischen Polariton-Lasers dar. Abschließend wird ein elektrooptisches Bauteil auf der Basis von Polaritonen in einem Mikrodrahtresonator vorgestellt, in dem sich die Propagation eines PolaritonKondensats mittels eines elektrostatischen Feldes kontrollieren lässt. Das Funktionsprinzip des Polariton-Schalters beruht auf der Kombination einer elektrostatischen Potentialsenke unterhalb des Kontaktes und der damit verbundenen erhöhten ExzitonIonisationsrate. Der Schaltvorgang wird sowohl qualitativ als auch quantitativ analysiert und die Erhaltenen Ergebnisse durch die Modellierung des Systems über die GrossPitaevskii-Gleichung beschrieben. Zusätzlich wird ein negativer differentieller Widerstand und ein bistabiles Verhalten in der Strom-Spannungs-Charakteristik in Abhängigkeit von der Ladungsträgerdichte im Kontaktbereich beobachtet. Dieses Verhalten wird auf gegenseitig konkurrierende Kondensats-Zustände innerhalb der Potentialsenke und deren Besetzung und damit direkt auf den räumlichen Freiheitsgrad der PolaritonZustände zurückgeführt. N2 - Exciton-polaritons (polaritons), hybrid quasi-particles formed by the strong coupling between quantum well excitons and microcavity photons, are promising candidates for the realization of a new generation of nonlinear and integrated electrooptical devices. Compared to photonic or electrical approaches distinguishing advantages of Polaritons are their versatile and tuneable properties that allow electrical excitation and easy manipulation, which is both advantageous for on-chip applications. The present thesis deals with the development, implementation, and improvement of compact electrooptical devices based on exciton-polaritons in semiconductor microcavities. At first the implementation of an electrically driven vertically emitting polariton laser diode, which operates without the need of an applied magnetic field, is presented. For this purpose, the layer structure, quality factor, doping profile and Rabi-splitting of the polariton laser diode is optimized. The final design consists of a high-quality factor Al0.20Ga0.80As/AlAs microcavity (Q ~ 16,000) and features a Rabi-splitting of ~ 11.0 meV. Signatures for polariton condensation under electrical excitation are shown in the processed device. It features a clear nonlinearity in its input-output characteristic, a well-pronounced drop in the emission linewidth and a persisting blueshift above the first threshold with increasing pump-power. On top of that, evidence of the systems coherence properties in the condensed phase is provided directly by utilizing interference spectroscopy. Based on the optimized microcavity structures a process for the electrical excitation of one- and two-dimensional potential landscapes is developed. At first, the linear band structures of polaritonic square as well as honeycomb lattices are studied under electrical injection and compared to the results acquired by optical excitation. The obtained dispersions are reproduced by a tight-binding model. Moreover, the capability of the device to facilitate an electrically induced nonlinear emission is demonstrated. The investigated laser mode at the high symmetry Γ points in the second Brillouin zone, is located at the low energy flatband, as verified by the kagome geometry of the measured mode structure. Subsequent, the results of a one-dimensional SSH chain are presented under electrical excitation. In addition, the properties of a built-in lattice defect, forming a topological protected state in the middle of the S band gap, are investigated, paving the way towards the realization of electrically driven topological polariton lasers. Finally, an electrooptical polariton switch is demonstrated as a prototype of a polaritonic field-effect transistor. Here, an optical generated polariton condensate propagating along a one-dimensional channel is controlled by an electrical gate. The operation of the device relies on the combination of an electrostatic potential trap underneath the contact, and the associated exciton ionization. The switching behaviour is analysed in a qualitative as well as in a quantitative manner and verified by modelling the experimental findings with the Gross-Pitaevskii equation. Furthermore, a pronounced negative differential resistance and a strong bistability is observed in the photocurrent response as a function of the carrier density. This is attributed to competing transitions of trapped condensate modes and thus directly to the spatial degree of freedom of the polariton states, which represents a completely new way to create bistability. KW - Drei-Fünf-Halbleiter KW - AlGaAs KW - Exziton-Polariton KW - Optischer Resonator KW - Quantenwell KW - Mikroresonator KW - Polariton Lasing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271630 ER - TY - THES A1 - Betzold, Simon T1 - Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisphärischen Mikrokavitäten mit eingebetteten organischen Halbleitern T1 - Strong light-matter interaction and polariton condensation in hemispherical microcavities with embedded organic semiconductors N2 - Kavitäts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavitätsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits für die Grundlagenforschung, andererseits auch für die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand über, was zur Emission von laserartigem Licht führt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorstärken auch hohe Bindungsenergien aufweisen. Deshalb ist es möglich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen äußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte räumliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit beschäftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisphärischen Mikrokavitäten, in die organische Halbleiter eingebettet sind. N2 - Cavity exciton-polaritons (polaritons) are hybrid quasiparticles which are formed due to the strong coupling of excitons with cavity photons. These quasiparticles exhibit a variety of interesting properties, rendering them very promising for both fundamental research and the development of novel opto-electronic devices. Once a suitably high particle density is reached, the system undergoes the transition into a state of exciton-polariton condensation, which leads to the emission of laser-like light. Organic semiconductors as active emitter material hold enormous potential in this context, as their excitons show both large oscillator strengths and high binding energies. Therefore it is possible to generate extremely stable polaritons using organic semiconductors even at ambient conditions. An important prerequisite for the implementation of integrated devices based on polaritons is the controlled spatial confinement and the realization of arbitrary potential landscapes. The present work deals with the development and investigation of suitable platforms for the generation of exciton-polaritons and polariton condensates in hemispheric microcavities with embedded organic semiconductors. KW - Exziton-Polariton KW - Organischer Halbleiter KW - Fourier-Spektroskopie KW - Laser KW - Optischer Resonator KW - FDTD Simulation KW - Hemisphärische Kavität Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266654 ER - TY - THES A1 - Zipf, Matthias T1 - Berührungslose Temperaturmessung an Gasen und keramisch beschichteten Oberflächen bei hohen Temperaturen T1 - Non-contact temperature measurement of gases and ceramic coated surfaces N2 - Stationäre Gasturbinen können von großer Bedeutung für die Verlangsamung des Klima-wandels und bei der Bewältigung der Energiewende sein. Für die Weiterentwicklung von Gasturbinen zu höheren Betriebstemperaturen und damit einhergehend zu höheren Wirkungs-graden werden berührungslose Messverfahren zur Ermittlung der Oberflächentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase während des Be-triebs benötigt. Im Rahmen dieser Arbeit werden daher Methoden der berührungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die berührungslose Messung der Oberflächentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberflächeneigenschaften im Wellenlängenbereich des mitt-leren Infrarots durchgeführt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines adäquaten Strahlungsthermometers für diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Drücken in einer ei-gens hierfür konstruierten Heißgas-Messzelle zunächst Wellenlängenbereiche identifiziert, in welchen die geplanten Messungen möglich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei mögliche Verfahren zur berührungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabhängigkeit des spektralen Transmissionsgrades in den Randbereichen von gesättigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen für dieses Tempera-turmessverfahren durchgeführt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Drücken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K für das geplante Verfahren nutzbare Wellenlängenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur berührungslosen Gastem-peraturmessung basiert auf der Temperaturabhängigkeit der Wellenlängenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Phänomen anhand von experimentell bestimmten hochaufgelösten Transmissions-spektren von Kohlenstoffdioxid überprüft. Weiterhin wurden mögliche Wellenlängenbereiche identifiziert und hinsichtlich ihrer Eignung für das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdrücken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-über hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden. N2 - Stationary gas turbines can be of significant importance for slowing down climate change and for the handling of the energy transition. The goal of the further development of gas tur-bines is to increase the operating temperatures and in consequence the efficiency factor. For this purpose, non-contact measurement methods are required to determine the surface temper-ature of turbine blades and the gas temperature of the hot combustion gases during operation. Therefore, methods of non-contact temperature measurement using infrared radiation are in-vestigated in this work. Due to the infrared-optical surface properties of modern turbine blades, non-contact tem-perature measurement has to be carried out in the mid-infrared wavelength range, where com-bustion gases of gas turbines have strong absorption bands. In order to develop an adequate radiation thermometer for this purpose, as a first step in this work, wavelength ranges were identified by determining the transmission spectra of carbon dioxide and water vapor at high temperatures and pressures in which the planned measurements are possible. Therefore, a spe-cial high-temperature high-pressure gas cell was developed. Then the prototype of a radiation thermometer, which was configured for measurements in the wavelength region identified before, was successfully tested in a full-scale gas turbine. Furthermore, two possible methods for non-contact gas temperature measurement were in-vestigated in the scope of this work. The first method examined also relies on radiation ther-mometry. Within this method, it is planned to obtain the gas temperature from the measure-ment of the spectral radiance that is transmitted in the wavelength region of the edge of a sat-urated absorption band of the gas, due to the temperature dependence of the spectral transmit-tance in this wavelength region. In this work, preliminary investigations for this temperature measurement method were carried out. Based on experimentally determined transmission spectra of carbon dioxide at pressures between 5 kPa and 600 kPa and at temperatures be-tween room temperature and 1073 K, wavelength intervals were identified that are suitable for the planned measurement method. Especially in the region of the carbon dioxide band at 4.26 µm, appropriate intervals could be found. The second method for non-contact gas temperature measurement investigated in this the-sis is based on the temperature dependence of the wavelength position of the transmission minima of the absorption bands of infrared-active gases. Therefore, this phenomenon was in-vestigated using experimentally determined high-resolution transmission spectra of carbon dioxide. Furthermore, suitable wavelength ranges with appropriate absorption bands were identified and characterized. The most promising sub-bands were found in the wavelength regions around 2.7 µm and 9.2 µm. Under addition of nitrogen with partial pressures up to 390 kPa, the carbon dioxide band at 4.26 µm also turned out to be suitable for the planned temperature measurement method. Finally, the experimentally gathered transmission spectra, which were obtained in the scope of this work, could be verified by a comparison with corresponding HITRAN-simulations. KW - Pyrometrie KW - Gas KW - thermal barrier coating Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240248 ER - TY - THES A1 - Schummer, Bernhard T1 - Stabilisierung von CdS Nanopartikeln mittels Pluronic P123 T1 - Stabilization of CdS nanoparticles using Pluronic P123 N2 - Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb äußerst interessant, da seine Bandlücke als Nanopartikel verschiebbar ist. Für die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandlückenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS für einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandlückenverschiebung dort nicht auftritt. Wissenschaftler bemühen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in wässrigen Lösungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien für die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, müssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandlücke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der Lösung von CdS im Trägerstoff, da CdS in den meisten Flüssigkeiten nicht löslich ist und ausfällt. Die Stabilisierung in wässrigen Lösungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigsäure EDTA erfolgreich durchgeführt. Mit EDTA können jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem können Parameter wie Größe und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr ähnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser löslich sind (Bsp. Kurkumin). Ein vielversprechender Lösungsweg ist dort, die Wirkstoffe in große Trägerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut löslich sind. In meiner Arbeit habe ich genau diesen Ansatz für CdS verfolgt. Als Trägerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gewählt, da es die größte Masse bei gleichzeitig höchstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenlänge hat. P123 ist ein ternäres Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei Böcken, dem mittlere Block Polypropylenoxid PPO und den beiden äußeren Blöcken Polyethylenoxid PEO. Der Buchstabe P steht für pastös, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molekülen kann bewusst über geringe Temperaturänderungen gesteuert werden. Bei ungefähr Raumtemperatur liegen Mizellen vor, die sich bei höheren Temperaturen von sphärischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Flüssigkristall. Ich habe in meiner Arbeit zunächst P123 mit Hilfe von Röntgenstreuung untersucht. Anders als andere Methoden gibt Röntgenstreuung direkten Aufschluss über die Morphologie der Stoffe. Röntgenstreuung kann die Mischung von P123 mit CdS abbilden und lässt darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. Für die Stabilisierung der Nanopartikel ist es zunächst notwendig die richtigen Temperaturen für die Ausgangslösungen und gemischten Lösungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch für die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung für Flüssigkeiten fürs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschlüsseln. Diese Röntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu können. Röntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Flüssigkeit und in verschiedenen Konzentrationen analysiert werden kann. Für die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabhängige Verhalten von P123 präzise mit Röntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. Für 5 wtp konnten die Größen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration für diese Konzentration konnten dank des neu eingeführten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgeschätzt, sowie eine Hysterese zwischen dem Heizen und Abkühlen festgestellt werden. Für die Konzentration von 10 wtp wurden kleinere Temperaturschritte gewählt und die Messungen zusätzlich absolut kalibriert. Es wurden die Größen und Streulängendichten SLD der Unimere und Mizellen präzise bestimmt und ein vollständiges Form-Phasendiagramm erstellt. Auch für diese Konzentration konnte eine Hysterese eindeutig an der Größe, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen über die Hydrierung und Hysterese komplexer Kern-Hülle Modelle zu machen. Für die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergrößert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abhängigkeit der Temperatur. Durch das Mischen zweier Lösungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbfärbung der Lösung, und somit die Bildung des CdS, in Abhängigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. Höhere Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandlücke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandlücke von ungefähr 0,05 eV im Vergleich zum Festkörper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die flüssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht ändert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Flüssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizität stabilisiert. Die Anfangs definierten Kriterien für eine erfolgreiche Stabilisierung wurden erfüllt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Flüssigkristalls, als auch im Kern der Mizelle zu stabilisieren. N2 - Aim of this work was the stabilization of cadmium sulphide CdS with Pluronic P123, a polymer. CdS is a semiconductor, which is used for photonics and for optical applications. It is highly interesting since its band gap can be shifted if it has the size of a nanoparticle. Due to this band gap shift and the fact that CdS is absorbing in the visible range, it is highly attractive material. This is known as the quantum size effect. As a solid, CdS is less interesting in this area because of the non-existing band gap shift. Scientists endeavor to stabilize CdS as a nanoparticle, since CdS is hydrophobic in aqueous solutions and thus a strongly aggregating system. Two criteria of a successful stabilization process were set. Firstly, CdS has to be homogeneously distributed in the solution and must not aggregate. Secondly, the nanoparticles must be smaller then 100A. During my thesis I produced such particles and stabilized them homogeneously in an aqueous solution, which meant to hinder the further growth of those nanopaticles while shifting their band gap. The challenge is not the production, but the encapsulation of CdS in a carrier, since CdS is not soluble in most solutions and precipitates. Such a stabilization in an aqueous solution was succeeded by Prof. Dr. Rempel with ethylenediaminetetraacetic acid EDTA as a stabilizer for the first time. But with EDTA only very small concentrations of CdS can be stabilized. Moreover, properties like size and reaction speed during the stabilization of the CdS nanoparticles cannot be adjusted or influenced. This problem is also known from medical agents, which should be administered in high doses, but are not or barely soluble in water like Curcumin. A promising solution is to encapsulate these medical agents in big carrier, so-called micelles, which themselves are soluble in water. In my thesis I followed this approach for CdS. As a carrier/micelle the well known copolymer Pluronic P123 was used. Compared to other Pluronics, P123 was chosen since it offers the biggest mass with the highest proportion of polypropylene oxide PPO compared to the total chain length. P123 is a ternary polyether and is produced industrially by BASF. It consists of three blocks, where the middle one is PPO and the outer blocks are polyethylene oxide PEO. The letter P stands for pasty while the first two numbers in P123 multiplied with 300 equal the molar mass and the last number multiplied with 10 equals the mass proportion of PEO. The formation of micelles can be triggered on purpose with a change in temperature. Micelles are present at approximately room temperature \cite{Manet2011}, which transform from spherical to worm-like micelles at higher temperatures. Above a certain concentration of 30 weight percent, the micelles will form a liquid crystal. In my work I first examined P123 with X-ray scattering. Unlike other methods, X-ray scattering gives direct information about the morphology of the substances. X-ray scattering can also be used to study the mixture of P123 with CdS and indicates, whether the goal of encapsulate stable CdS nanoparticles in P123 could be achieved. To stabilize the nanoparticles, it is first necessary to find the right temperatures for both the staring point and the end point of the stabilization process. For this purpose, P123 has to be examined much more precisely than the current state of knowledge in the literature. For this purpose as well as for the analysis of the stabilized CdS, I have developed a new instrument at the chair of X-ray microscopy, as well as a temperature controllable sample holder for liquids in vacuum to decipher morphological properties from scattering amplitudes and angles. This X-ray scattering system was designed and built in order to be able to measure P123 in small concentrations in the laboratory. Small-angle X-ray scattering is particularly suitable as a measurement method, since the sample can be analyzed with a high statistical relevance in liquid and in various concentrations. For the concentrations 5, 10 and 30 wtp, the temperature-dependent behavior of P123 could be precisely measured and presented using small-angle X-ray scattering. The sizes of the unimers and micelles could be determined for 5 wtp without an absolute calibration. With a newly introduced parameter kappa, the dehydration of the micelles with increasing temperature could be estimated, despite the lack of the absolute calibration for this concentration, as well as a hysteresis between heating and cooling. Smaller temperature steps were chosen for the concentration of 10 wtp, furthermore the measurements were also absolutely calibrated. The sizes and scattering length densities SLDs of the unimers and micelles were precisely determined and a complete shape-phase diagram was created. Also for this concentration, a hysteresis was clearly shown in terms of size, SLD and the parameter kappa, as well as dehydration of the micellar nucleus. This proves that the parameter kappa is suitable for making statements about the hydrogenation and hysteresis of complex core-shell models in the case of measurements that are not absolutely calibrated. For the concentration of 30 wtp an FCC structure could be detected between 23°C and 35°C. The lattice constant of the FCC structure increases from 260 A to 289 A depending on the temperature. By mixing two solutions, CdCl2 in a 30 wtp P123 and Na2S in 30 wtp P123, CdS could be successfully stabilized. The yellow coloration of the solution, and thus the formation of CdS, was examined as a function of time with the help of a camera. It was found that the formation of the CdS nanoparticles takes between 30 and 300 seconds, depending on the concentration and temperature protocol and follows a logistical growth function. Higher concentrations of CdS cause a more rapid increase in growth function. Using UV-Vis spectroscopy it could be shown that the band gap of CdS remains constant at 2.52 eV with increasing concentration. The shift in the band gap of approximately 0.05 eV compared to the solid state, indicates a CdS particle diameter of 80 A. With SAXS it could be shown that the liquid-crystalline structure of the P123 does not change at two different concentrations of CdS, of 0.005 and 0.1 M. The CdS is stabilized between the micelles due to the formation of the liquid crystal and in the core of the micelles due to their hydrophobicity. The initially defined criteria for successful stabilization were met. P123 is an excellent polymer to stabilize hydrophobic CdS nanoparticles, both through the formation of a liquid crystal and in the core of the micelles. KW - Röntgen-Kleinwinkelstreuung KW - Polymere KW - Cadmiumsulfid KW - Röntgen-Weitwinkelstreuung KW - Nanopartikel KW - Stabilisierung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238443 ER - TY - THES A1 - Leisegang, Markus T1 - Eine neue Methode zur Detektion ballistischen Transports im Rastertunnelmikroskop: Die Molekulare Nanosonde T1 - A new method for detecting ballistic transport in the scanning tunneling microscope: The molecular nanoprobe N2 - Verlustarmer Ladungsträgertransport ist für die Realisierung effizienter und kleiner elektronischer Bauteile von großem Interesse. Dies hilft entstehende Wärme zu minimieren und den Energieverbrauch gleichzeitig zu reduzieren. Einzelne Streuprozesse, die den Verlust bei Ladungsträgertransport bestimmen, laufen jedoch auf Längenskalen von Nano- bis Mikrometern ab. Um diese detailliert untersuchen zu können, bedarf es Messmethoden mit hoher zeitlicher oder örtlicher Auflösung. Für Letztere gibt es wenige etablierte Experimente, häufig basierend auf der Rastertunnelmikroskopie, welche jedoch verschiedenen Einschränkungen unterliegen. Um die Möglichkeiten der Detektion von Ladungsträgertransport auf Distanzen der mittleren freien Weglänge und damit im ballistischen Regime zu verbessern, wurde im Rahmen dieser Dissertation die Molekulare Nanosonde charakterisiert und etabliert. Diese Messmethode nutzt ein einzelnes Molekül als Detektor für Ladungsträger, welche mit der Sondenspitze des Rastertunnelmikroskops (RTM) wenige Nanometer entfernt vom Molekül in das untersuchte Substrat injiziert werden. Die hohe Auflösung des RTM in Kombination mit der geringen Ausdehnung des molekularen Detektors ermöglicht dabei atomare Kontrolle von Transportpfaden über wenige Nanometer. Der erste Teil dieser Arbeit widmet sich der Charakterisierung der Molekularen Nanosonde. Hierfür werden zunächst die elektronischen Eigenschaften dreier Phthalocyanine mittels Rastertunnelspektroskpie untersucht, welche im Folgenden zur Charakterisierung des Moleküls als Detektor Anwendung finden. Die anschließende Analyse der Potentiallandschaft der Tautomerisation von H2Pc und HPc zeigt, dass die NH- Streckschwinung einem effizienten Schaltprozess zu Grunde liegt. Darauf basierend wird der Einfluss der Umgebung anhand von einzelnen Adatomen sowie des Substrats selbst auf den molekularen Schalter analysiert. In beiden Fällen zeigt sich eine signifikante Änderung der Potentiallandschaft der Tautomerisation. Anschließend wird der Einfluss geometrischer Eigenschaften des Moleküls selbst untersucht, wobei sich eine Entkopplung vom Substrat auf Grund von dreidimensionalen tert-Butyl-Substituenten ergibt. Zusätzlich zeigt sich bei dem Vergleich von Naphthalocyanin zu Phthalocyanin der Einfluss lateraler Ausdehnung auf die Detektionsfläche, was einen nicht-punktförmigen Detektor bestätigt. Im letzten Abschnitt werden zwei Anwendungen der Molekularen Nanosonde präsentiert. Zunächst wird mit Phthalocyanin auf Ag(111) demonstriert, dass die Interferenz von ballistischen Ladungsträgern auf Distanzen von wenigen Nanometern mit dieser Technik detektierbar ist. Im zweiten Teil zeigt sich, dass der ballistische Transport auf einer Pd(110)-Oberfläche durch die anisotrope Reihenstruktur auf atomarer Skala moduliert wird. N2 - Low-loss charge carrier transport is of great interest for the realization of efficient and small electronic components. Improvements would minimize heat generation and reduce energy consumption at the same time. However, individual scattering processes that determine the loss in charge carrier transport occur on length scales from nanometers to micrometers. To study these in detail, measurement methods with high temporal or spatial resolution are required. For the latter, few established experiments exist, often based on scanning tunneling microscopy, which are however subject to various limitations. In order to improve the possibilities of detecting charge carrier transport at distances of the mean free path and thus in the ballistic regime, the molecular nanoprobe was characterized and established in this dissertation. This measurement technique uses a single molecule as a detector for charge carriers, which are injected into the substrate under investigation with the scanning tunneling microscope (STM) tip a few nanometers away from the molecule. The high resolution of the STM combined with the small size of the molecular detector allows atomic control of transport paths over a few nanometers. The first part of this work is devoted to the characterization of the molecular nanoprobe. For this purpose, the electronic properties of three phthalocyanines are first investigated by scanning tunneling spectroscopy, which will be applied in the following studies to characterize the molecular detector. The subsequent analysis of the potential landscape for tautomerization within H2Pc and HPc reveals that the N-H stretching mode underlies an efficient switching process. Based on these findings, the influence of the direct environment on the molecular switch is analyzed by means of individual adatoms as well as the substrate itself. In both cases, a significant change in the potential landscape of the tautomerization is shown. Subsequently, the influence of geometric properties of the molecule itself is investigated, revealing a decoupling from the substrate due to three-dimensional tert-butyl substituents. In addition, the comparison through naphthalocyanine to phthalocyanine reveals the influence of lateral expansion on the detection area, confirming a non-point molecular detector. In the last section, two applications of the molecular nanoprobe are presented. First, using phthalocyanine on Ag(111), it is demonstrated that the interference of ballistic charge carriers at distances of a few nanometers is detectable with this technique. In the second part, it is shown that the anisotropic Pd(110) surface structure leads to a strong modulation of the ballistic transport on the atomic scale. KW - Rastertunnelmikroskopie KW - Ladungstransport KW - Molekül KW - Nanosonde KW - Ballistischer Transport KW - Molekulare Sonde KW - Tautomerisation KW - Molekularer Schalter Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250762 ER - TY - THES A1 - Bathon, Thomas T1 - Gezielte Manipulation Topologischer Isolatoren T1 - Deliberate manipulation of topological insulators N2 - Neue physikalische Erkenntnisse vervollständigen die Sicht auf die Welt und erschließen gleichzeitig Wege für Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festkörperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien geprägt. Eine fundamentale Eigenschaft ist ihre Resistenz gegenüber solchen Störungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberflächenzuständen - sind vielversprechende Kandidaten zur Realisierung breitgefächerter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verständnis der grundlegenden, physikalischen Zusammenhänge. Diese kommen vor allem an Grenzflächen zum Tragen, weshalb oberflächensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Veränderung der Element-Ausgangskonzentration während dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 führt zur Realisierung eines topologischen p-n Übergangs innerhalb des Kristalls. Bei einem spezifischen Verhältnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegenüberliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Elementüberschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines Übergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der räumlich auflösenden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des Übergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdrückung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegensätzlichen Dotiercharakters vernachlässigbar, sodass der topologische Oberflächenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Darüber hinaus tritt der Übergangsbereich in energetischen und räumlichen Größenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Veränderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische Störungen die Möglichkeit zur Prüfung des topologischen Oberflächenzustandes auf dessen Widerstandsfähigkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist ursächlich für den topologischen Schutz des Oberflächenzustandes, weshalb magnetische Oberflächen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten führen kann. Die Oberflächendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus führen. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandlücke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberflächenzustand bevölkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. Für Mn-Adatome kann Rückstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die überraschenderweise starken und fokussierten Streuintensitäten über mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und Röntgendichroismus-Untersuchungen bestätigt wird. Gleichwohl wird für die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu führt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitläufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zustände und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in ähnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandlücke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: Während sie einerseits eine magnetisch induzierte Bandlücke öffnen, besetzen sie diese durch Störstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer räumlichen Verteilung aufgezeichnet werden und führt zu einer Mobilitäts-Bandlücke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 bestätigt werden. N2 - New physical insights make up for a more complete vision onto the world and allow for subsequent experiments and technical implementations. The last decade in solid state physics was increasingly focusing on the theoretical and experimental discovery and investigation of topological materials. A very basic property is their robustness against perturbations not violating certain physical symmetries. Especially Topological Insulators - semiconductors with insulating bulk but conducting and spin-polarized surface states - are promising candidates for the attainment of a wide spectrum of spintronics applications. Till realization of quantum computing and up to now futuristically sounding concepts a deeper understanding of the fundamental physics is required. Since topological properties usually manifest at boundaries, surface sensitive techniques played a substantial role in the exploration of Topological Insulators. Within this thesis structural, electronic and magnetic properties of Topological Insulators are investigated by means of scanning tunneling microscopy and spectrocopy and supporting methods. Variation of the initial elemental concentration in the crystal growth process of the prototypical Topological Insulator Bi2Te3 leads to the realization of a topological p-n junction within the crystal. At a certain elemental ratio in the melt excess of Bi and Te will be obtained at the opposing ends of the crystal due to the different solidification temperatures. In these areas vacancies and substitutions give rise to p- and n-type doping, respectively. This implies the very existence of an intrinsic transition area, which can by verified by transport experiments. The junction area can be localized and structurally as well as spectroscopically examined by means of scanning tunneling microscopy. It can be shown that in the vicinity of this transition region both types of characteristic defects are present. This indicates that defects are not suppressed but compensated in this region. Nevertheless their contribution to bulk transport is minimal because of their opposite doping character, letting the topological surface state dominate the relevant physical properties. Furthermore the transition region meets the energetic and spatial dimensions that are promising for applications at room temperature. Besides the manipulation of Topological Insulators by using intrinsic crystallographic defects, magnetic perturbations are a powerful method to test the robustness of and the interaction with the topological surface state. Since Topological Insulators are initially protected by the time-reversal symmetry, magnetic surface and bulk doping can lift this protection and give rise to novel phenomena. Surface magnetic doping of Topological Insulators with Co- and Mn-adatoms can yield for a rigid band bending and a shift of the Fermi level. At a well defined amount of dopants in the p-type Bi2Te3 the Fermi energy lies in the bulk bandgap. Therefore, at energies close to the Fermi level only the topological surface state is occupied and can mediate inter-adsorbate interactions. In the case of Mn-doping backscattering is observed that is forbidden on undoped Topological Insulators due to the time-reversal symmetry. As evidenced by theory and x-ray magnetic circular dichroism ferromagnetic coupling between adsorbates gives rise to surprisingly strong and focused scattering intensities. However, long-ranging ferromagnetic order is absent but superparamagnetic characteristics can be detected. In contrast to surface doping sufficient bulk doping of Sb2Te3 with V-atoms can give rise to long-range ferromagnetic order. Surprisingly, a spectral bandgap is absent despite the general assumed theoretical framework of time-reversal symmetry gapped Dirac states and the discovery of the quantum anomalous hall effect in similar sample systems. This is figured out to be a direct consequence of the dual nature of the magnetic dopants: while on the one hand opening up a magnetization induced gap, they fill it by creating intragap states. Their local character, visualized by mapping of their spatial distribution, leads to a mobility gap that is confirmed by direct comparison of the undoped and V-doped Topological Insulator by means of Landau level spectroscopy. KW - Rastertunnelmikroskopie KW - Topologischer Isolator KW - Dotierung KW - Magnetismus KW - Röntgendichroismus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239204 ER - TY - THES A1 - Scheuermann, Julian T1 - Interbandkaskadenlaser für Anwendungen in der Absorptionsspektroskopie T1 - Interband cascade lasers for applications in absorption spectroscopy N2 - Das Ziel dieser Arbeit war die Entwicklung und Weiterentwicklung von Laserlichtquellen basierend auf der Interbandkaskadentechnologie in einem Wellenlängenbereich von ca. 3 bis 6 µm. Der Fokus lag dabei auf der Entwicklung von Kantenemitter-Halbleiterlasern, welche bei verschiedensten Emissionswellenlängen erfolgreich hergestellt werden konnten. Dabei wurde auf jeweilige Herausforderungen eingegangen, welche entweder durch die Herstellung selbst oder der anwendungstechnischen Zielsetzung bedingt war. Im Rahmen dieser Arbeit wurden verschiedene, spektral einzelmodige Halbleiterlaser im angesprochenen Wellenlängenbereich entwickelt und hergestellt. Basierend auf dem jeweiligen Epitaxiematerial und der angestrebten Emissionswellenlänge wurden Simulationen der optischen Lasermode durchgeführt und die grundlegenden für die Herstellung notwendigen Parameter bestimmt und experimentell umgesetzt. Des Weiteren wurden die verwendeten Verfahren für den jeweiligen Herstellungsprozess angepasst und optimiert. Das umfasst die in den ersten Kapiteln beschriebenen Schritte wie optische Lithografie, Elektronenstrahllithografie, reaktives Trockenätzen und verschiedene Arten der Materialdeposition. Mit einer Emissionswellenlänge von 2,8 µm wurde beispielsweise der bislang kurzwelligste bei Raumtemperatur im Dauerstrichbetrieb betriebene einzelmodige Interbandkaskadenlaser hergestellt. Dessen Leistungsmerkmale sind mit Diodenlasern im entsprechenden Emissionsbereich vergleichbar. Somit ergänzt die Interbandkaskadentechnologie bestehende Technologien nahtlos und es ist eine lückenlose Wellenlängenabdeckung bis in den mittleren Infrarotbereich möglich. Je nach Herstellungsprozess wurde außerdem auf die verteilte Rückkopplung eingegangen und die Leistungsfähigkeit des verwendeten Metallgitterkonzeptes anhand von Messungen an spektral einzelmodigen Bauteile aufgezeigt. Es wurden aber auch die je nach Zielsetzung unterschiedlichen Herausforderungen aufgezeigt und diskutiert. Für eine Anwendung wurden spezielle Laserchips mit zwei einzelmodigen Emissionswellenlängen bei 3928 nm und 4009 nm entwickelt. Die beiden Wellenlängen sind für die Detektion von Schwefeldioxid und Schwefelwasserstoff geeignet, welche zur Überwachung und Optimierung der Schwefelgewinnung durch das Claus-Verfahren notwendig sind. Bei der Umsetzung wurden auf einzelnen Chips zwei Laseremitter in einem Abstand von 70 µm platziert und mit je einem Metallgitter versehen. Das verwendete Epitaxiematerial war so konzipiert, dass es optimal für beide Zielwellenlängen verwendet werden kann. Die geforderten Eigenschaften wurden erfüllt und die Bauteile konnten erfolgreich hergestellt werden. Die Emissionseigenschaften und das spektrale Verhalten wurde bei beiden Zielwellenlängen bestimmt. Einzeln betrachtet erfüllen beide Emitter die notwendigen Eigenschaften um für spektroskopische Anwendungen eingesetzt werden zu können. Ergänzend wurde zum einen das Abstimmverhalten der Emissionswellenlänge in Abhängigkeit der Modulationsfrequenz des Betriebsstromes untersucht und zusätzlich die thermische Abhängigkeit der Betriebsparameter beider Kanäle zueinander bestimmt. Diese Abhängigkeit ist für eine simultane Messung mit beiden Kanälen notwendig. Das Konzept mit mehreren Stegwellenleitern pro Laserchip wurde in einem weiteren Fall noch stärker ausgearbeitet. Denn je nach Komplexität eines Gasgemisches sind zur Bestimmung der einzelnen Komponenten mehr Messpunkte bzw. Wellenlängen notwendig. Im zweiten Fall ist die Analyse der Kohlenwasserstoffe Methan, Ethan, Propan, Butan, Iso-Butan, Pentan und Iso-Pentan von Interesse, welche als Hauptbestandteile von Erdgas z.B. in Erdgasaufbereitungsanlagen oder zur Bestimmung des Heizwertes analysiert werden müssen. Die genannten Kohlenwasserstoffe zeigen ein starkes Absorptionsverhalten im Wellenlängenbereich von 3,3 bis 3,5 µm. Auf dem entsprechend angepassten Interbandkaskadenmaterial wurden Bauteile mit neun Wellenleitern pro Laserchip hergestellt. Mithilfe der neun einzelmodigen Emissionskanäle konnte ein Bereich von bis zu 190 nm (21 meV, 167 cm-1) adressiert werden. Außerdem wurde der sich mit zunehmender Wellenlänge ändernde Schichtaufbau und dessen Einfluss auf die Bauteileigenschaften diskutiert. Die Leistungsdaten der langwelligsten Epitaxie waren im Vergleich deutlich schwächer. Um diesen Nachteil zu kompensieren, wurde eine spezielle Wellenleitergeometrie mit doppeltem Steg genutzt. Die Eigenschaften des Konzeptes wurden zuerst mittels Simulation untersucht und ein entsprechendes Herstellungsverfahren entwickelt. Mit der Simulation als Grundlage wurden die verschiedenen Prozessparameter über mehrere Prozessläufe iterativ optimiert und somit die Performance der Laser verbessert. Auch mit diesem Verfahren konnte ausreichende Kopplung an das Metallgitter erzielt werden. Abschließend wurden mit diesem Herstellungsverfahren einzelmodige Laser im Wellenlängenbereich von 5,9 bis über 6 Mikrometern realisiert. Diese Laser emittierten im Dauerstrichbetrieb bei einer maximalen Betriebstemperatur von -2 °C. Insgesamt wurde anhand der im Rahmen dieser Arbeit entwickelten Bauteilen und de ren Charakterisierung gezeigt, dass diese die Anforderungen von TLAS Anwendungen erfüllen. Jedoch konnte nur auf einen Teil der Möglichkeiten eingegangen werden, den die Interbandkaskadentechnologie bietet, denn die angesprochenen Einsatzgebiete stellen nur einzelne grundlegende Möglichkeiten dieser Technologie mit Schwerpunkt auf laserbasierte Lichtquellen dar. Zusammenfassend kann allerdings gesagt werden, dass sich die Interbandkaskadentechnologie etabliert hat. Gerade durch die gezeigten Leistungsdaten bei den Wellenlängen um 2,9 µm, 3,4 µm und 4,0 µm im Dauerstrichbetrieb bei Raumtemperatur wird ersichtlich, dass im Bereich der Sensorik die ICL Technologie in Bezug auf niedriger Strom- bzw. Leistungsaufnahme quasi konkurrenzlos ist. Sicherlich werden die Anwendungsgebiete in Zukunft noch vielfältiger. Denn es sind auf jeden Fall weitere Fortschritte in Richtung höherer Emissionswellenlängen, deutlich höherer Betriebstemperaturen, verbreiterte Emissionsbereiche oder gänzlich andere Bauteil Konzepte wie z.B. für Frequenzkämme bzw. Terahertz Anwendungen zu erwarten. Diese Entwicklung betrifft nicht nur den Einsatz als Lichtquelle, denn auch Interbandkaskadendetektoren bzw. Solarzellen wurden schon realisiert und werden weiterentwickelt. N2 - The work aimed for the development and enhancement of laser sources in the wavelength range from 3 to 6 μm, based on the interband cascade technology. The focus here was to work on edge-emitting semiconductor lasers, which were successfully realized at various wavelengths. In each chapter, the respective challenges were discussed, resulting either from the fabrication process itself or from the underlying application requirements. Within the scope of this work, various spectrally single-mode semiconductor lasers were developed and fabricated within the abovementioned wavelength range. Based on the particular epitaxial material and the targeted emission wavelength, optical mode simulations were performed, the basic processing parameters were derived and later experimentally realized. Furthermore, the methods for the respective manufacturing processes were varied and optimized. This includes processing steps like optical lithography, electron lithography, reactive ion etching and various kinds of material deposition, as described in the first chapters. For example, with an emission wavelength of 2.8 μm in continuous wave mode at room temperature, we demonstrated the shortest ICL DFB emission [SWE+15]. Its performance characteristics are comparable to conventional diode lasers in the same wavelength region. Therefore, the interband cascade technology supplements existing technologies and enables gap-free wavelength coverage up to the mid infrared region. Depending on the fabrication process, the distributed feedback and the efficiency of the used metal grating approach was shown by the demonstration of various spectrally singe mode devices and their performance figures. The various challenges were highlighted in terms of their individual requirements. Customized laser chips with two single-mode emission wavelengths at 3928 nm and 4009 nm were developed for one application [SWB+17]. Both wavelengths are useful for the detection of sulfur oxide and hydrogen sulfide within the Claus process, allowing monitoring and optimization when the concentration levels of these gases are known. Both emitters were realized on single chips, with a distance of 70 μm between each other and each ridge was provided with an individual metal grating. The underlying epitaxial material was designed that it could be optimally used for both target wavelengths. Ultimately, the requirements were met and the devices were fabricated successfully. The performance figures and the spectral behavior were determined at both target wavelengths. Individually, both emitters are capable of being used in spectroscopic applications. In addition, the tuning rate of the emission wavelength depending on the current modulation frequency and the thermal crosstalk between both emitters were investigated. Knowledge of the thermal crosstalk is of interest, when both emitters are used simultaneously. The concept of multiple ridge waveguides per laser chip was further elaborated in another case. Depending on the complexity of the gas mixture, more measurement points/wavelengths are required, to determine the individual components. In a second approach, mixtures of hydrocarbons such as methane, ethane, propane, butane, isobutene, pentane and isopentane are of interest. These main components of natural gas are tracked in natural gas processing plants, for example, or used to determine the calorific value. These hydrocarbons show strong absorption features in the 3.3 to 3.5 μm wavelength range. Devices with nine emitters per chip were fabricated on the appropriately adjusted epitaxial material. These nine single mode emission channels were able to cover a range of 190 nm (21 meV, 167 cm-1). In addition, the changes of the epitaxial structure with respect to increasing emission wavelength and their influence on the device behavior are discussed. The performance data of the longest wavelength epitaxy were significantly weaker in comparison. To compensate for that drawback, a special waveguide design with a double ridge structure was used. The properties of this concept were first investigated by means of simulation and an appropriate processing route was determined. Using the simulation as a basis, the design parameters were iteratively optimized over multiple fabrication runs and the performance of the lasers was improved. With this approach, sufficient coupling of the laser mode to the metal grating was also realized. Finally, single-mode lasers in the wavelength range from 5.9 to over 6 μm were realized using the double ridge fabrication technique. These lasers were operated in continuous wave mode at a maximum operation temperature of -2 °C. Overall, the devices developed within this work and their characteristics show, that the requirements for TLAS applications are met. However, only a part of the possibilities of the interband cascade technology could be addressed, since the discussed application areas are focused on laser-based light sources. In summary, interband cascade technology has established itself. In particular, the performance data at 2.9 μm, 3.4 μm and 4.0 μm in continuous wave operation at room temperature show that the ICL technology is almost unrivaled in terms of low current/power consumption. Certainly, the areas of application will be even more diverse in the future. Further progress in terms of higher emission wavelengths, higher operation temperatures, and broadband wavelength emission can be expected. Other concepts such as frequency combs [BFS+18, SWP+17] or terahertz [VM99] emission can also be realized. This development does not only concern the light sources, also interband cascade detectors or solar cells [YTK+10, HTR+13, TK15, HLL+18, LLL+17a, LLL+17b] have already been realized and are being further developed. KW - Halbleiterlaser KW - Interbandkaskadenlaser KW - Absorptionsspektroskopie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251797 ER - TY - THES A1 - Vogt, Matthias Guido T1 - Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung T1 - Electronic Properties of honeycomb lattices with strong spin-orbit coupling N2 - Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberflächen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verstärkt werden und damit eine Bandlücke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfläche eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausführlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualität erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage für Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zusätzlich eine Temperaturabhängigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberflächenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zurückzuführen sein könnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabhängige Austauschaufspaltung reproduziert werden. Darüber hinaus konnten sechs verschieden magnetische Domänen beobachtet werden. Zusätzlich sind auf der Oberfläche magnetische Streifen auszumachen, die möglicherweise auf einer Spinspirale basieren. Als Grundlage für die mögliche zukünftige Erzeugung Graphen-artiger Molekülgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Moleküle richten sich dabei nach der Oberflächenstruktur des Silber aus und bilden längliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windmühlen-artige Ausrichtung der Moleküle auf der Oberfläche beobachtet. Auf den mit den Molekülen bedeckten Stellen der Oberfläche wurde eine Verschiebung des Ag-Oberflächenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Moleküle zu erklären sein könnte. N2 - In this thesis, the electronic properties of graphene on metal surfaces were investigated by scanning tunneling microscopy and quasiparticle interference (QPI) measurements. In order to enhance the spin orbital interaction of the graphene and possibly observe a band gap at the K-point of the band structure via QPI, substrates with heavy atoms were used. To test the ability to measure QPI on graphene, graphene was produced on the surface of a SiC(0001) crystal by heating and examined with a scanning tunneling microscope. This system has already been described in detail in the literature and I was able to successfully reproduce QPI measurements of clearly recognizable scattering rings, which are due to the Dirac cones of the graphene at the K-point Afterwards, graphene was produced by a well-known process by applying ethylene to a heated Ir(111) substrate. This gr/Ir(111) system also served as a basis for intercalation experiments of bismuth (gr/Bi/Ir(111)) and gadolinium (gr/Gd/Ir(111)) between the graphene and the substrate. On gr/Bi/Ir(111), a network of dislocation lines known from literature was observed, which also showed a temperature dependence. In the attempt to intercalate gadolinium, two different surface structures were observed which could be due to a different arrangement or quantity of the intercalated gadolinium. However, on none of these three systems scattering rings were observed by QPI. In preparation for the intercalation of gadolinium, its growth and magnetic properties were investigated on a W(110) substrate. A temperature-dependent exchange splitting of the surface density of states known from the literature could be reproduced. In addition, six different magnetic domains and magnetic stripes were observed on the surface, which may be based on a spin spiral. The growth of H-TBTQ and Me-TBTQ on Ag(111) was investigated as a basis for a possible subsequent generation of graphene-like molecular lattices in the future. The molecules are aligned to the surface structure of the silver and form elongated islands with edges in three preferred directions. H-TBTQ also appeared in a second, windmilllike orientation of the molecules on the surface. A shift of the Ag surface state was observed on the surface areas covered by the molecules, which might be explained by a charge transfer from the Ag(111) substrate to the TBTQ molecules. KW - Spin-Bahn-Wechselwirkung KW - Graphen KW - Rastertunnelmikroskopie KW - Wabengitter KW - Tribenzotriquinacen KW - Quasiteilcheninterferenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207506 ER - TY - THES A1 - Anneser, Katrin T1 - Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung T1 - Electric double layer capacitors for stabilizing intermittent photovoltaic power N2 - Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren. N2 - The increased usage of regenerative energy sources leads to more unpredictable fluctuations in power output, as wind power and photovoltaics depend on natural conditions. Especially short-term fluctuations in the range of seconds to minutes, which occur in solar cells due to the shading by passing clouds, have received little attention so far. Corresponding short-term storage units that can be used to smooth these power fluctuations must have a high cycle stability. In the scope of this thesis the suitability of electrochemical double layer capacitors for coupling with silicon solar cells and organic solar modules was investigated with simulations and measurements. Processing methods and aging of electrochemical double layer capacitors in respect to an integrated system consisting of both components - already discussed in the literature as the so-called photocapacitor - were considered. As the liquid electrolyte was replaced by a polymer gel electrolyte based on polyvinyl alcohol and an acid in order to enable printability of the entire electrochemical double-layer capacitor. An increase of the capacitance to the level of the capacitance for electrodes with liquid electrolytes was achieved by improved processing in which a larger proportion of the specific area of the porous carbon electrodes could be wetted by the electrolyte and thus used for storage. In the application as coupled system the electrochemical double-layer capacitor must withstand the same environmental conditions with regard to temperature and humidity as the solar cell. Extensive aging tests were carried out and it was found that, although the capacitance decreases when the water-containing polymer gel electrolyte dries out, remoistening also regenerates the storage capacitance. A detailed analysis of the power fluctuations, which were measured under real conditions with small organic solar modules using a specially developed MPP measuring device, was carried out to determine the appropriate characteristics of the electrochemical double layer capacitor. Using a mathematically smoothed mean curve, it was determined which amounts of energy have to be stored in the short-term storage device for which time in order to achieve the smoothed curve. From the statistics of the fluctuations a capacitance could be calculated which was used as a guide value in the simulations and could then be compared to the impact of other capacities. In addition to ideal MPP tracking for different types of solar cells and lighting profiles, the simulation was also able to model the coupling of solar cell and electrochemical double layer capacitor with two different operating strategies. On the one hand a fixed load resistance was used, on the other hand a target voltage for the short-term storage device and thus also for the solar cell was specified. The load resistance was variably adapted so that the target voltage was reached. Both operating methods show an energy loss compared to the MPP tracked solar cell without storage component, but lead to smoothing of the power output of the coupled system. The simulation could be validated for silicon solar cells with a demonstrator test in the laboratory and for organic solar cells on the external test setup under real conditions. Overall, the use of electrochemical double layer capacitors results in a promising smoothing of the power fluctuations of solar cells. KW - Energie KW - Photovoltaik KW - Energiespeicher Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199339 ER - TY - THES A1 - Langer, Fabian T1 - Wachstum und Charakterisierung von 1,0 eV GaInNAs-Halbleitern für die Anwendung in Mehrfachsolarzellen T1 - Growth and characterization of 1.0 eV GaInNAs-semiconductors for the application in multi-junction solar cells N2 - Im Rahmen dieser Arbeit wurden GaInP/GaAs/GaInNAs 3J-Mehrfachsolarzellen in einem MBE/MOVPE-Hybridprozess hergestellt und untersucht. Der verwendete Hybridprozess, bei dem nur die GaInNAs-Teilsolarzelle mittels MBE hergestellt wird, kombiniert diese beiden Technologien und setzt sie entsprechend ihrer jeweiligen Vorteile ein. Die gezeigten Ergebnisse bestätigen grundsätzlich die Machbarkeit des Hybridprozesses, denn eine Degradation des mittels MBE hergestellten GaInNAs-Materials durch die Atmosphäre im MOVPE-Reaktor konnte nicht festgestellt werden. Dieses Resultat wurde von im Hybridprozess hergestellten 3J-Mehrfachsolarzellen, die GaInNAs-Teilsolarzellen enthalten, bekräftigt. Die offene Klemmspannung einer gezeigten Solarzelle erreichte bereits 2,59 V (AM1.5d) bzw. 2,48 V (AM0) und liegt damit jeweils über einer als Referenz hergestellten 2J-Mehrfachsolarzelle ohne GaInNAs. Die mittlere interne Quanteneffizienz der enthaltenen GaInNAs-Teilsolarzelle liegt bei 79 %. Die Berechnungen auf Grundlage dieser Effizienz unter Beleuchtung mit AM1.5d und unter Beleuchtung mit AM0 zeigten, dass nicht die enthaltene GaInNAs-Teilsolarzelle Strom limitierend wirkt, sondern die mittels MOVPE gewachsene GaInP-Teilsolarzelle. Die experimentell bestimmte Kurzschlussstromdichte der hergestellten Mehrfachsolarzelle ist wegen dieser Limitierung etwas geringer als die der 2J-Referenzsolarzelle. Der MOVPE-Überwachsvorgang bietet zwar noch weiteres Verbesserungspotential, aber es ist naheliegend, dass der Anwachsvorgang auf dem MBE-Material soweit optimiert werden kann, dass die aufgewachsenen GaInP- und GaAs-Schichten frei von Degradation bleiben. Damit bietet der Hybridprozess perspektivisch das Potential günstigere Produktionskosten in der Epitaxie von Mehrfachsolarzellen mit verdünnten Nitriden zu erreichen als es ausschließlich mittels MBE möglich ist. Im Vorfeld zur Herstellung der 3J-Mehrfachsolarzellen wurden umfassende Optimierungsarbeiten des MBE-Prozesses zur Herstellung der GaInNAs-Teilsolarzelle durchgeführt. So wurde insbesondere festgestellt, dass das As/III-Verhältnis während dem Wachstum einen entscheidenden Einfluss auf die elektrisch aktive Dotierung des GaInNAs-Materials besitzt. Die elektrisch aktive Dotierung wiederum beeinflusst sehr stark die Ausdehnung der Raumladungszone in den als p-i-n-Struktur hergestellten GaInNAs-Solarzellen und hat damit einen direkten Einfluss auf deren Stromerzeugung. In der Tendenz zeigte sich eine Zunahme der Stromerzeugung der GaInNAs-Teilsolarzellen bei einer gleichzeitigen Abnahme ihrer offenen Klemmspannung, sobald das As/III-Verhältnis während des Wachstums reduziert wurde. Durch eine sehr exakte Kalibration des As/III-Verhältnisses konnte ein bestmöglicher Kompromiss zwischen offener Klemmspannung und Stromerzeugung gefunden werden. Eine gezeigte GaInNAs-Einfachsolarzelle erreichte eine mittlere interne Quanteneffizienz von 88 % und eine offene Klemmspannung von 341 mV (AM1.5d) bzw. 351 mV (AM0). Berechnungen auf Grundlage der Quanteneffizienz ergaben, dass diese Solarzelle integriert in eine 3J-Mehrfachsolarzelle unter dem Beleuchtungsspektrum AM1.5g eine Stromdichte von 14,2 mA/cm^2 und unter AM0 von 17,6 mA/cm^2 erzeugen würde. Diese Stromdichten sind so hoch, dass diese GaInNAs-Solarzelle die Stromproduktion der GaInP- und GaAs-Teilsolarzellen in einer gängigen Mehrfachsolarzelle erreicht und keine Ladungsträgerverluste auftreten würden. Aufgrund ihrer höheren offenen Klemmspannung gegenüber einer Ge-Teilsolarzelle bietet diese GaInNAs-Teilsolarzelle das Potential die Effizienz der Mehrfachsolarzelle zu steigern. Messungen der Dotierkonzentration in der GaInNAs-Schicht dieser Solarzelle ergaben extrem geringe Werte im Bereich von 1x10^14 1/cm^3 bis 1x10^15 1/cm^3 (p-Leitung). In Ergänzung zu den Optimierungen des As/III-Verhältnisses konnte gezeigt werden, dass sich ein Übergang von p- zu n-Leitung im GaInNAs mit der Verringerung des As/III-Verhältnisses erzeugen lässt. Nahe des Übergangsbereiches wurden sehr geringe Dotierungen erreicht, die sich durch eine hohe Stromproduktion aufgrund der Ausbildung einer extrem breiten Verarmungszone gezeigt haben. Durch eine reduzierte offene Klemmspannung der bei relativ geringen As/III-Verhältnissen hergestellten Solarzellen mit n-leitendem GaInNAs konnte auf das Vorhandensein von elektrisch aktiven Defekten geschlossen werden. Generell konnten die gemessenen elektrisch aktiven Dotierkonzentrationen im Bereich von üblicherweise 10^16 1/cm^3 mit hoher Wahrscheinlichkeit auf elektrisch aktive Kristalldefekte im GaInNAs zurückgeführt werden. Eine Kontamination des Materials mit Kohlenstoffatomen in dieser Größenordnung wurde ausgeschlossen. N2 - In scope of this work GaInP/GaAs/GaInNAs 3J multi-junction solar cells have been produced by a MBE/MOVPE hybrid process and were investigated. The applied hybrid process, which only produces the GaInNAs sub cell by means of MBE, combines both technologies and uses them according to their advantages. The shown results confirm the feasibility of the hybrid process in principle, because a degradation of the GaInNAs material grown by MBE could not be found. This result was reconfirmed by 3J multi-junction solar cells, which contain GaInNAs sub cells. The open circuit voltage of one shown solar cell already reached 2.59 V (AM1.5d) and 2.48 V (AM0), respecitvely and outperformed in terms of voltage a produced 2J multi-junction solar cell without GaInNAs. The averaged internal quantum efficiency of the included GaInNAs sub cell reached 79 \%. The calculations based on this efficiency under illumantion with AM1.5d and under illumination with AM0 showed that not the included GaInNAs sub cell is limiting the current but the by means of MOVPE grown GaInP sub cell. The short current density under experimental conditions is somewhat lower than the one of the 2J reference solar cell due to this limitation. The MOVPE overgrowth indeed offers further potential for optimization, however, it is plausible that the initial growth procedure running on the MBE material can be optimized far enough to the point that the overgrown GaInP and GaAs layer remain degradation free. Thereby, the hybrid process offers perspectively the potential to reach lower production costs in the epitaxy of multi-junction solar cells including diluted nitrides as it is possible with the MBE method only. \newline Previous to the production of the 3J multi-junction solar cells comprehensive optimizations of the MBE process to produce the GaInNAs sub cell have been performed. First and foremost it was found that the As/III ratio during the growth has a critical influence on the electrical active doping of the GaInNAs material. However, the electrical active doping affects the extension of the depletion layer in the as p-i-n structure produced GaInNAs solar cells very strongly, which is directly related to their current generation. In general it was found that the increase of the current generation of the GaInNAs sub cell comes along with a decrease of its open circuit voltage as soon as the As/III ratio during the growth was lowered. Due to a very precise calibration of the As/III ratio a best possible compromise between the open circuit voltage and the current generation was found. A shown GaInNAs single-junction solar cell reached an averaged internal quantum efficiency of 88 \% and an open circuit voltage of 341 mV (AM1.5d) and 351 mV (AM0), respectively. Calculations based on the quantum efficiency showed that this solar cell integrated in a 3J multi-junction solar cell would produce a current density of 14.2 mA/cm$^{2}$ under the illumination spectrum AM1.5g and a current density of 17.6 mA/cm$^{2}$ under AM0. With such high current densities the GaInNAs solar cell reaches the current generation of the GaInP and GaAs sub cells in a current multi-junction solar cell and no charge carrier loss would occur. Due to its increased open circuit voltage, compared to a Ge sub cell, this GaInNAs sub cell indeed offers the potential to increase the efficiency of the multi-junction solar cell. Doping concentration measurements of the GaInNAs layer showed extremly low doping densities in the range between 1x10$^{14}$ 1/cm$^{3}$ and 1x10$^{15}$ 1/cm$^{3}$ (p-conductivity). In addition to the optimization of the As/III ratio we were able to show that a transition of p- to n-type conductivity of the GaInNAs material by reducing the As/III ratio can be induced. Close to the transition region a very low doping was achieved indicated by a high current generation due to the formation of an extreme broad depletion zone. Finding that the open circuit voltage of solar cells with n-type GaInNAs produced with relatively low As/III ratios is reduced, proved the existance of electrical active defects. So we can state, that the measured electrical active doping concentration in the range of typically 1x10$^{16}$ 1/cm$^{3}$ can be traced back to electrical active crystal defects in the GaInNAs layers with high probability. A contamination of the material with carbon atoms in this range was excluded. \newline KW - Mehrfach-Solarzelle KW - Molekularstrahlepitaxie KW - dilute nitride KW - GaInNAs Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200881 ER - TY - THES A1 - Huppmann, Sophia T1 - Atomlagenabscheidung von Oxidschichten auf Edelmetalloberflächen und deren Haftung T1 - Atomic Layer Deposition of Oxides on Nobel Metal Surfaces and their Adhesion N2 - Ziel dieser Arbeit war die Untersuchung einer Passivierungsschicht auf Silber, um es vor Degradation unter Feuchte oder Schadgasen zu schützen. Dazu wurden Al\(_2\)O\(_3\) und Ta\(_2\)O\(_5\) mittels Atomlagenabscheidung (atomic layer deposition: ALD) auf polykristallinen Silberoberflächen abgeschieden und deren Wachstum und Haftung analysiert. Zum Vergleich wurden die Edelmetalle Gold und Platin herangezogen. Die Beurteilung der Barriereeigenschaften gegenüber Schadgas erfolgte mittels einer Ozon-Behandlung in der ALD-Prozesskammer. Es zeigte sich, dass nur ALD-Schichten, die bis zu eine Abscheidetemperatur von unter 140~°C abgeschieden wurden, eine ausreichende Barrierewirkung liefern konnten. Erklärt werden konnte dieses Phänomen durch unterschiedliche Wachtumsregime für unterschiedliche Abscheidetemperaturen zwischen 100 und 300~°C, die in einer temperaturabhängigen Bedeckung der Silberoberfläche resultieren. Während bei niedrigen Temperaturen eine geschlossene Schicht aufwächst, findet ALD-Wachstum bei höheren Temperaturen, beginnend über 115~°C, nur an Korngrenzen, Stufenkanten und Defekten statt. Es wurden verschiedene Oberflächenbehandlungen untersucht und nur eine Vorbehandlung mit H\(_2\)O bei 100~°C in der ALD-Prozesskammer konnte auch bei höheren Temperaturen zu einem geschlossenen Schichtwachstum führen. In-vacuo XPS Untersuchungen der ersten Zyklen des Al\(_2\)O\(_3\)-Wachstums bei 100 und 200~°C auf Silber wurden miteinander und mit einer Silizium Referenzprobe verglichen. Bei beiden Wachstumstemperaturen kam es nicht zur Oxidation von Ag. Ab dem ersten TMA-Puls konnten Al-Verbindungen auf der Oberfläche nachgewiesen werden. Es zeigte sich, dass TMA auf der Ag-Oberfläche zu Methylaluminium und Methylresten dissoziieren und an Adsorbaten anbinden kann. Zusätzlich zeigte sich ein erhöhtes, nicht gesättigtes Wachstumsverhalten bei 200~°C, das über einen Sauerstoffdiffusionsprozess erklärt werden kann. Sauerstoff-Verunreinigungen, die sich in der Silberschicht befinden, konnten über Korngrenzendiffusion an die Oberfläche gelangen und dort mit TMA reagieren. Aufgrund von Oberflächendiffusion bei höheren Temperaturen gab es eine stabile Adsorption nur an Korngrenzen, Stufenkanten und Defekten. Nur die Si-Oberfläche zeigte ein typisches ALD-Wachstum. Auf Pt und Au lag unabhängig von weiteren Vorbehandlungen bei allen Beschichtungstemperaturen ein geschlossenes ALD-Anwachsen vor. Damit eignete sich Au gut um die Barriere-Eigenschaften der ALD-Schicht gegen Feuchtigkeit in Abhängigkeit von der Wachstumstemperatur nachzuweisen. Dies wurde mit einer cyanidischen Ätzlösung getestet. Während für eine Barriere gegen Ozon bereits eine dünne geschlossene Schicht, abgeschieden bei 100~°C ausreicht, musste gegen die Ätzlösung eine höhere Beschichtungstemperatur verwendet werden. Für die Bewertung der Haftung der Passivierungsschicht wurde neben den üblichen einfachen Tesatest und Schertest, ein pneumatischer Haftungstest entwickelt und eingesetzt. Dafür wurde die Methode des Blistertest angepasst, der ursprünglich für die Bestimmung der Haftung organischer Schichten, wie beispielsweise Kleber und Lacke, eingesetzt wurde, sodass er sich für die Untersuchung dünner Schichten eignet. Dazu wurde die zu testende Grenzfläche mittels eines Si-Trägers mechanisch unterstützt. Hierdurch kann die Deformation der Schicht minimiert werden und es kommt stattdessen zu einem Bruch. Die Delamination der Testschicht wurde durch das Anlegen des hydrostatischen Drucks erreicht, was eine gleichmäßige Kraftverteilung gewährleistet. Die Proben ließen sich mittels Standard-Dünnfilmtechnologie herstellen und können damit industriell gut eingesetzt werden. Sowohl der Messaufbau als auch die Probenpräparation wurden in dieser Arbeit vorgestellt. Es wurde mittels der beiden Bondmaterialien AuSn und Indium die maximal bestimmbare Adhäsionsspannung evaluiert und dafür Werte von (0,26 \(\pm\) 0,03) \(\cdot 10^9 \) Pa für AuSn und (0,09 \(\pm\) 0,01) \(\cdot 10^9 \) Pa für In bestimmt. Da im In bereits bei sehr niedrigen Drücken ein kohäsives Versagen auftritt, eignet sich AuSn besser für die Messung anderer Grenzflächen. Damit wurden schließlich die Grenzflächen ALD-Al\(_2\)O\(_3\) und ALD-Ta\(_2\)O\(_5\) auf Ag mit H\(_2\)O-Vorbehandlung sowie ALD-Al\(_2\)O\(_3\) auf Pt untersucht. Es wurden die folgenden Adhäsionsspannungen erreicht: Für ALD-Al\(_2\)O\(_3\) auf Ag: (0,23 \(\pm\) 0,01) \(\cdot 10^9 \) Pa, für ALD-Ta\(_2\)O\(_5\) auf Ag: (0,15 \(\pm\) 0,03) \(\cdot 10^9 \) Pa und für ALD-Al\(_2\)O\(_3\) auf Pt: (0,20 \(\pm\) 0,01) \(\cdot 10^9 \) Pa. Somit wurde bestätigt, dass mit Hilfe der Vorbehandlung der Ag-Oberfläche die ALD-Al\(_2\)O\(_3\)-Schicht nicht nur geschlossen ist, sondern auch ausreichend gut haftet und sich damit hervorragend als Barriere eignet. N2 - In this thesis, a barrier layer against degradation under humidity or corrosive gases on silver was studied. For this purpose Al\(_2\)O\(_3\) und Ta\(_2\)O\(_5\) using atomic layer deposition (ALD) were grown on polycrystalline silver surfaces and the growth mechanism as well as the adhesion were analyzed. The resulting characteristics were compared with gold and platinum. The barrier effect against corrosive gases was evaluated by an ozone treatment in the ALD-process chamber. Only ALD-layers grown below 140~°C could protect the underlying Ag. This fact could be explained by different growth regimes for varying process temperatures between 100 and 300~°C, resulting in a temperature dependent coverage of the Ag-surface. Only for temperatures below 115~°C a complete ALD-layer on Ag could be grown. However, at temperatures above 115~°C, the Al\(_2\)O\(_3\)-growth on silver only occurred on grain boundaries, step edges and defects, whereas no growth on single-crystalline facets could be observed. Different pretreatments of the surface were analyzed, but only a H\(_2\)O-pretreatment at 100~°C inside the ALD-process chamber resulted in a closed layer growth at elevated temperatures. In-situ XPS measurements of the first cycles of Al\(_2\)O\(_3\)-growth on Ag at 100 and 200~°C were compared, while a Silicon-sample served as reference. At both deposition temperatures, the silver substrate was not oxidized during the ALD process. Aluminum species could be identified immediately after the first TMA pulse. It was found, that on the Ag-surface TMA could dissoziate to methyl aluminum and methyl residues and bind on adsorbates. In addition, an unsaturated growth at 200~°C deposition temperature occured, which could be explained by an oxygen diffusion mechanism. Oxygen impurities stored in the silver film were proposed to be the source of reactants for this growth. This oxygen could diffuse along grain boundaries to the surface, where they react with TMA. Due to surface diffusions mechanism at increased temperatures, a stable adsorption only occurred at step edges, grain boundaries and defects. Only for the Si-surface a typical ALD-growth was reported. For Au and Pt a closed layer growth of ALD-Al\(_2\)O\(_3\) was found independent of pretreatments at all deposition temperatures. Au is therefore well suited for the evaluation of the barrier properties against humidity. The temperature dependency was investigated with an immersion in cyanide solution. While as barrier against ozone a very thin layer grown at 100~°C is sufficient, against etching solution a higher deposition temperature is necessary. For evaluation of the adhesion of the passivation layer a high pressure supported blister testing method was set up and used besides the common simple scotch tape test and a shear test. In contrast to the standard blister test, the examined interface is supported mechanically by silicon in order to avoid the formation of a blister and a possible film rupture. Thereby, a vertical detachment of the layer can be expected. Since the deformation of the tested layers is minimized, there is no constraint to ductile materials, as it is the case in standard blister tests. In contrast, it can be applied to various materials. Contactless delamination of the film is achieved by applying hydrostatic pressure to the interface that causes an even force distribution. The samples could be processed with standard thin film technology, with the benefit that the test can be applied industrially. In this thesis, the the setup of the test and the sample preparation were presented. In order to determine the maximum adhesion range of the test, samples with two different bonding techniques are compared. AuSn eutectic bonding resulted in (0,26 \(\pm\) 0,03) \(\cdot 10^9 \) Pa, In bonding in (0,09 \(\pm\) 0,01) \(\cdot 10^9 \) Pa. In showed a cohesive failure mode allready at very low pressures, while eutectic bonding offered enough stability to be applied for following experiments. With this setup ALD-Al\(_2\)O\(_3\) and ALD-Ta\(_2\)O\(_5\) on Ag with the H\(_2\)O-pretreatment as well as ALD-Al\(_2\)O\(_3\) on Pt were measured. The test resulted in the following adhesion strength: ALD-Al\(_2\)O\(_3\) on Ag: (0,23 \(\pm\) 0,01) \(\cdot 10^9 \) Pa, ALD-Ta\(_2\)O\(_5\) on Ag: (0,15 \(\pm\) 0,03) \(\cdot 10^9 \) Pa and ALD-Al\(_2\)O\(_3\) on Pt: (0,20 \(\pm\) 0,01) \(\cdot 10^9 \) Pa. These values verify that the pretreatment of silver leads not only to a complete covered ALD-Al\(_2\)O\(_3\)-layer, but also to a sufficent adhesion. Therefore the ALD-layer was most suitable as a barrier. KW - Aluminiumoxide KW - Atomlagenabscheidung KW - Edelmetall KW - Adhäsion KW - Haftungstest Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207085 ER - TY - THES A1 - Zinner, Martin Gerhard T1 - Adsorbat-induzierte Oberflächensysteme und ultra-dünne intermetallische Legierungsfilme im Fokus der niederenergetischen Elektronenbeugung und spektroskopischer Analysemethoden T1 - Adsorbate-unduced surface systems and ultra-thin intermetallic alloy films in the focus of low-energy electron diffraction and spectroscopic analysis methods N2 - Im Rahmen der vorliegenden Dissertation werden mit unterschiedlichen Analysemethoden die Korrelationen zwischen den strukturellen, elektronischen und magnetischen Eigenschaften von Selten Erd-basierten intermetallischen Oberflächenlegierungen anhand der beiden Probensysteme LaPt$_5$/Pt(111) und CePt$_5$/Pt(111) untersucht. Darüber hinaus werden die strukturellen Eigenschaften von Adsorbat-induzierten Oberflächenrekonstruktionen im sub-ML Bereich in reduzierten Dimensionen auf der Halbleiteroberfläche Si(111) anhand der beiden Materialsysteme Si(111)-(5$\times$2)-Au und Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn mit der Methode LEED-IV analysiert. Das erste experimentelle Kapitel dieser Arbeit behandelt die intermetallische Oberflächenlegierung LaPt$_5$/Pt(111), die sich ausbildet wenn La-Atome auf einem sauberen Pt(111)-Substrat abgeschieden werden und anschließend thermische Energie hinzugefügt wird. Die Dicke der gebildeten Legierung lässt sich über die zuvor angebotene Menge an La-Atomen variieren und resultiert aufgrund der Gitterfehlanpassung von Pt(111) und den obenauf liegenden LaPt$_5$-Filmen in sechs unterschiedliche Beugungsmuster im LEED, deren Überstrukturvektoren durch zwei unterschiedliche Rotationsausrichtungen in Bezug auf das Gitter des Substrats und unterschiedlichen lateralen Gitterkonstanten der Filme gekennzeichnet sind. Die atomare Struktur kann auf eine gemeinsame Kristallstruktur zurückgeführt werden, deren Stöchiometrie aus dickenabhängigen AES-Messungen zu LaPt$_5$ mit einer Pt-reichen Oberflächenabschlusslage bestimmt werden konnte. Die Ergebnisse einer durchgeführten LEED-IV Studie bestätigen das Wachstum der Filme in der CaCu$_5$-Struktur, wobei die Oberflächenterminierungslage im Vergleich zum Volumengitter ein zusätzliches Pt-Atom pro Einheitszelle aufweist, das zusätzlich um einen Wert von \unit{0.26}{\angstrom} aus der Oberfläche hervorsteht. Die La-Atome, die direkt unterhalb der Terminierungslage liegen, erfahren eine Verschiebung in entgegengesetzter Richtung, so dass im Vergleich zum Volumen der Filme eine lokal veränderte Symmetrie im oberflächennahen Bereich vorherrscht und sich auf die elektronischen Eigenschaften der LaPt$_5$-Filme auswirkt. Darüber hinaus wurden die Schwingungseigenschaften der LaPt$_5$-Filme mittels der polarisierten in situ Raman-Spektroskopie bestimmt, bei der die auftretenden Schwingungspeaks durch die Kenntnis der atomaren Struktur und mit Überlegungen aus der Gruppentheorie unterschiedlichen Tiefenbereichen der LaPt$_5$-Filme (Volumen und Oberfläche) zugewiesen werden konnten. Im zweiten experimentellen Kapitel liegt der Fokus auf der atomaren Struktur sowie auf den elektronischen und magnetischen Eigenschaften des Kondo- und Schwerfermionensystems CePt$_5$/Pt(111). In Abhängigkeit von der vor dem Legierungsprozess angebotenen Menge an Ce-Atomen auf dem Pt(111)-Substrat konnten insgesamt sieben verschiedene LEED-Phasen der CePt$_5$-Filme identifiziert werden, deren jeweilige Oberflächenrekonstruktionen durch eine unterschiedliche Rotationsausrichtung in Bezug auf das Pt(111)-Substrat gekennzeichnet sind. Zusätzlich ist die laterale Gitterkonstante einem Prozess aus Verspannung und Dehnung aufgrund der Gitterfehlanpassung von Film und Substrat ausgesetzt. Eine durchgeführte LEED-IV Analyse bestätigt das Wachstum der Filme in der CaCu$_5$-Struktur mit einer Pt-reichen Oberflächenabschlusslage, deren Pt$_3$-Kagom\'{e}-Lage im Vergleich zum Volumengitter mit einem zusätzlichen Pt-Atom pro Einheitszelle gefüllt ist. Die strukturellen Ergebnisse stimmen mit erzielten Resultaten aus früheren Arbeiten überein und verdeutlichen zudem die isostrukturellen Eigenschaften zur intermetallischen Oberflächenlegierung LaPt$_5$/Pt(111). Dies ermöglicht durch geeignete Vergleichsexperimente an LaPt$_5$/Pt(111) die induzierten Phänomene der $4f$-Elektronen bezüglich des Kondo- und Schwerfermionenverhaltens bei CePt$_5$/Pt(111) zu bestimmen, da La-Atome in ihrem atomaren Aufbau keine $4f$-Elektronen beherbergen. Mit der polarisierten in situ Raman-Spektroskopie aufgenommene Spektren anhand von unterschiedlich dicken CePt$_5$-Filmen beinhalten sowohl charakteristische Schwingungspeaks als auch elektronische Übergänge. Das spektroskopische Verhalten der Schwingungspeaks zeigt dabei nicht nur Gemeinsamkeiten zu LaPt$_5$/Pt(111) bei der Zuweisung der Schwingungsmoden zu den jeweiligen Tiefenbereichen in den CePt$_5$-Filmen, sondern es treten auch Unterschiede auf, da eine CePt$_5$-Schwingungsmode einem anormalen Temperaturverhalten unterliegt, das auf die Wechselwirkung mit den $4f$-Elektronen zurückzuführen ist. Weitere spezifische Raman-Signaturen, die elektronischen Übergängen in Form von Kristallfeldniveauaufspaltungen der $4f$-Elektronen von Ce zugewiesen werden konnten, resultieren ebenfalls aus unterschiedlichen Regionen der CePt$_5$-Filme (Oberfläche, inneres Volumen, Interface). Die magnetischen Eigenschaften der CePt$_5$-Filme wurden mit XAS und XMCD an den Ce M$_{4,5}$-Kanten in Abhängigkeit von der Temperatur, dem Einfallswinkel, der Filmdicke und der Stärke des Magnetfelds analysiert. Die markanten Übergänge zwischen unterschiedlichen Curie-Weiss-Regimen in der inversen Suszeptibilität erlauben Rückschlüsse über das Kristallfeldaufspaltungsschema, die Kondo- und die RKKY-Wechselwirkung und korrelieren mit der Ce-Valenz. Zudem konnte bei tiefen Temperaturen ein Übergang in den kohärenten Schwerfermionen-Zustand für alle untersuchten CePt$_5$-Filmdicken in dieser Arbeit nachgewiesen werden. Durch die Vorhersage eines metamagnetischen Lifshitz-Übergangs für diese Filme, der sich in der Magnetfeldabhängigkeit des magnetischen Moments äußert, konnte durch die Aufnahme von Magnetisierungskurven bei tiefen Temperaturen und hohen Magnetfeldern auf zwei weitere charakteristische Energieskalen der renormalisierten Bandstruktur zugegriffen werden. Das dritte experimentelle Kapitel widmet sich der mit LEED und LEED-IV durchgeführten Aufklärung der atomaren Struktur eines quasi-eindimensionalen Elektronensystems, bei dem sich die gebildeten Au-Nanodrähte auf der Si(111)-Oberfläche durch eine Si(111)-(5$\times$2)-Au Rekonstruktion beschreiben lassen. Die aufgenommenen LEED-Bilder mit ihren markanten Beugungsreflexen und sogenannten Streifen deuten auf drei gleichwertige Rotationsdomänen, die jeweils um einen Winkel von \unit{120}{\degree} gegeneinander gedreht sind, auf der Oberfläche hin. Zudem konnte aus einer Simulation der Beugungsbilder das Auftreten von Streifen durch drei zusätzliche Spiegeldomänen, die eine Phasenverschiebung von einem halben Überstrukturvektor einführen und bei einer sorgfältigen LEED-IV Analyse ebenfalls berücksichtigt werden sollten, erklärt werden. Aus den in der Literatur nach einer zweiten Rekalibrierung der nötigen Menge an Au-Atomen zur Ausbildung der Si(111)-(5$\times$2)-Au Rekonstruktion in den letzten Jahren heftig diskutierten Strukturmodellen gibt das von Kwon und Kang aufgestellte Geometriemodell (KK-Modell) die beobachteten energieabhängigen Intensitätsmodulationen in den experimentellen Daten beim Vergleich mit theoretisch berechneten IV-Kurven am besten wieder. Für dieses Modell nimmt der R-Faktor nach Pendry bei den unabhängig voneinander betrachteten drei Energieserien unter verschiedenen Einfallswinkeln der Elektronen auf die Probenoberfläche stets den kleinsten Wert an. Unter der expliziten Berücksichtigung von Si-Adatomen, die sich zusätzlich auf der Oberfläche befinden und in einer (5$\times$4)-Einheitszelle beschrieben werden können, bleibt das KK-Modell das zu präferierende Strukturmodell zur Beschreibung der ausgebildeten Au-Ketten und der Si-Honigwabenstruktur bei der Si(111)-(5$\times$2)-Au Oberflächenrekonstruktion. Im letzten experimentellen Kapitel wird ein zweidimensionales Elektronensystem -- die $\alpha$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn Oberflächenrekonstruktion, die sich bei 1/3 ML an Sn-Adsorbaten auf dem Si(111)-Substrat ausbildet -- im Hinblick auf die atomare Struktur bei Raumtemperatur mit LEED und LEED-IV untersucht. Aus den insgesamt sechs in die Analyse aufgenommenen Strukturmodellen, bei denen die Sn-Atome innerhalb der rekonstruierten ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Einheitszelle unterschiedliche Adsorptionsplätze auf einer ideal terminierten Si(111)-Oberfläche einnehmen, konnte ein Legierungsverhalten, wie es bei der $\gamma$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn Phase auftritt, ausgeschlossen werden. Die Sn-Atome ordnen sich ausschließlich auf der Oberfläche neu an und führen zu einer Relaxation des darunterliegenden Substrats, deren atomare Verschiebungen sich bis in die sechste Si-Lage nachverfolgen lassen. Im Vergleich zu früheren Strukturaufklärungen an diesem Materialsystem bestätigt diese Analyse, dass sich die abgeschiedenen Sn-Atome auf T$_4$-Adsorptionsplätzen energetisch günstig anlagern, wobei die bei drei unterschiedlichen Einfallswinkeln aufgenommenen experimentellen Daten an unterschiedlichen Probenpositionen auf ein vorhandenes bzw. fehlendes Si-Atom auf einem S$_5$-Gitterplatz im darunterliegenden Si(111)-Substrat hindeuten. Außerdem konnte das theoretisch vorhergesagte dynamische Fluktuations-Modell aufgrund der sehr stark erhöhten thermischen Auslenkungen der Sn-Atome aus ihrer Gleichgewichtslage in den Modellrechnungen zur dynamischen Streutheorie nachgewiesen werden. Dies könnte neben den unregelmäßig angeordneten Si-Fehlstellen eine Ursache für das Ausbleiben des strukturell reversiblen Phasenübergangs von einer ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Phase zu einer (3$\times$3)-Phase bei tiefen Temperaturen, wie er beispielsweise beim elektronisch vergleichbaren Adsorbatsystem Ge(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn auftritt, sein. N2 - In the scope of the present PhD thesis the correlations between the structural, electronic, and magnetic properties of rare earth-based intermetallic surface compounds are examined by means of different analysis methods on the basis of the two sample systems LaPt$_5$/Pt(111) and CePt$_5$/Pt(111). In addition, the structural properties of adsorbate-induced surface reconstructions in the sub-ML range in reduced dimensions on the semiconductor surface Si(111) are analyzed on the basis of the two material systems Si(111)-(5$\times$2)-Au and Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn with LEED-IV. The first experimental chapter of this thesis deals with the intermetallic surface compound LaPt$_5$/Pt(111). LaPt$_5$/Pt(111) forms when La atoms are deposited onto a clean Pt(111) substrate and subsequently thermal energy is applied. The thickness of the intermetallic film can be varied over the amount of La atoms offered before the alloying process and results in a total of six different diffraction patterns in LEED due to the lattice mismatch of Pt(111) and the LaPt$_5$ films on top. The superstructure vectors of the films formed are characterized by two different rotational orientations with respect to the lattice of the substrate and different lateral lattice constants of the films. The atomic structure can be traced back to a common crystal structure whose stoichiometry could be determined out of thickness dependent AES measurements to LaPt$_5$ with a Pt-rich surface termination layer. The results of a LEED-IV study confirm the growth of the films in the CaCu$_5$ structure, where the surface termination layer contains an additional Pt atom per unit cell compared to the bulk lattice. Additionally, this Pt atom protrudes from the surface by a value of \unit{0.26}{\angstrom}. The La atoms directly underneath the termination layer are shifted in opposite direction and therefore a locally changed symmetry prevails in the near surface region compared to the volume of the films and furthermore the electronic properties of the LaPt$_5$ films are affected. In addition, the vibrational properties of the LaPt$_5$ films were determined by means of polarized in situ Raman spectroscopy, in which the occurring vibrational peaks could be assigned to different depth regions of the LaPt$_5$ films (volume and surface) by knowledge of the detailed atomic structure and further considerations from group theory. In the second experimental chapter, the focus is put on the atomic structure and the electronic and magnetic properties of the Kondo- and heavy-fermion system CePt$_5$/Pt(111). Depending on the amount of Ce atoms offered before the alloying process on the Pt(111) substrate, a total of seven different LEED phases of the CePt$_5$ films could be identified, whose respective surface reconstructions are characterized by two different rotational orientations with respect to the Pt(111) substrate. Additionally the lateral lattice constant of the films are exposed to a process of stress and strain due to the lattice mismatch between film and substrate. A LEED-IV analysis confirms the growth of the films in the CaCu$_5$ structure with a Pt-rich surface termination layer whose Pt$_3$-Kagom\'{e} layer is filled with one additional Pt atom per unit cell compared to the bulk lattice. The structural results agree with results obtained in earlier studies and furthermore also illustrate the isostructural properties towards the intermetallic surface compound LaPt$_5$/Pt(111). The structural agreement between the two intermetallic surface compounds allows the determination of the $4f$ electrons induced phenomena with respect to the Kondo- and heavy-fermion behavior in CePt$_5$/Pt(111) by suitable comparative experiments on LaPt$_5$/Pt(111), since La atoms in their atomic structure do not contain $4f$ electrons. Spectra recorded with polarized in situ Raman spectroscopy of CePt$_5$ films with different film thicknesses contain both characteristic vibrational peaks and signatures of electronic transitions. The spectroscopic behavior of the vibrational peaks show similarities to LaPt$_5$/Pt(111) in the assignment of the vibrational modes to the respective depth regions in the CePt$_5$ films, but also differences occur, since one vibrational mode of CePt$_5$ is subject to an anomalous temperature behavior, which is attributed to the interaction with the $4f$ electrons. Further specific Raman signatures, which could be assigned to electronic transitions in form of level splitting of the $4f$ electron of the Ce atoms due to the crystal field of the Pt atoms, also originate from different depth regions of the CePt$_5$ films (surface, inner volume, interface). The magnetic properties of the CePt$_5$ films were analyzed with XAS and XMCD at the Ce M$_{4,5}$ edges as a function of temperature, angle of incidence, film thickness, and magnetic field strength. The prominent transitions in the inverse susceptibility between different Curie-Weiss regimes allow conclusions to be drawn about the crystal field splitting scheme, the Kondo- and RKKY-interactions and show a significant correlation with the Ce-valence. Furthermore, for all investigated CePt$_5$ film thicknesses in this thesis at low temperatures a transition to the coherent heavy-fermion state could be detected. By predicting a metamagnetic Lifshitz transition for these films, which is expressed in the magnetic field dependence of the magnetic moment, two further characteristic energy scales of the renormalized band structure could be accessed by recording magnetization curves at low temperatures and high magnetic fields. The third experimental chapter is devoted to the elucidation of the atomic structure of a quasi one-dimensional electron system with LEED and LEED-IV, in which the Au nanowires formed on the Si(111) surface can be described by a Si(111)-(5$\times$2)-Au reconstruction. The recorded LEED images include both a striking diffraction pattern and so-called diffraction streaks indicative for the existence of three equivalent rotational domains on the reconstructed surface, rotated by an angle of \unit{120}{\degree} against each other. In addition, the occurrence of diffraction streaks in the observed diffraction pattern could be explained through a theoretical simulation by the existence of three additional mirror domains on the surface, which introduce a phase shift of half a superstructure vector and should also be considered in a thorough LEED-IV analysis. From the structural models discussed vigorously in recent years in the literature after the introduction of a second recalibration of the necessary amount of Au atoms required for the formation of the Si(111)-(5$\times$2)-Au reconstruction, the geometry model established by Kwon and Kang (KK model) reflects best the observed energy-dependent intensity modulations in the experimental data when compared with calculated IV curves. For this model, the R-factor by Pendry always adopts its smallest value for the three energy series considered independently of each other at different angles of incidence of the electrons on the sample surface. Furthermore, even under explicit consideration of Si adatoms, which are additionally located on top of the reconstructed surface and can be described in a (5$\times$4) unit cell, the KK model remains the preferred structural model for the description of the Au chains formed and the Si honeycomb structure of the Si(111)-(5$\times$2)-Au surface reconstruction. In the final experimental chapter, a two-dimensional electron system -- the $\alpha$-Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn surface reconstruction, which is formed at a total coverage of 1/3 ML of Sn adsorbates on the Si(111) substrate -- is investigated with regard to the atomic structure at room temperature with LEED and LEED-IV. From a total of six structural models included in the analysis, in which the Sn atoms on an ideally terminated Si(111) surface occupy different adsorption sites within the reconstructed ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$ unit cell, it was possible to exclude alloying such as observed for the $\gamma$- Si(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn phase. The Sn atoms rearrange exclusively on the surface and lead to a relaxation of the underlying substrate, whose atomic displacements can be traced back to the sixth Si layer. In comparison to earlier structural investigations conducted on this material system, the presented analysis confirms that the deposited Sn atoms are energetically favorably deposited at T$_4$ adsorption sites. Furthermore, the experimental data recorded at three different angles of incidence from different positions on the sample show indications of an existing and/or missing Si atom on a S$_5$ lattice site in the underlying Si(111) substrate. In addition, the theoretical prediction of the dynamic fluctuation model for this surface reconstruction could be proven in the model calculations of the dynamic scattering theory due to the very strongly increased thermal displacements of the Sn atoms from their equilibrium position. Besides from the irregularly arranged Si defects, this could be a hint for the absence of the reversible structural phase transition at low temperatures from a ($\sqrt{3}\times\sqrt{3}$)R30${\degree}$ phase to a (3$\times$3) phase, as it occurs in the electronically comparable adsorbate system Ge(111)-($\sqrt{3}\times\sqrt{3}$)R30${\degree}$-Sn. KW - Schwere-Fermionen-System KW - LEED KW - Magnetischer Röntgenzirkulardichroismus KW - Raman-Spektroskopie KW - Kristallfeld KW - dünne intermetallische Filme KW - geordnete Metalladsorbate auf Halbleiteroberflächen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192749 ER - TY - THES A1 - Brodbeck, Sebastian T1 - Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen T1 - Electric and magnetic fields for analysis and manipulation of exciton-polaritons N2 - Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren führt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen können zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgelöst wird. Durch den direkten Zugang zu Polariton-Zuständen in spektroskopischen Experimenten, sowie durch die Möglichkeit mit vielfältigen Mitteln nahezu beliebige Potentiallandschaften definieren zu können, eröffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder können Erkenntnisse über Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zugänglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin können die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was für die Erzeugung dynamischer Potentiale relevant werden könnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Phänomene der Licht-Materie-Wechselwirkung unter dem Einfluss äußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu können, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfläche und -rückseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrotürmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungsträger, wie er im Mikrotürmchen erzielt wird, zu einer Umkehrung der Energieverschiebung führt. Während in dieser Geometrie mit zunehmender Feldstärke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erklärt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden Fällen können, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute Übereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden können. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldstärken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen Ätzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdrückt werden, wobei sich die Feldabhängigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren lässt. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungsträger ist. Dadurch lässt sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben häufig beobachtet werden, auf grundsätzlich verschiedene Verstärkungsmechanismen zurückgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabhängigen Photostroms beobachtet, da dort freie Ladungsträger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle für Polariton- und Photon-Laser lässt sich der ermittelte Verlauf der Ladungsträgerdichte über den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton für zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsstärke werden die Hybridmoden in guter Näherung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. Für den Resonator mit großer Kopplungsstärke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Größenordnung über der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 übersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich größer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszuständen des Quantenfilms erklären lässt. N2 - Strong light-matter interaction in semiconductor microcavities leads to the formation of eigenmodes with mixed light-matter characteristics, so-called polaritons. The unique properties of these bosonic quasiparticles may be exploited to realize novel devices, such as polariton-lasers which rely on stimulated scattering instead of stimulated emission, which in turn triggers photon-lasing. Polariton states are directly accessible in spectroscopic experiments and can be subjected to almost arbitrary potential landscapes which could lead to numerous applications, for instance in quantum simulation or emulation. External electric and magnetic fields can be used to gain insights into polaritons that are not available in all-optical experiments. The matter part of the hybrid modes is accessed by the external fields that do not interact with purely photonic modes. Furthermore, in-situ manipulation of the polariton energy by external fields could be used to create dynamic potentials. This thesis is therefore focussed on studying different aspects of light-matter coupling under the influence of external fields. To this end, structures and devices tailored to the specific experiments were fabricated and investigated in electro-optical or magneto-optical measurements. Doped microcavities with electrical contacts on the sample surface and back side were used to apply electric fields along the growth direction, i.e. in vertical geometry. The energy shift in an electric field, the so-called Stark effect, was investigated in these devices. In this work, measurements of the polariton Stark effect, which has previously been demonstrated in the linear regime, were systematically extended to the nonlinear regime of polariton-lasing with special attention paid to the sample geometry and its influence on the observable energy shifts. Investigations of samples with planar, semi-planar and micropillar geometries show that lateral carrier confinement in a micropillar leads to an inversion of the energy shift. While in this geometry a blueshift with increasing field strength is measured, which can be explained by screening effects, the expected redshift is restored in planar and semi-planar geometries. In both cases, detuning-dependent energy shifts of up to hundreds of µeV are observed in good agreement with values calculated with a model of coupled harmonic oscillators. Furthermore, comparable shifts below and above the polariton-lasing threshold are observed both in the semi-planar and in the micropillar geometry. The polariton Stark effect may therefore be considered as criterion to unambiguously distinguish optically excited polariton- and photon-lasers. If the electric field is not oriented along the growth direction but perpendicular to it, i.e. in the plane of the quantum wells, then field ionization of electron-hole pairs occurs already at low field strengths. To realize this field geometry, a process was developed to deposit electrical contacts directly onto the quantum wells of an undoped microcavity which are partially exposed in an etching step. The polariton emission can be suppressed by applying voltage to the lateral contacts and the dependency of the polariton occupation upon the electric field is reproduced using a set of coupled rate equations. This novel contacting technique furthermore allows to measure the photocurrent in the quantum wells which is proportional to the free carrier density. The two thresholds of nonlinear emission, which are commonly observed in similar samples, can then be shown to rely on fundamentally different gain mechanisms. A kink in the power dependence of the photocurrent is observed at the second threshold, where free carriers act as reservoir for photon-lasing which is why their density is partially clamped at threshold. The first threshold on the other hand, which is attributed to polariton-lasing, has no influence on the linear increase of the photocurrent with increasing excitation power, since there bound electron-hole pairs act as reservoir. The experimentally determined power dependence of the photocurrent is reproduced qualitatively over the whole range of excitation powers using adapted rate equation models for polariton- and photon-lasers. Finally, a magnetic field is used to reveal the impact of light-matter interactions on electron-hole coupling in the regime of very strong coupling. By measuring the diamagnetic shift, the average electron-hole separations of lower and upper polariton are determined for two microcavities with different light-matter coupling strengths. At small coupling strength, describing the hybrid modes as linear combinations of uncoupled light and matter modes is a valid approximation. At large coupling strength, significant asymmetries between lower and upper polariton are observed. With increasing detuning, the upper polariton diamagnetic shift increases up to 2.1 meV, almost an order of magnitude larger than the lower polariton shift (0.27 meV) at the same detuning and more than twice as large as the bare quantum well diamagnetic shift. Thus, the lower polariton is described by a wavefunction with a matter part exhibiting a decreased average electron-hole separation. For the upper polariton, this average radius is much larger than that of an electron-hole pair in the uncoupled quantum well which can be explained by photon-mediated interactions with excited and continuum states of the quantum well. KW - Drei-Fünf-Halbleiter KW - Exziton-Polariton KW - Quantenwell KW - Optischer Resonator KW - Polariton Lasing KW - Quantum confined Stark effect KW - Very strong coupling KW - Mikroresonator Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207397 ER - TY - THES A1 - Grimm, Manuel T1 - Anwendung und Weiterentwicklung der winkelaufgelösten Photoemission an Molekül-Metall-Grenzflächen: Geometrische Struktur von Bilagenschichten und Kondoeffekt T1 - Application and further development of angle-resolved photoemission on molecule-metal interfaces: Geometric structure of bilayers and kondo effect N2 - Im Rahmen dieser Dissertation wurden organische Dünnschichten und deren Grenzflächen an Metallen mittels Photoemissionsspektroskopie untersucht. Hierbei wurden, unter Einstrahlung von Photonen mit einer Energie von zumeist 20-50 eV Elektronen des Valenzbandes des zu untersuchenden Probensystems ausgelöst, und in Abhängigkeit der kinetischen Energie und des Austrittswinkels bzw. Impulses charakterisiert. Eine wesentliche Aufgabe dieser Arbeit war es, die technische Entwicklung experimenteller Apparaturen des letzten Jahrzehnts dazu zu verwenden, um mit möglichst großer energetischer Auflösung bereits etablierte aber dennoch vielversprechende Systeme erneut zu untersuchen. Im ersten Hauptabschnitt wurden hierzu Einzel- und Doppelschichten bestehend aus Pentacenmolekülen mittels Molekularstrahlepitaxie auf einer Ag(110)-Oberfläche abgeschieden. Eine anschließende Untersuchung der emittierten Photoelektronen mittels Impulsmikroskopie, wodurch man in der Lage ist, die Photoelektronen des gesamten oberen Halbraumes gleichzeitig zu detektieren, ergab eine Verkippung der Moleküle der ersten und zweiten Lage der Doppelschichten. Im Vergleich hierzu liegen die Moleküle der Einzelschicht flach auf dem Substrat auf. Der Übergang von der Einzel- zur Doppelschicht erwirkt demnach eine Verkippung der Moleküle der ersten Lage, welche aufgrund der direkten Wechselwirkung mit dem Substrat nicht zu erwarten war. Im weiteren Verlauf dieses Abschnittes konnten unter Verwendung eines hemisphärischen Analysators mit hoher Energieauflösung weitere Feinheiten des Valenzbandspektrums, wie z.B. ein ungewöhnlicher Kurvenverlauf des Intensitätsmaximums des zweiten besetzten Molekülorbitals der ersten (unteren) Pentacenlage ausgemacht werden. Im zweiten Hauptabschnitt wurde eine energetisch schmale Resonanz, welche in der Literatur mit dem Kondoeffekt in Verbindung gebracht wird, im Valenzbandspektrum zweier unterschiedlicher Metall-Phthalocyaninmoleküle (Nickel- und Kupfer-Phthalocyanin) auf den drei Oberflächen Ag(100), Ag(110) und Ag(111) adsorbiert und auf ihre Temperaturabhängigkeit im Bereich von 20-300 Kelvin untersucht. Hierbei ergab sich neben der Feststellung des Vorhandenseins des Maximums auf allen drei Silber-Oberflächen ein energetischer Versatz dieses Maximums durch Abkühlen der Probe im Falle der Substrate Ag(100) und Ag(110), welcher in der vorliegenden Größenordnung von bis zu 100 meV ungewöhnlich für bisherige bekannte Kondosysteme ist. Auf Ag(111) konnte kein signifikanter Versatz im Rahmen der Messungenauigkeit festgestellt werden. Im weiteren Verlauf wurden auch von diesen Probensystemen Messungen mittels Impulsmikroskopie durchgeführt, welche in den dadurch erhaltenen Impulskarten geringe Anomalien aufwiesen. Insgesamt kann das vorliegende Verhalten dieser Systeme bis zum Abschluss dieser Arbeit nicht endgültig erklärt werden. Die für organische Systeme höchst ungewöhnliche Theorie der Ausbildung eines Kondogitters, in welcher die Wechselwirkung einzelner Störstellen zur Ausbildung eines elektronenartigen Bandes führt, wäre jedoch zunächst in der Lage, ein derartiges Verhalten, wenn auch nicht in dem hier gezeigten Ausmaß, teilweise zu erklären. N2 - In this dissertation organic thin films and their interfaces to metals are investigated by photoemission spectroscopy. Electrons of the valence band of the sample system to be investigated are excited under irradiation of photons with an energy in the order of 20-50 eV, and characterized as a function of the kinetic energy and the exit angle or momentum. An essential task of this work was to use the technical development of state-of-the-art experimental apparatuses of the last decade in order to investigate already established but nevertheless promising systems with the highest possible energetic resolution. In the first main section, single and double layers consisting of pentacene were deposited by molecular beam epitaxy on an Ag(110) surface. A subsequent examination of the emitted photoelectrons by momentum microscopy, which enables the simultaneous measurement of the entire upper half-space, revealed a tilting of the molecules of the first and second layers of the double layers. In comparison, the molecules of the single layer lie flat on the substrate. Therefore, the transition from the single to the double layer causes a tilting of the molecules of the first layer, which was not to be expected due to the direct interaction with the substrate. In the further course of this section, using a hemispherical analyzer with high energy resolution, further small energetic features of the valence band spectrum could be detected, e.g. an unusual shape of the intensity of the second occupied orbital of the first (bottom) pentacene layer. In the second main section, an energetically narrow resonance, which is associated with the Kondo effect in the literature, was investigated in the valence band spectrum of two different metal phthalocyanine molecules (nickel and copper) adsorbed on the three surfaces Ag(100), Ag(110) and Ag(111) for their temperature dependence in the range of 20-300 Kelvin. Besides the determination of the occurrence of the maximum on all three silver surfaces, an energetic shift of this maximum resulted from cooling the sample on the substrates Ag(100) and Ag(110), which in the present order of magnitude of approx. 100 meV is unusual for the previously known Kondo systems. On Ag(111) no significant shift could be found within the uncertainty of the measurement. In the further course, measurements of these sample systems were also carried out using a momentum microscope, which showed minor anomalies in the resulting momentum maps. Overall, the presented behaviour of these systems could not be explained within the frame of this dissertation. However, the theory of the formation of a Kondo lattice, in which the interaction of individual impurities leads to the formation of an electron-like band, which is highly unusual for organic systems, might be able to partially explain such a behaviour, even if not to the extent shown here. KW - Winkelaufgelöste Photoemissionsspektroskopie KW - Molekülphysik KW - Kondo-Effekt KW - Tieftemperaturphänomene KW - Low temperature effects Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213797 ER - TY - THES A1 - Knebl, Georg T1 - Epitaktisches Wachstum und Transportuntersuchung topologisch isolierender Materialien: GaSb/InAs Doppelquantenfilme und Bi\(_2\)Se\(_3\) Nanostrukturen T1 - Epitaxial growth and transport characterisation of topolological insulating materials: GaSb/InAs double quantum wells and Bi\(_2\)Se\(_3\) nanostructures N2 - Topologische Isolatoren gehören zu einer Klasse von Materialien, an deren Realisation im Rahmen der zweiten quantenmechanischen Revolution gearbeitet wird. Einerseits sind zahlreiche Fragestellungen zu diesen Materialen und deren Nutzbarmachung noch nicht beantwortet, andererseits treiben vielversprechende Anwendungen im Feld der Quantencomputer und Spintronik die Lösung dieser Fragen voran. Topologische Rand- bzw. Oberflächenzustände wurden für unterschiedlichste Materialien und Strukturen theoretisch vorhergesagt, so auch für GaSb/InAs Doppelquantenfilme und Bi2Se3. Trotz intensiver Forschungsarbeiten und großer Fortschritte bedürfen viele Prozesse v. a. im Bereich der Probenherstellung und Verarbeitung noch der Optimierung. Die vorliegende Arbeit präsentiert Ergebnisse zur Molekularstahlepitaxie, zur Probenfertigung sowie zu elektro-optisch modulierter Transportuntersuchung von GaSb/InAs Doppelquantenfilmen und der epitaktischen Fertigung von Bi2Se3 Nanostrukturen. Im ersten Teil dieser Arbeit werden die Parameter zur Molekularstrahlepitaxie sowie die Anpassung der Probenfertigung von GaSb/InAs Doppelquantenfilmen an material- und untersuchungsbedingte Notwendigkeiten beschrieben. Dieser verbesserte Prozess ermöglicht die Fertigung quantitativ vergleichbarer Probenserien. Anschließend werden Ergebnisse für Strukturen mit variabler InAs Schichtdicke unter elektrostatischer Kontrolle mit einem Frontgate präsentiert. Auch mit verbessertem Prozess zeigten sich Leckströme zum Substrat. Diese erschweren eine elektrostatische Kontrolle über Backgates. Die erstmals durch optische Anregung präsentierte Manipulation der Ladungsträgerart sowie des Phasenzustandes in GaSb/InAs Doppelquantenfilmen bietet eine Alternative zu problembehafteten elektrostatisch betriebenen Gates. Im zweiten Teil wird die epitaktische Herstellung von Bi2Se3 Nanostrukturen gezeigt. Mit dem Ziel, Vorteile aus dem erhöhten Oberfläche-zu-Volumen Verhältnis zu ziehen, wurden im Rahmen dieser Arbeit erstmals Bi2Se3 Nanodrähte und -flocken mittels Molekularstrahlepitaxie für die Verwendung als topologischer Isolator hergestellt. Ein Quantensprung – Kapitel 1 führt über die umgangssprachliche Wortbedeutung des Quantensprungs und des damit verbundenen Modells der Quantenmechanik in das Thema. Die Anwendung dieses Modells auf Quanten-Ensembles und dessen technische Realisation wird heute als erste Quantenmechanische Revolution bezeichnet und ist aus unserem Alltag nicht mehr wegzudenken. Im Rahmen der zweiten Quantenmechanischen Revolution soll nun die Anwendung auf einzelne Zustände realisiert und technisch nutzbar gemacht werden. Hierbei sind topologische Isolatoren ein vielversprechender Baustein. Es werden das Konzept des topologischen Isolators sowie die Eigenschaften der beiden in dieser Arbeit betrachteten Systeme beschrieben: GaSb/InAs Doppelquantenfilme und Bi2Se3 Nanostrukturen. GaSb/InAs Doppelquantenfilme Kapitel 2 beschreibt die notwendigen physikalischen und technischen Grundlagen. Ausgehend von der Entdeckung des Hall-Effekts 1879 werden die Quanten-Hall-Effekte eingeführt. Quanten-Spin-Hall-Isolatoren oder allgemeiner topologische Isolatoren sind Materialien mit einem isolierenden Inneren, weisen an der Oberfläche aber topologisch geschützte Zustände auf. Doppelquantenfilme aus GaSb/InAs, die in AlSb gebettet werden, weisen – abhängig vom Aufbau der Heterostruktur – eine typische invertierte Bandstruktur auf und sind ein vielversprechender Kandidat für die Nutzbarmachung der topologischen Isolatoren. GaSb, InAs und AlSb gehören zur 6,1 Ångström-Familie, welche für ihre opto-elektronischen Eigenschaften bekannt ist und häufig verwendet wird. Die Eigenschaften sowie die technologischen Grundlagen der epitaktischen Fertigung von Heterostrukturen aus den Materialien der 6,1 Ångström-Familie mittels Molekularstrahlepitaxie werden besprochen. Abschließend folgen die Charakterisierungs- und Messmethoden. Ein Überblick über die Literatur zu GaSb/InAs Doppelquantenfilmen in Bezug auf topologische Isolatoren rundet dieses Kapitel ab. Zu Beginn dieser Arbeit stellten Kurzschlusskanäle eine Herausforderung für die Detektion der topologischen Randkanäle dar. Kapitel 3 behandelt Lösungsansätze hierfür und beschreibt die Verbesserung der Herstellung von GaSb/InAs Doppelquantenfilm-Strukturen mit Blick auf die zukünftige Realisation topologischer Randkanäle. In Abschnitt 3.1 werden numerische Simulationen präsentiert, die sich mit der Inversion der elektronischen Niveaus in Abhängigkeit der GaSb und InAs Schichtdicken dGaSb und dInAs beschäftigen. Ein geeigneter Schichtaufbau für Strukturen mit invertierter Bandordnung liegt im Parameterraum von 8 nm ≾ dInAs ≾ 12 nm und 8 nm ≾ dGaSb ≾ 10 nm. Abschnitt 3.2 beschreibt die epitaktische Herstellung von GaSb/InAs Doppelquantenfilmen mittels Molekularstrahlepitaxie. Die Fertigung eines GaSb Quasisubstrats auf ein GaAs Substrat wird präsentiert und anschließend der Wechsel auf native GaSb Substrate mit einer reduzierten Defektdichte sowie reproduzierbar hoher Probenqualität begründet. Ein Wechseln von binärem AlSb auf gitterangepasstes AlAsSb erlaubt die Verwendung dickerer Barrieren. Versuche, eine hinlängliche Isolation des Backgates durch das Einbringen einer dickeren unteren Barriere zu erreichen, werden in diesem Abschnitt diskutiert. In Abschnitt 3.3 wird die Optimierung der Probenprozessierung gezeigt. Die Kombination zweier angepasster Ätzprozesse – eines trockenchemischen und eines sukzessive folgenden nasschemischen Schrittes – liefert zusammen mit der Entfernung von Oberflächenoxiden reproduzierbar gute Ergebnisse. Ein materialselektiver Ätzprozess mit darauffolgender direkter Kontaktierung des InAs Quantenfilmes liefert gute Kontaktwiderstände, ohne Kurzschlusskanäle zu erzeugen. Abschnitt 3.4 gibt einen kompakten Überblick, über den im weiteren Verlauf der Arbeit verwendeten „best practice“ Prozess. Mit diesem verbesserten Prozess wurden Proben mit variabler InAs Schichtdicke gefertigt und bei 4,2 K auf ihre Transporteigenschaften hin untersucht. Dies ist in Kapitel 4 präsentiert und diskutiert. Abschnitt 4.1 beschreibt die Serie aus drei Proben mit GaSb/InAs Doppelquantenfilm in AlSb Matrix mit einer variablen InAs Schichtdicke. Die InAs Schichtdicke wurde über numerische Simulationen so gewählt, dass je eine Probe im trivialen Regime, eine im invertierten Regime und eine am Übergang liegt. Gezeigt werden in Kapitel 4.2 Magnetotransportmessungen für konstante Frontgatespannungen sowie Messungen mit konstantem Magnetfeld gegen die Frontgatespannung. Die Messungen bestätigen eine Fertigung quantitativ vergleichbarer Proben, zeigen aber auch, dass keine der Proben im topologischen Regime liegt. Hierfür kommen mehrere Ursachen in Betracht: Eine Überschätzung der Hybridisierung durch die numerische Simulation, zu geringe InAs Schichtdicken in der Fertigung oder ein asymmetrisches Verschieben mit nur einem Gate (Kapitel 4.3). Zur Reduktion der Volumenleitfähigkeit wurden Al-haltigen Schichten am GaSb/InAs Übergang eingebracht. Die erwartete Widerstandssteigerung konnte in ersten Versuchen nicht gezeigt werde. Die in Kapitel 5 gezeigte optische Manipulation des dominanten Ladungsträgertyps der InAs/GaSb-Doppelquantentöpfe gibt eine zusätzliche Kontrollmöglichkeit im Phasendiagramm. Optische Anregung ermöglicht den Wechsel der Majoritätsladungsträger von Elektronen zu Löchern. Dabei wird ein Regime durchlaufen, in dem beide Ladungsträger koexistieren. Dies weist stark auf eine Elektron-Loch-Hybridisierung mit nichttrivialer topologischer Phase hin. Dabei spielen zwei unterschiedliche physikalische Prozesse eine Rolle, die analog eines Frontgates bzw. eines Backgates wirken. Der Frontgate Effekt beruht auf der negativ persistenten Photoleitfähigkeit, der Backgate Effekt fußt auf der Akkumulation von Elektronen auf der Substratseite. Das hier gezeigte optisch kontrollierte Verschieben der Zustände belegt die Realisation von opto-elektronischem Schalten zwischen unterschiedlichen topologischen Phasen. Dies zeigt die Möglichkeit einer optischen Kontrolle des Phasendiagramms der topologischen Zustände in GaSb/InAs Doppelquantenfilmen. In Abschnitt 5.1 wird die optische Verstimmung von GaSb/InAs Quantenfilmen gezeigt und erklärt. Sie wird in Abhängigkeit von der Temperatur, der Anregungswellenlänge sowie der Anregungsintensität untersucht. Kontrollversuche an Proben mit einem unterschiedlichen Strukturaufbau zeigen, dass das Vorhandensein eines Übergitters auf der Substratseite der Quantenfilmstruktur essentiell für die Entstehung der Backgate-Wirkung ist (Abschnitt 5.2). Abschließend werden in Abschnitt 5.3 die Erkenntnisse zur optischen Kontrolle zusammengefasst und deren Möglichkeiten, wie optisch definierte topologischen Phasen-Grenzflächen, diskutiert. Bi2Se3 Nanostrukturen Mit Blick auf die Vorteile eines erhöhten Oberfläche-zu-Volumen Verhältnisses ist die Verwendung von Nanostrukturen für das Anwendungsgebiet der dreidimensionalen topologischen Isolatoren effizient. Mit dem Ziel, diesen Effekt für die Realisation des topologischen Isolators in Bi2Se3 auszunutzen, wurde im Rahmen dieser Arbeit erstmalig das Wachstum von Bi2Se3 Nanodrähten und -flocken mit Molekularstrahlepitaxie realisiert. In Kapitel 6 werden technische und physikalische Grundlagen hierzu erläutert (Abschnitt 6.1). Ausgehend von einer Einführung in dreidimensionale topologische Isolatoren werden die Eigenschaften des topologischen Zustandes in Bi2Se3 gezeigt. Darauf folgen die Kristalleigenschaften von Bi2Se3 sowie die Erklärung des epitaktischen Wachstums von Nanostrukturen mit Molekularstrahlepitaxie. In Abschnitt 6.2 schließt sich die Beschreibung der epitaktischen Herstellung an. Die Kristallstruktur wurde mittels hochauflösender Röntgendiffraktometrie und Transmissionselektronenmikroskopie als Bi2Se3 identifiziert. Rasterelektronenmikroskopie-Aufnahmen zeigen Nanodrähte und Nanoflocken auf mit Gold vorbehandelten bzw. nicht mit Gold vorbehandelten Proben. Der Wachstumsmechanismus für Nanodrähte kann nicht zweifelsfrei definiert werden. Das Fehlen von Goldtröpfchen an der Drahtspitze legt einen wurzelbasierten Wachstumsmechanismus nahe (Abschnitt 6.3). N2 - Topological insulators are among the concepts being worked on in the second quantum mechanical revolution. On the one hand, numerous questions on these materials and their utilization have not yet been answered; on the other hand, promising applications in the field of quantum computing and spintronics are driving the solution of these questions. Topological edge and surface states have been predicted theoretically for a wide variety of materials and structures, including GaSb/InAs double quantum wells and Bi2Se3. Despite intensive research and great progress, many processes, especially in the field of sample preparation and processing, still require optimization. This thesis presents detailed studies on growth, fabrication and electro-optically modulated transport analysis of GaSb/InAs double quantum films as well as the epitaxial fabrication of Bi2Se3 nanostructures. In the first part of this thesis, the parameters for molecular beam epitaxy and sample preparation for GaSb/InAs double quantum films are described. The protocols for sample preparation have been adapted to the necessities of the material and experimental requirements. The achieved reproducibility of the presented process enables the production of quantitatively comparable sample series. Subsequently, results for structures with variable InAs layer thickness under electrostatic control with a front gate are presented. Despite of an improved process, leakage currents to the substrate were still observed. These hinder electrostatic control via back gates. The manipulation of the charge carrier type and the phase state in GaSb/InAs double quantum films are presented for the first time by optical excitation and offer an alternative to problematic electrostatically operated gates. The second part shows the epitaxial production of Bi2Se3 nanostructures. The increased surface-to-volume ratio of nanostructures is advantageous to supress the bulk conductivity in reference to surface conduction. Here, the molecular beam epitaxy of Bi2Se3 nanowires and flakes is shown for the first time. Chapter 1 introduces the topic of quantum technology, and in particular protected quantum (edge) states, starting with the proverb “Quantum Leap” (german “Quantensprung”). The application of quantum mechanics to quantum ensembles and its technical realization nowadays is called the first quantum mechanical revolution and is an indispensable part of our everyday life. Within the framework of the second quantum mechanical revolution, the application to individual states is now to be realized and made technically usable. Here topological insulators are a promising building block. The concept of the topological insulator as well as the properties of the two systems considered in this thesis are briefly described: GaSb/InAs double quantum films and Bi2Se3 nanostructures. GaSb/InAs double quantum films Chapter 2 describes the physical and technical basics of topological insulators as well as methods used for fabrication and analysis. Starting with the discovery of the Hall effect in 1879, the quantum Hall effects are introduced. Quantum spin Hall insulators or general topological insulators are materials with an insulating bulk but have topologically protected states at the surface. Double quantum films of GaSb/InAs embedded in AlSb matrix show – depending on the structure of the heterostructure – a typical inverted band structure and are a promising candidate for the utilization of topological insulators. GaSb, InAs and AlSb belong to the 6.1 Ångstrom family, which is known for its opto-electronic properties and is frequently used. The properties as well as the technological basics of epitaxial fabrication of heterostructures from the materials of the 6.1 Ångstrom family by molecular beam epitaxy are reviewed. Finally, the characterization and measurement methods are shown. At the beginning of the work leading up to this thesis, various short circuit channels hindered the detection of topological edge channels. Chapter 3 deals with possible solutions and describes the improvement of the fabrication of GaSb/InAs double quantum film structures with regard to the future realization of topological edge channels. In section 3.1 numerical simulations are presented. The inversion of the electronic level is calculated as a function of GaSb and InAs layer thicknesses dGaSb and dInAs. A suitable layer structure for structures with inverted band order lies within the parameter space of 8 nm ≾ dInAs ≾ 12 nm and 8 nm ≾ dGaSb ≾ 10 nm. Section 3.2 describes the epitaxial production of GaSb/InAs double quantum films by molecular beam epitaxy. The production of a GaSb quasi-substrate on a GaAs substrate is presented. Subsequently, the change to native GaSb substrates is motivated with a reduced defect density as well as reproducibly high sample quality. Changing from binary AlSb to lattice-matched AlAsSb allows the use of thicker barriers. Attempts to achieve sufficient isolation of the back gate by introducing a thicker lower barrier are discussed in this section. Section 3.3 shows the optimization of sample processing. The combination of two adapted etching processes – a dry chemical and a successive wet chemical step – in combination with the removal of surface oxides provide reproducible good results. A material selective etching process with subsequent direct contacting of the InAs quantum film provides good contact resistance without creating short circuit channels. Section 3.4 gives a compact overview of the "best practice" process used in the further course of this thesis. With this improved process, samples with variable InAs layer thickness were produced and examined at 4.2 K regarding their transport properties. This is presented and discussed in chapter 4. Section 4.1 describes a series of three samples with GaSb/InAs double quantum films in AlSb matrix with a variable InAs layer thickness. The InAs layer thickness was selected by numerical simulations in such a way that one sample is in the trivial regime, one in the inverted regime and one at the transition point. In section 4.2 magneto-transport measurements for constant front gate voltage and measurements with constant magnetic field versus the front gate voltage are shown. The measurements confirm a production of quantitatively comparable samples, but also show that none of the samples are in the topological regime. This might be explained by several possible reasons: an overestimation of hybridization by numerical simulation, insufficient InAs layer thicknesses in production or asymmetric shifting with only one gate (section 4.3). To reduce the volume conductivity, Al-containing layers were introduced at the GaSb/InAs transition. The expected increase in resistance could not be shown in first experiments. The optical manipulation of the dominant charge carrier type of the InAs/GaSb double quantum wells shown in chapter 5 provides an additional possibility of control in the phase diagram. Optical excitation allows the change of the majority charge carriers from electrons to holes. The transition involves a regime in which both charge carriers coexist. This strongly suggests electron-hole hybridization with a non-trivial topological phase. Here, two different physical processes play a role, which act analogously to a front gate or a back gate. The front gate effect is based on the negative persistent photoconductivity, the back-gate effect is based on the accumulation of electrons on the substrate side. The optically controlled shifting of the states shown here proves the realization of opto-electronic switching between different topological phases. This shows the possibility of an optical control of the phase diagram of the topological states in GaSb/InAs double quantum films. Section 5.1 displays and explains the optical detuning of GaSb/InAs quantum films. It is investigated as a function of temperature, excitation wavelength and excitation intensity. Control experiments on samples with a different structure show that the presence of a superlattice on the substrate side of the quantum film structure is essential for the formation of the back-gate effect (section 5.2). Finally, Section 5.3 summarizes the findings on optical control and discusses its possibilities for optical defined interfaces between topological phases in this system. Bi2Se3 Nanostructures Due to the increased surface-to-volume ratio, it is beneficial to use nanostructures for the application of three-dimensional Tis. With the aim to exploit this effect for the realization of a Bi2Se3 topological insulator, the growth of Bi2Se3 nanowires and flakes with molecular beam epitaxy was first realized in the context of this work. Chapter 6 explains the technical and physical basics (Section 6.1). Starting from an introduction to three-dimensional topological isolators, the properties of the topological state in Bi2Se3 are shown. This is followed by the crystal properties of Bi2Se3 and the explanation of the epitaxial growth of nanostructures with molecular beam epitaxy. Section 6.2 describes the epitaxial production. The crystal structure was identified as Bi2Se3 by high-resolution X-ray diffraction and transmission electron microscopy. Scanning electron microscopy images show nanowires and nanoflakes on samples that were either pre-treated with gold or not pre-treated with gold. While the growth mechanism for the nanowires cannot be defined beyond doubt, the absence of gold droplets at the wire tip suggests a root-catalysed growth mechanism (section 6.3). KW - GaSb/InAs KW - Bi2Se3 KW - Quantenfilm KW - Quantum well KW - Molekularstrahlepitaxie KW - molecular beam epitaxy KW - nano structure KW - Nanostruktur KW - topological insulator KW - Topologischer Isolator Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191471 ER - TY - THES A1 - Lykowsky, Gunthard T1 - Hardware- und Methodenentwicklung für die 23Na- und 19F-Magnetresonanztomographie T1 - Hardware and method development for 23Na and 19F magnetic resonance imaging N2 - Neben dem Wasserstoffkern 1H können auch andere Kerne für die Magnetresonanztomographie (MRT) genutzt werden. Diese sogenannten X-Kerne können komplementäre Informationen zur klassischen 1H-MRT liefern und so das Anwendungsspektrum der MRT erweitern. Die Herausforderung bei der X-Kern-Bildgebung liegt zum großen Teil in dem intrinsisch niedrigen Signal-zu-Rauschen-Verhältnis (SNR), aber auch in den spezifischen Kerneigenschaften. Um X-Kern-Bildgebung optimal betreiben zu können, müssen daher Sende-/Empfangsspulen, Messsequenzen und -methoden auf den jeweiligen Kern angepasst werden. Im Fokus dieser Dissertation standen die beiden Kerne Natrium (23Na) und Fluor (19F), für die optimierte Hardware und Methoden entwickelt wurden. 23Na spielte in dieser Arbeit vor allem wegen seiner Funktion als Biomarker für Arthrose, einer degenerativen Gelenkserkrankung, eine Rolle. Hierbei ist insbesondere die quantitative Natriumbildgebung von Bedeutung, da sich mit ihr der Knorpelzustand auch im Zeitverlauf charakterisieren lässt. Für die quantitative Messung mittels MRT ist die Kenntnis des B1-Feldes der eingesetzten MR-Spule entscheidend, denn dieses kann die relative Signalintensität stark beeinflussen und so zu Fehlern in der Quantifizierung führen. Daher wurde eine Methode zur Bestimmung des B1-Feldes untersucht und entwickelt. Dies stellte aufgrund des niedrigen SNR und der kurzen sowie biexponentiellen T2-Relaxationszeit von 23Na eine Herausforderung dar. Mit einer retrospektiven Korrekturmethode konnte eine genaue und zugleich schnelle Korrekturmethode gefunden werden. Für die 1H- und 23Na-Bildgebung am menschlichen Knieknorpel wurden zwei praxistaugliche, doppelresonante Quadratur-Birdcage-Resonatoren entwickelt, gebaut und charakterisiert. Der Vergleich der beiden Spulen bezüglich Sensitivität und Feldhomogenität zeigte, dass der Vier-Ring-Birdcage dem Alternating-Rungs-Birdcage für den vorliegenden Anwendungsfall überlegen ist. Die in vivo erzielte Auflösung und das SNR der 23Na-Bilder waren bei beiden Spulen für die Quantifizierung der Natriumkonzentration im Knieknorpel ausreichend. Hochauflösende anatomische 1H-Bilder konnten ohne Mittelungen aufgenommen werden. In einer umfangreichen Multiparameter-MR-Tierstudie an Ziegen wurde der Verlauf einer chirurgisch induzierten Arthrose mittels 23Na- und 1H-Bildgebungsmethoden untersucht. Hierbei kamen dGEMRIC, T1ρ-Messung und quantitative Natrium-MRT zum Einsatz. Trotz des im Vergleich zum Menschen dünneren Ziegenknorpels, der niedrigen Feldstärke von 1,5 T und den auftretenden Ödemen konnten erstmals diese MR-Parameter über den Studienverlauf hinweg an den gleichen Versuchstieren und zu den gleichen Zeitpunkten ermittelt werden. Die Ergebnisse wurden verglichen und die ermittelten Korrelationen entsprechen den zugrundeliegenden biochemischen Mechanismen. Die im Rahmen dieser Studie entwickelten Methoden, Bildgebungsprotokolle und Auswertungen lassen sich auf zukünftige Humanstudien übertragen. Die mit klinischen Bildgebungssequenzen nicht zugängliche kurze Komponente der biexponentiellen T2*-Relaxationszeit von 23Na konnte mittels einer radialen Ultra-Short-Echo-Time-Sequenz bestimmt werden. Hierzu wurde eine Multi-Echo-Sequenz mit einem quasizufälligen Abtastschema kombiniert. Hierdurch gelang es, die kurze und lange T2*-Komponente des patellaren Knorpels in vivo zu bestimmen. 19F wird in der MRT wegen seiner hohen relativen Sensitivität und seines minimalen, körpereigenen Hintergrundsignals als Marker eingesetzt. Zur Detektion der niedrigen in-vivo-Konzentrationen der Markersubstanzen werden hochsensitive Messspulen benötigt. Für die 19F-Bildgebung an Mäusen wurde eine Birdcage-Volumenspule entwickelt, die sowohl für 19F als auch 1H in Quadratur betrieben werden kann, ohne Kompromisse in Sensitivität oder Feldhomogenität gegenüber einer monoresonanten Spule eingehen zu müssen. Dies gelang durch eine verschiebbare Hochfrequenzabschirmung, mit der die Resonanzfrequenz des Birdcage verändert werden kann. Es konnte weiterhin gezeigt werden, dass die Feldverteilungen bei 1H und 19F im Rahmen der Messgenauigkeit identisch sind und so der 1H-Kanal für die Pulskalibrierung und die Erstellung von B1-Karten für die 19F-Bildgebung genutzt werden kann. Hierdurch kann die Messzeit deutlich reduziert werden. Ein grundsätzliches Problemfeld stellt die Korrelation unterschiedlicher Bildgebungsmodalitäten dar. In der MRT betrifft das häufig die Korrelation von in-/ex-vivo-MR-Daten und den dazugehörigen Lichtbildaufnahmen an histologischen Schnitten. In dieser Arbeit wurde erstmals erfolgreich eine 1H- und 19F-MR-Messung an einem histologischen Schnitt vorgenommen. Durch die Verwendung einer optimierten 1H/19F-Oberflächenspule konnte die 19F-Signalverteilung in einer dünnen Tumorscheibe in akzeptabler Messzeit aufgenommen werden. Da der gleiche Schnitt sowohl mit Fluoreszenzmikroskopie als auch mit MRT gemessen wurde, konnten Histologie und MR-Ergebnisse exakt korreliert werden. Zusammenfassend konnten in dieser Arbeit durch Hardware- und Methodenentwicklung zahlreiche neue Aspekte der 19F- und 23Na-MRT beleuchtet werden und so zukünftige Anwendungsfelder erschlossen werden. N2 - In addition to the hydrogen nucleus 1H, other nuclei can also be used for magnetic resonance imaging (MRI). These so-called X-nuclei can provide complementary information on classical 1H MRI and thus expand the range of applications of MRI. The challenge in X-nucleus imaging is largely due to the intrinsically low signal-to-noise ratio (SNR), but also to the specific properties of the nucleus. In order to optimally perform X-nuclei imaging, transmit/receive coils, imaging sequences and methods must be adapted to the respective nucleus. The two nuclei sodium (23Na) and fluorine (19F) were in the focus of this dissertation and thus optimized hardware and methods were developed for these nuclei. 23Na played a major role in this work, mainly because of its function as a biomarker of osteoarthritis, a degenerative joint disease. In particular, the quantitative sodium imaging is of importance, as it can characterize the cartilage state over time. For quantitative measurements by MRI, the knowledge of the B1 field of the MR coil used is crucial, because this can strongly influence the signal intensity and thus lead to errors in the quantification. Therefore, a method for the determination of the B1 field was developed. This presented a challenge due to the low SNR and the short and biexponential T2 relaxation time of 23Na. Using a retrospective correction method, a precise and at the same time rapid correction method could be found. Two practicable double resonant quadrature birdcage resonators have been developed, constructed and characterized for 1H/23Na imaging on human knee cartilage. The comparison of the two coils in terms of sensitivity and field homogeneity showed that the four-ring birdcage is superior to the alternating-rungs birdcage for the present application. The in vivo resolution and SNR of the 23Na images were sufficient for both coils to quantify the sodium concentration in the knee cartilage. High-resolution 1H anatomical images could be acquired without averaging. In a large multiparameter MRI animal study on goats, the progression of surgically induced osteoarthritis was studied using 23Na and 1H imaging techniques. DGEMRIC, T1ρ and quantitative sodium MRI were used. Despite thinner goat cartilage compared to humans, low field strength of 1.5 T and the occurring edema, it was possible for the first time to determine these MR parameters over the course of the study on the same experimental animals and at the same time points. The correlations of the MR parameters correspond to the underlying biochemical mechanisms. The methods, imaging protocols and evaluations developed in this study can be applied to future human studies. The short component of the biexponential T2* relaxation time of 23Na, which is not accessible with clinical imaging sequences, could be determined by means of a radial ultra-short echo time sequence. For this purpose, a multi-echo sequence was combined with a quasi-random sampling scheme. This enabled the determination of the short and long T2* component of patellar cartilage in vivo. 19F is used as a marker in MRI because of its high relative sensitivity and minimal body’s own background signal. To detect the low in vivo concentrations of the marker substances, highly sensitive measuring coils are required. For 19F imaging of mice, a birdcage volume coil was developed that can be operated in quadrature for both 19F and 1H without compromising sensitivity or field homogeneity compared to monoresonant coils. This is due to a slidable RF shield, which is used to change the resonance frequency of the birdcage. It has also been shown that field distributions at 1H and 19F are identical allowing the 1H channel to be used for pulse calibration and B1 mapping for 19F imaging. This can significantly reduce the acquisition time. A fundamental challenge is the correlation of different imaging modalities. In MRI, this often affects the correlation of in and ex vivo MR data and the associated images of histological sections. In this work, 1H and 19F MR measurements of a histological section were successfully performed for the first time. By using an optimized 1H/19F surface coil, the 19F signal distribution in a thin tumor slice was acquired within an acceptable acquisition time. Since the same section was measured by fluorescence microscopy as well as by MRI, histology and MR results could be correlated exactly. In summary, hardware and method development in this work has highlighted numerous new aspects of 19F and 23Na MRI, opening up future fields of application. KW - Kernspintomografie KW - Fluor-19 KW - Natrium-23 KW - 19F-MRT KW - 23Na-MRT Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188710 ER - TY - THES A1 - Klaas, Martin T1 - Spektroskopische Untersuchungen an elektrisch und optisch erzeugten Exziton-Polariton-Kondensaten T1 - Spectroscopic investigations of electrically and optically created exciton polariton condensates N2 - Eine technologisch besonders vielversprechende Art von Mikrokavitäten besteht aus einem optisch aktiven Material zwischen zwei Spiegeln, wobei das Licht auf Größe seiner Wellenlänge eingesperrt wird. Mit diesem einfachen Konzept Licht auf Chipgröße einzufangen entstand die Möglichkeit neue Phänomene der Licht-Materie Wechselwirkung zu studieren. Der Oberflächenemitter (VCSEL), welcher sich das veränderte Strahlungsverhalten aufgrund der schwachen Kopplung und stimulierten Emission zu Nutze macht, ist bereits länger kommerziell sehr erfolgreich. Er umfasst ein erwartetes Marktvolumen von ca. 5.000 Millionen Euro bis 2024, welches sich auf verschiedenste Anwendungen im Bereich von Sensorik und Kommunikationstechnologie bezieht. Dauerhaft hohe Wachstumsraten von 15-20% pro Jahr lassen auf weiteres langfristiges Potential von Mikrokavitäten in der technologischen Gesellschaft der nächsten Generation hoffen. Mit fortschreitender Entwicklung der Epitaxie-Verfahren gelang es Kavitäten solcher Qualität herzustellen, dass zum ersten Mal das Regime der starken Kopplung erreicht wurde. Starke Kopplung bedeutet in diesem Fall die Bildung eines neuen Quasiteilchens zwischen Photon und Exziton, dem Exziton-Polariton (Polariton). Dieses Quasiteilchen zeigt eine Reihe interessanter Eigenschaften, welche sowohl aus der Perspektive der Technologie, als auch aus der Sicht von Grundlagenforschung interessant sind. Bei systemabhängigen Teilchendichten erlaubt das Polariton ebenfalls die Erzeugung von kohärentem Licht über den Exziton-Polariton-Kondensatszustand (Kondensat), den Polariton-Laser. Die Eigenschaften des emittierten Lichtes ähneln denen eines VCSELs, allerdings bei einigen Größenordnungen geringerem Energieverbrauch, bzw. niedrigerer Laserschwelle, bei Wahl geeigneter Verstimmung von Exziton und Photon. Diese innovative Entwicklung kann daher unter anderem neue Möglichkeiten für besonders energiesparende Anwendungen in der Photonik eröffnen. Die vorliegende Doktorarbeit soll zur Erweiterung des Forschungsstandes in diesem Gebiet zwischen Photonik und Festkörperphysik beitragen und untersucht zum einen den anwendungsorientierten Teil des Feldes mit Studien zur elektrischen Injektion, beleuchtet aber auch den interessanten Phasenübergang des Systems über seine Kohärenz- und Spineigenschaften. Es folgt eine knappe überblicksartige Darstellung der Ergebnisse, die in dieser Arbeit genauer ausgearbeitet werden. Rauschanalyse und die optische Manipulation eines bistabilen elektrischen Polariton-Bauelements Aufbauend auf der Realisierung eines elektrischen Polariton-Lasers wurde in dieser Arbeit ein optisches Potential in das elektrisch betriebene Kondensat mit einem externen Laser induziert. Dieses optische Potential ermöglicht die Manipulation der makroskopischen Besetzung der Grundzustandswellenfunktion, welches sich als verändertes Emissionsbild im Realraum darstellt. Der polaritonische Effekt wird über Verschiebung der Emissionslinie zu höheren Energien durch Wechselwirkung des Exzitonanteils nachgewiesen. Diese experimentellen Beobachtungen konnten mit Hilfe eines Gross-Pitaevskii-Differentialgleichungsansatzes erläutert und theoretisch nachgebildet werden. Weiterhin zeigt der elektrische Polariton-Laser eine Bistabilität in seiner Emissionskennlinie an der polaritonischen Kondensationsschwelle. Die Hysterese hat ihren physikalischen Ursprung in der Lebenszeitabhängigkeit der Ladungsträger von der Dichte des Ladungsträgerreservoirs durch die progressive Abschirmung des inneren elektrischen Feldes. In dieser Arbeit wird zum tieferen Verständnis der Hysterese ein elektrisches Rauschen über den Anregungsstrom gelegt. Dieses elektrische Rauschen befindet sich auf der Mikrosekunden-Zeitskala und beeinflusst die Emissionscharakteristik, welche durch die Lebensdauer der Polaritonen im ps-Bereich bestimmt wird. Mit steigendem Rauschen wird ein Zusammenfall der Hysterese beobachtet, bis die Emissionscharakteristik monostabil erscheint. Diese experimentellen Befunde werden mit einem gekoppelten Ratengleichungssystem sowie mit Hilfe einer Gauss-verteilten Zufallsvariable in der Anregung modelliert und erklärt. Die Hysterese ermöglicht außerdem den Nachweis eines optischen Schalteffekts über eine zusätzliche Ladungsträgerinjektion mit einem Laser weit über der Bandkante des Systems, um den positiven Rückkopplungseffekt zu erzeugen. Im Bereich der Hysterese wird das System auf den unteren Zustand elektrisch angeregt und dann mit Hilfe eines nicht-resonanten Laserpulses in den Kondensatszustand gehoben. Polaritonfluss geleitet durch Kontrolle der lithographisch definierten Energielandschaft Polaritonen können durch den photonischen Anteil weiterhin in Wellenleiterstrukturen eingesperrt werden, worin sie bei der Kondensation gerichtet entlang des Kanals mit nahe Lichtgeschwindigkeit fließen. Dies geschieht mit der Besonderheit über ihren Exzitonanteil stark wechselwirken zu können. Die Möglichkeit durch Lithographie solche eindimensionalen Kanäle zu definieren, wurde bereits in verschiedenen Prototypen für Polaritonen benutzt und untersucht. In dieser Arbeit werden zwei verschiedene, neue Ansätze zur Lenkung von gerichtetem Polaritonfluss vorgestellt: zum einen über die sogenannte Josephson-Kopplung zwischen zwei Wellenleitern, realisiert über halbgeätzte Spiegel und zum anderen über eine Mikroscheibe gekoppelt an zwei Wellenleiter. Der Begriff der Josephson-Kopplung ist hier angelehnt an den bekannten Effekt in Supraleitern, welcher phänomenologische Ähnlichkeiten aufweist. Die Verwendung in der Polaritonik ist historisch gewachsen. Die Josephson-Kopplung ermöglicht die Beobachung von Oszillationen des Polariton-Kondensats zwischen den Wellenleitern, in Abhängigkeit der verbleibenden Anzahl Spiegelpaare zwischen den Strukturen, wodurch eine definierte Selektion des Auskopplungsarms ermöglicht wird. Die Mikroscheibe funktioniert ähnlich einer Resonanztunneldiode. Sie ermöglicht eine Energieselektion der transmittierten Moden durch die Diskretisierung der Zustände in den niederdimensionalen Strukturen. Es ergibt sich die Bedingung, dass nur energetisch gleiche Niveaus zwischen Strukturübergängen koppeln können. Gleichzeitig erlaubt die Mikroscheibenanordnung eine Umkehrung der Flussrichtung. Kohärenzeigenschaften und die Photonenstatistik von Polariton-Kondensaten unter photonischen Einschlusspotentialen Die Kohärenzeigenschaften der Emission von Polariton-Kondensaten ist seit längerem ein aktives Forschungsfeld. Die noch ausstehenden Fragen betreffen die Beobachtung hoher Abweichungen von traditionellen, auf Inversion basierenden Lasersystemen (z.B. VCSELs). Diese haben selbst bei schwellenlosen Lasern einen Wert der Autokorrelationsfunktion zweiter Ordnung von Eins. Polariton-Kondensate jedoch zeigen erhöhte Werte in der Autokorrelationsfunktion, welches auf einen Mischzustand zwischen kohärentem und thermischem Licht hinweist. In dieser Arbeit wurde ein systematischer Weg untersucht, die Kohärenzeigenschaften des Polariton-Kondensats denen eines traditionellen Lasers anzunähern. Dies geschieht über den lateralen photonischen Einschluss der Kondensate mittels lithographisch definierter Mikrotürmchen mit verschiedenen Durchmessern. In Kohärenzmessungen wird der Einfluss dieser Veränderung der Energielandschaft der Polariton-Kondensate auf die Autokorrelationseigenschaften zweiter Ordnung untersucht. Es wird ein direkter Zusammenhang zwischen großem Einschlusspotential und guten Korrelationseigenschaften nachgewiesen. Der Effekt wird theoretisch über den veränderten Einfluss der Phononen auf das Polariton-Relaxationsverhalten erklärt. Durch die stärkere Lokalisierung der Polaritonwellenfunktion in kleineren Mikrotürmchen wird die Streuwahrscheinlichkeit erhöht, was eine effizientere Relaxation in den Grundzustand ermöglicht. Dies verhindert zu starke Besetzungsfluktuationen der Grundmode in der Polariton-Lebenszeit, was bisher als Grund für die erhöhte Autokorrelation postuliert wurde. Weiterhin wird eine direkte Messung der Photonenstatistik eines Polaritonkondensats entlang steigender Polaritondichte im Schwellbereich vorgestellt. Die Photonenstatistik eines thermischen Emitters zeigt einen exponentiellen Verlauf, während ein reiner Laser Poisson-verteilt emittiert. Der Zwischenbereich, der für einen Laser am Übergang zwischen thermischer und kohärenter Lichtquelle vorhergesagt wird, kann durch eine Überlagerung der beiden Zustände beschrieben werden. Über eine Anpassungsfunktion der gemessenen Verteilungsfunktionen kann der Phasenübergang des Kondensats mit Hilfe dem Anteil der kohärenten Partikel im System verfolgt werden. Dadurch, dass der gemessene Übergang dem Paradigma der thermisch-kohärenten Zustände folgt, wurde nachgewiesen, dass bei rötlicher Verstimmung die Interaktionen keinen signifikanten Anteil an der Ausbildung von Kohärenz im Polaritonsystem spielen. Polarisationskontrolle von Polariton-Kondensaten Die Polarisationseigenschaften des durch Polaritonenzerfall emittierten Lichts korrespondieren zum Spinzustand der Quasiteilchen. Unterhalb der Kondensationsschwelle ist diese Emission durch Spin-Relaxation der Ladungsträger unpolarisiert und oberhalb der Schwelle bildet sich unter bestimmten Voraussetzungen lineare Polarisation als Ordnungsparameter des Phasenübergangs aus. Der Prozess der stimulierten Streuung kann die (zirkulare) Polarisation des Lasers auch bei Anregung auf höheren Energien auf dem unteren Polaritonast erhalten. Dies resultiert aus sehr schneller Einnahme des Grundzustands, welche eine Spin-Relaxation verhindert. Bisher wurde, nach unserem Kenntnisstand, nur teilweise Erhaltung zirkularer Polarisation unter nicht-resonanter Anregung beobachtet. In dieser Arbeit wird vollständige zirkulare Polarisationserhaltung, energetisch 130 meV vom Kondensatszustand entfernt angeregt, nachgewiesen. Diese Polarisationserhaltung setzt an der Kondensationsschwelle ein, was auf den Erhalt durch stimulierte Streuung hinweist. Unter dieser Voraussetzung der Spinerhaltung erzeugt die linear polarisierte Anregung (als Überlagerung zirkularem Lichts beider Orientierungen) elliptisch polarisiertes Licht. Dies geschieht, weil eine linear polarisierte Anregung durch Fokussierung eines Objektivs leicht elliptisch wird. Der Grad der Elliptizität wird sowohl durch die Verstimmung zwischen Photon und Exziton Mode beeinflusst, als auch durch die Dichte im System. Dies kann erklärt werden über das spezielle Verhalten der Relaxationsprozesse auf dem unteren Polaritonast, welche von der transversal-elektrischen und transversal-magnetischen (TE-TM) energetischen Aufspaltung abhängen. Weiterhin werden elliptische Mikrotürmchen untersucht, um den Einfluss dieses asymmetrischen photonischen Einschlusses auf die Kondensatseigenschaften herauszuarbeiten. Die Ellipse zwingt das Kondensat zu einer linearen Polarisation, welche sich entlang der langen Achse des Türmchens ausrichtet. In asymmetrischen Mikrotürmchen ist die Grundmode aufgespalten in zwei linear polarisierte Moden entlang der beiden orthogonal zueinander liegenden Hauptachsen, wobei die längere Achse das linear polarisierte Energieminimum des Systems bildet. Der Grad der linearen Polarisation nimmt mit geringerem Mikrotürmchendurchmesser und größerer Ellipzität zu. Dies geschieht durch erhöhten energetischen Abstand der beiden Moden. Bei Ellipsen mit einem langen Hauptachsendurchmesser von 2 Mikrometer und einem Achsenverhältnis von 3:2 kann ein nahezu vollständig linear polarisierter Zustand eines Polariton-Kondensats nachgewiesen werden. Damit wurde erforscht, dass auch unter nicht-resonanter Anregung Exziton-Polariton-Kondensate experimentell und theoretisch jeglichen Spinzustand unter entsprechenden Anregungsbedingungen annehmen können. N2 - A technologically especially promising type of microcavities consists of an optical material between two mirrors, whereby light is trapped on the scale of its wavelength. With this simple concept of trapping light on the size of a chip arose the possibility to study new phenomena of light-matter interaction. The VCSEL, which takes advantage of the changed emission behavior due to weak coupling and stimulated emission, has been commercially successful for a long time. The market encompasses a volume of approximately 5000 million euros till 2024, which itself encompasses a plethora of different applications in the areas of sensors to communication technology. Continued high growth rates of up to 15-20% per year give rise to hope for an enduring potential of microcavities in the technological society of the next generation. Continued development of epitaxial methods finally allowed to fabricate cavities of such quality that the regime of strong-coupling was reached. Strong coupling means, in this case, the creation of a new quasi-particle between photon and exciton, the exciton-polariton. This quasi-particle shows a series of interesting properties, which are relevant from both the perspective of technology and basic science. At a system dependant particle density, the polariton allows creation of coherent light via the exciton-polariton condensate state, the polariton-laser. The properties of the emitted light resemble those of a VCSEL, albeit at magnitudes less energy consumption or laser threshold, at an advantageous detuning between exciton and photon. This innovative development has therefore opened up new possibilities for energy saving applications in photonics. This doctorial thesis contributes to science in this research area between photonics and solid-state physics and not only looks at the application relevant part of this field with studies regarding electrical injection, but also illuminates the interesting phase transition of the system via exploration of coherence and spin properties. Now follows a short summary of the results, which are developed in more detail in the main body of the work. Evaluation of noise impact and optical manipulation of a bistable electrical polariton device Building on the realisation of an electrical polariton laser, this work induces an optical potential with an external laser into the electrically driven condensate. This optical potential enables the manipulation of the macroscopic occupation of the groundstate wavefunction, which manifests itself in a changed emission structure in real space. The polaritonic effect is proven via the blueshift of the emission with increased interaction of the exciton part of the polariton. These experimental observations can be theoretically explained with a Gross-Pitaevskii equation approach. Furthermore, the electrical polariton-laser exhibits a bistability behavior at its polaritonic condensation threshold. The hysteresis originates in the lifetime dependance of the carriers on the density of the carrier reservoir by screening of the inner electrical field of the structure. In this work, to get a deeper understanding of the hysteresis, an electrical noise component is superpositioned to the injection current. The electrical noise is on the micrsecond time-scale and affects the emission characteristics which are given by the polariton lifetime on the order of picoseconds. With increased noise, the hysteresis progressively vanishes until the emission appears monostable. These experimental results are modelled with a rate equation approach with a Gaussian random distribution in the excitation. Moreover, the hysteresis allows the observation of an optical switch effect via additional carrier injection with an energetically far off laser to attain the positive feedback effect. In the region of the hystereis, the system is positioned at a lower state with electrical injection and then pushed into the condensate regime with a laser pulse. Polariton flow controlled by a lithographically defined energy landscape Polaritons can be trapped in waveguide structures due to their photonic part, along which they propagte upon condensation with close to the speed of light. This happens with the special property of being able to strongly interact via their exciton content. The possibility to define such channels has been used in a variety of different prototypes for polaritons. This work presents two new approaches to route polariton flow: first via a Josephson-like coupling between two waveguides, realized by partly etched mirrors and second with a microdisk potential coupled to two waveguides. Josephson coupling refers to the known effect in superconducters which shows some resemblance to the observed effect and which use of is historically motivated. Josephson coupling allows observation of oscillations of the polariton condensate between the waveguides, which depends on the remaining mirrorpairs between the structure, which ultimately allows routing into a specific exit arm. The microdisk functions in a similiar way to a resonance tunnel diode. It allows energy selection of the transmitted modes via the discretization of the states in the low-dimensional structures. This results in the condition that only energetically fitting modes are allowed to propagate between the structures. Additionally, the microdisk structure allows counter directional routing of the polariton flow. Coherence properties and the photonstatistics of trapped polariton condensates The coherence properties of the emission of polariton-condensates is a long-standing active research area. The remaining questions regard the observations of high deviations between traditional inversion based systems (e.g. VCSELs). These show, even in thresholdless lasers, a value of the second order autocorrelation function of one. Polariton condensates exhibit increased values, which hint at a mixed state between coherent and thermal light. In this work a systematic way has been investigated, which tries to approach the coherence properties of polariton condensates to those of a traditional laser. This happens via the lateral photonic confinement of the condensates in lithographically defined micropillars with different diameters. The influence of the changes of the energy landscape have been evaluated in coherence measurements of the second order autocorrelation function. A direct link between a high trapping potential and good coherence properties has been proven. The effect is theoretically explained in the changed influence of phonons onto the polariton relaxation mechanisms. Because of the stronger localisation of the polariton wavefunction in smaller micropillars, the probability to scatter is increased, which allows a more efficient relaxation into the ground state. This suppressses strong occupation fluctuations of the ground state in the polariton lifetime, which has been speculated to be the origin of the increased autocorrelation . Additionally, a direct measurement of the photon statistics of the polariton condensate along increased polariton densities is presented. The photon statistics of a thermal emitter shows an exponential relationship, while the emission of a laser is Poisson distributed. The regime in-between, which is proposed for a laser at its threshold, can be described as a mixture of those two states. By fitting a function to the measured distributions, the phase transition can be tracked via the coherent particle fraction present in the system. Because this transition follows the paradigm of the thermal-coherent mixture states, it was proven that interactions do not play a significant role in establishing coherence in a polariton condensate with a photonic detuning. Polarisation control of polariton condensates The polarisation properties of the light originating in decay of polaritons correspond to the spin state of the quasiparticle. Below condensation threshold, this emission is largely unpolarised due to spin relaxation and above threshold, under certain circumstances, linear polarisation can be observed as an order parameter of the phase transition. The process of stimulated scattering can preserve circular polarisation of the laser at excitations positioned on the lower polariton branch. This is due to the fast relaxation to the ground state which prevents spin relaxation. Up until now, up to our knowledge, only partial conservation of circular polarisation in non-resonant excitation has been observed. In this work, complete circular polarisation conservation has been proven, at excitation 130 meV above the condensate state. This polarisation conservation starts at condensation threshold, which hints at conservation due to stimulated scattering. Under these conditions, linear excitation (as a superposition between both circular components) creates elliptically polarised light. This happens due to the fact that linear excitation focused via an objective becomes slightly elliptical. The degree of elliptical polarisation is determined by the detuning between exciton and photon and the particle density present in the condensate system. This can be explained with the relaxation processes on the lower polariton branch, which depend on the energy splitting between TE and TM modes. Additionally, elliptical micropillars have been investigated, to work out the influence of asymetric photonic confinement on the condensation properties. The elliptical confinement forces the condensate into a linear polarisation, which establishes itself along the long axis of the micropillar. In asymmetric micropillars, the ground state is split into two linear polarised modes along both orthogonal main axes, whereby the long axis determines the energy minimum of the system. The degree of linear polarisation increases with decreasing micropillar diameter and increasing ellipticity. This happens due to increased energy difference between the two modes. The ellipses have a long axis diameter of 2 micrometers and an axis relation of 3:2, in which nearly fully linearly polarised condensates have been observed. With this it was investigated that non-resonant excitation of polariton condensates can experimentally and theoretically attain every spin state under fitting excitation conditions. KW - Exziton-Polariton KW - Bose-Einstein-Kondensation KW - Spektroskopie KW - Polariton-Laser Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176897 ER - TY - THES A1 - Gutjahr, Fabian Tobias T1 - Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast T1 - Novell Methods for Physiological MRI: Model based T1-Quantification and Positive Contrast Chemical Exchange Measurements N2 - Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am Mäuseherz, zu etablieren. Hierfür wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollständige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen über das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann. Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher räumlicher und zeitlicher Auflösung möglich. Dank der hohen Genauigkeit der T1-Messmethode lässt sich diese für die nichtinvasive Perfusionsmessung am Mäuseherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden. Es bietet sich an, Techniken, die für die myokardiale Perfusion angewandt werden, auch für die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine ähnlich hohe Perfusion aufweist wie das Myokard. Gleichzeitig führen Nierenerkrankungen oftmals zu schlechter Kontrastmittelverträglichkeit, da diese bei Niereninsuffizienz u.U. zu lange im Körper verweilen und die Niere weiter schädigen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an Mäusen in koronaler Ansicht für die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als Lösung für dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivität gesteigert und gleichzeitig die Variabilität der Methode deutlich verringert werden. Mit Hilfe von kontrastmittelgestützten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend für diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zugänglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das Hämatokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zusätzlich zur ECV-Messung auch eine RBV-Messung benötigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskuläre-Volumen bestimmt werden. Eine gänzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zusätzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht Sättigung, sondern Anregung überträgt. Diese Änderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild benötigt. Gleichzeitig ermöglicht die Technik, dadurch dass Anregung übertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine mögliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung. In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta- bliert, die die Möglichkeiten der quantitativen physiologischen MRT erweitern. N2 - The objective of this dissertation was to develop new methods for physiological magnetic resonance imaging. A new retrospectively triggered T1-method was developed. Due to the retrospectivity, full sampling of k-space can not be warranted. Therefore a model- based interpolation method was developed to reconstruct missing data efficiently. Using this technique, dynamic T1-measurements with high temporal and spatial resolution could be acquired. Due to the high precision of the developed T1-method, perfusion could be quantified using Arterial Spin Labeling. In comparison to the method established previously in our laboratory, the resolution could be doubled. Retrospective triggering enables reconstruc- tion of parameter maps on arbitrary positions in the heart cycle, as data are acquired continuously over several heart cycles. The perfusion measurement benefits from recon- struction on the end systole, as partial volume effects are decreased, due to the increased myocardial wall thickness. This serves as an effective increase in resolution. Furthermore, the data distributed over the whole heart cycle could be used to accelerate and stabilize the measurement. Cardiac and renal diseases can be directly related, as deficiency in one of the organs affects the other one. Additionally several diseases like hypertension or diabetes affect both organs. Moreover, kidneys are highly perfused, similar to the myocardium. Renal insufficiency can also lead to contrast agent intolerance, as clearance rates can be redu- ced. Therefore the FAIR-ASL technique lends itself to kidney perfusion measurements. It can, however, be problematic in small animals in coronal view, as the control-experiment inadvertently labels much of the same tissue and blood, as the labeling experiment. A modified FAIR-ASL measurement could be shown to increase sensitivity and reduce in- ter-measurement-variability by repositioning the inversion slice of the control experiment orthogonally to the measurement slice. The T1-method was used in combination with contrast agent based measurements to quantify the regional blood volume and the extracellular volume fraction. There has been an increased interest in extracellular volume fraction measurements as the extracel- lular volume is used as a proxy for the detection of diffuse fibrosis, which has previously been inaccessible to non-invasive methods. Several correction factors are used in volume fraction quantification, but the influence of hematocrit in ECV measurements has been neglected so far. In mice and rats, the regional blood volume is a major constituent of the ECV, leading to a significant influence of hematocrit. A new correction is proposed to account for the volume fraction taken up by hematocrit. For this ECV hematocrit correction, the RBV has to be measured as well. Using both measurements, the ex- tracellular volume fraction can be corrected and the extracellular-extravascular-volume- fraction quantified. A fundamentally different contrast-mechanism can be utilized using the measurement of chemical exchange. Instead of shortening relaxation times, the contrast provided by chemical exchange agents can be turned on and off using frequency selective rf-pulses. Due to the chemical exchange the effect of these pulses can be accumulated. Measure- ments exploiting this accumulation effect in general produce a negative contrast requiring a control-experiment for further evaluation. In the last part of this dissertation, a new technique transferring excitation instead of saturation could be demonstrated. By ge- nerating a real positive contrast, no control experiment is required. Other properties unavailable to previously published chemical exchange transfer methods can be exploi- ted. One example demonstrated in this dissertation is the separation of simultaneously excited compounds by their respective phase information imprinted by the excitation pulses. In summary, several robust methods could be implemented to further the capabilities of quantitative physiological MRI. KW - Kernspintomografie KW - Physioloische MRT KW - Modellbasierte Rekonstruktion KW - FAIR-ASL KW - Chemischer Austausch KW - Regionales Blutvolumen KW - Extrazellularvolumen KW - T1-Quantifizierung KW - Kernspinresonanz KW - Myokardiale Perfusion KW - Niere KW - Perfusionsmessung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161061 ER - TY - THES A1 - Pfister, Julian T1 - Beschleunigte Magnetresonanz-Relaxographie T1 - Accelerated Magnetic Resonance Relaxography N2 - Ziel dieser Arbeit ist es, die quantitative MRT in den Fokus zu rücken. In den letzten Jahren hat sich auf diesem Forschungsgebiet viel weiterentwickelt und es wurden verschiedenste Sequenzen und Methoden vorgestellt, um insbesondere Relaxationszeitparameter quantitativ in kurzer Zeit zu messen. Steady-State-Sequenzen eignen sich besonders für diese Thematik, da sie kurze Messzeiten benötigen und darüber hinaus ein relativ hohes SNR besitzen. Speziell die IR TrueFISP-Sequenz bietet für die Parameterquantifizierung viel Potential. Ursprünglich wurde diese Sequenz an der Universität Würzburg zur simultanen Messung von T1- und T2-Relaxationszeiten vorgestellt und hinsichtlich der Zeiteffizienz weiterentwickelt. In dieser Arbeit wurde ein neuartiger iterativer Rekonstruktionsansatz für die IR TrueFISP-Sequenz entwickelt, der auf einer Hauptkomponentenanalyse (PCA) basiert und sich die glatten Signalverläufe zu Nutze macht. Aufgrund der hohen Zeitauflösung dieser Rekonstruktionstechnik werden dabei auch Gewebekomponenten mit kurzen Relaxationszeiten detektierbar. Weiterhin bewahrt der Rekonstruktionsansatz Informationen mehrerer Gewebekomponenten innerhalb eines Voxels und ermöglicht damit eine relaxographische Untersuchung. Insbesondere beim Menschen führen der Partialvolumeneffekt und die Mikrostruktur des Gewebes zu Signalverläufen, die ein multi-exponentielles Signal liefern. Die MR-Relaxographie, also die Darstellung von Relaxationszeitverteilungen innerhalb eines Voxels, stellt eine Möglichkeit dar, um die beteiligten Gewebekomponenten aus dem überlagerten Signalverlauf zu extrahieren. Insgesamt bilden die optimierte Relaxometrie mit der Möglichkeit der analytischen Korrektur von Magnetfeldinhomogenitäten und die beschleunigte Relaxographie die Hauptteile dieser Dissertation. Die Hauptkapitel werden im Folgenden noch einmal gesondert zusammengefasst. Die simultane Aufnahme der quantitativen T1- und T2-Parameter-Karten kann mit einem Goldenen-Winkel-basiertem radialen IR TrueFISP-Readout in ungefähr 7 Sekunden pro Schicht erreicht werden. Die bisherige Rekonstruktionstechnik mit dem KWIC-Filter ist durch dessen breite Filter-Bandbreite und somit in der zeitlichen Auflösung limitiert. Besonders bei hohen räumlichen Frequenzen wird eine sehr große Anzahl an Projektionen zusammengefasst um ein Bild zu generieren. Dies sorgt dafür, dass Gewebekomponenten mit kurzer T1*-Relaxationszeit (z.B. Fett oder Myelin) nicht akkurat aufgelöst werden können. Um dieses Problem zu umgehen, wurde die T1* shuffling-Rekonstruktion entwickelt, die auf dem T2 Shuffling-Ansatz basiert. Diese Rekonstruktionstechnik macht sich die glatten Signalverläufe der IR TrueFISP-Sequenz zu Nutze und ermöglicht die Anwendung einer PCA. Die iterative Rekonstruktion sorgt dafür, dass mit nur acht kombinierten Projektionen pro generiertem Bild eine merklich verbesserte temporäre Auflösung erzielt werden kann. Ein Nachteil ist jedoch das stärkere Rauschen in den ersten Bildern der Zeitserie bedingt durch die angewandte PCA. Dieses verstärkte Rauschen äußert sich in den leicht erhöhten Standardabweichungen in den berechneten Parameter-Karten. Jedoch ist der Mittelwert näher an den Referenzwerten im Vergleich zu den Ergebnissen mit dem KWIC-Filter. Letztendlich kann man sagen, dass die Ergebnisse leicht verrauschter, aber exakter sind. Mittels zusätzlichen Regularisierungstechniken oder Vorwissen bezüglich des Rauschlevels wäre es zudem noch möglich, das SNR der ersten Bilder zu verbessern, um dadurch den beschriebenen Effekt zu verringern. Grundsätzlich hängt die Genauigkeit von IR TrueFISP vom T1/T2-Verhältnis des betreffenden Gewebes und dem gewählten Flipwinkel ab. In dieser Arbeit wurde der Flipwinkel besonders für weiße und graue Masse im menschlichen Gehirn optimiert. Mit den verwendeten 35° wurde er außerdem etwas kleiner gewählt, um zudem Magnetisierungstransfereffekte zu minimieren. Mit diesen Einstellungen ist die Präzision vor allem für hohe T1- und niedrige T2-Werte sehr gut, wird jedoch insbesondere für höhere T2-Werte schlechter. Dies ist aber ein generelles Problem der IR TrueFISP-Sequenz und hängt nicht mit der entwickelten Rekonstruktionsmethode zusammen. Außerdem wurde im fünften Kapitel eine Akquisitionstechnik vorgestellt, die eine 3D-Abdeckung der quantitativen Messungen des Gehirns in klinisch akzeptabler Zeit von unter 10 Minuten erzielt. Dies wird durch Einsatz der parallelen Bildgebung erreicht, da eine Kombination aus radialer Abtastung in der Schicht und kartesischer Aufnahme in Schichtrichtung (Stack-of-Stars) vorliegt. Ein großes Problem in der Steady-State-Sequenz (und somit auch bei IR TrueFISP) sind Magnetfeldinhomogenitäten, die durch Suszeptibilitätsunterschiede verschiedener Gewebe und/oder Inhomogenitäten des Hauptmagnetfeldes hervorgerufen werden. Diese führen zu Signalauslöschungen und damit verbunden zu den beschriebenen Banding-Artefakten. Mithilfe der analytisch ermittelten Korrekturformeln ist es nun möglich, die berechneten (T1,T2)-Wertepaare unter Berücksichtigung der tatsächlich auftretenden Off- Resonanzfrequenz für einen großen Bereich zu korrigieren. An den kritischen Stellen, an denen die Bandings auftreten, liefert jedoch auch diese Korrektur keine brauchbaren Ergebnisse. Grundsätzlich ist es für die Genauigkeit der Ergebnisse stets zu empfehlen, die Flipwinkel- und B0-Karte zusätzlich mit aufzunehmen, um diese Parameter für die quantitative Auswertung exakt zu kennen. Mit den beschriebenen Methoden aus Kapitel 6 könnte es prinzipiell auch möglich sein, die Off-Resonanzfrequenz aus dem Signalverlauf zu ermitteln und auf die zusätzliche Messung der B0-Karte zu verzichten. B0-Änderungen während der Messung, die von der Erwärmung der passiven Shim-Elemente im MR-System hervorgerufen werden, sind kaum zu korrigieren. Ein stabiler Scanner ohne B0-Drift ist deshalb für quantitative Auswertungen erforderlich. Die erwähnte Messzeit von 7 Sekunden pro Schicht garantiert, dass auch Gewebe mit längeren Relaxationskomponenten annähernd im Steady-State sind, was wiederum für das Umkehren des Signals in den abklingenden Verlauf gegen Null und die anschließende Multikomponentenanalyse (vgl. Kapitel 7) notwendig ist. Mit der inversen Laplace- Transformation ist es innerhalb eines Voxels möglich, Signalverläufe auf mehrere Komponenten hin zu untersuchen. Der ursprünglich angenommene mono-exponentielle Verlauf wird durch ein multi-exponentielles Verhalten abgelöst, was vor allem in biologischem Gewebe eher der Wahrheit entspricht. Gewebe mit kurzen Relaxationskomponenten (T1* < 200 ms) sind klinisch relevant und mit T1* shuffling detektierbar. Vor allem Myelin innerhalb des Gehirns ist bei neurologischen Fragestellungen ein Indikator zur Diagnose im Frühstadium (z.B. für neurodegenerative Erkrankungen) und deshalb von besonderem Interesse. Die Integration über verschiedene T1*-Zeitbereiche im T1*-Spektrum ermöglicht dazu die Erstellung von Gewebekomponenten-Karten, mithilfe derer klinische Auswertungen sinnvoll wären. Die Erstellung dieser Karten ist prinzipiell möglich und funktioniert für mittlere und lange Gewebekomponenten recht gut. Die klinisch relevanten kurzen Gewebekomponenten sind dagegen bei der radialen Aufnahme mit nur einem Schuss noch nicht befriedigend. Deshalb wurde die Aufnahmetechnik in eine quasi-zufällige kartesische Akquisition mit mehreren Schüssen weiterentwickelt. Die Ergebnisse wurden in Kapitel 7 vorgestellt und sind vielversprechend. Einzig die Messzeit sollte mit zusätzlichen Beschleunigungen noch weiter verkürzt und auf eine kartesische 3D-Akquisition erweitert werden. Die Beschränkung auf T1*-Spektren bei der Multikomponentenanalyse und die Tatsache, dass deren Amplitude von einer Kombination von S0 und Sstst abhängen, führen dazu, dass es nicht ohne Weiteres möglich ist für einen einzelnen Gewebetyp an die T1- und T2-Information zu gelangen. In Kapitel 8 wurde gezeigt, dass dies mit einer zusätzlichen Messung gelingen kann. Das finale Ergebnis dieser Messungen ohne und mit Inversion sind zweidimensionale Spektren, bei der für jede Gewebekomponente innerhalb eines Voxels der T1- und T2-Wert abgelesen werden kann. Wichtig hierbei ist die Tatsache, dass der verwendete Ansatz kein Vorwissen über die Anzahl der zu erwartenden Gewebekomponenten (Peaks) im Voxel voraussetzt. Auch bei dieser Methodik ist die Kenntnis über den tatsächlichen Flipwinkel von Bedeutung, da dieser in den Formeln zur Berechnung von T1 und T2 verwendet wird. Die Stabilität des B0-Feldes ist hier ebenso von enormer Bedeutung, da Änderungen zwischen den beiden Messungen zu einem unterschiedlichen Steady-State und somit zu Abweichungen bei den nachfolgenden Berechnungen führen, die auf den selben Steady-State-Wert ausgelegt sind. Zusammenfassend lässt sich sagen, dass mit dieser Arbeit die Grundlagen für genauere und robustere quantitative Messungen mittels Steady-State-Sequenzen gelegt wurden. Es wurde gezeigt, dass sich Relaxationszeitspektren für jedes einzelne Voxel generieren lassen. Dadurch ist eine verbesserte Auswertung möglich, um genauere Aussagen über die Zusammensetzung einer Probe (vor allem beim menschlichen Gewebe) treffen zu können. Zudem wurde die Theorie für ultraschnelle 2D-Relaxographie-Messungen vorgestellt. Erste”Proof of Principle“-Experimente zeigen, dass es möglich ist, 2D-Relaxationszeitspektren in sehr kurzer Zeit zu messen und graphisch darzustellen. Diese Aufnahme- und Datenverarbeitungstechnik ist in dieser Form einmalig und in der Literatur kann bis dato keine schnellere Methode gefunden werden. N2 - The goal of this thesis is to put the quantitative MRI in focus. In recent years, much progress has been made in this area of research and a variety of sequences and methods have been presented, in particular to quantitatively measure relaxation time parameters in a short time. Steady-state sequences are particularly suitable for this topic, since they require short measurement times and, moreover, have a relatively high SNR. Especially the IR TrueFISP sequence offers a lot of potential for parameter quantification. Originally, this sequence was presented at the University of Würzburg for the simultaneous measurement of T1 and T2 relaxation times and further developed in terms of time efficiency. In this work, a novel iterative reconstruction approach has been developed for the IR TrueFISP sequence, which is based on a Principal Component Analysis (PCA) and utilizes the smooth signal courses. Due to the high time resolution of this reconstruction technique also tissue components with short relaxation times are detectable. Furthermore, the reconstruction approach preserves information of several tissue components within a voxel and thus allows for a relaxographic examination. In humans in particular, the partial volume effect and the microstructure of the tissue lead to signal courses that provide a multi-exponential signal. MR relaxography, i.e. the representation of relaxation time distributions within a voxel, offers a possibility to extract the tissue components involved from the superimposed signal course. Overall, the optimized relaxometry with the possibility of analytical correction of magnetic field inhomogeneities and the accelerated relaxography constitute the main parts of this dissertation. The main chapters will be summarized separately below. The simultaneous acquisition of quantitative T1 and T2 parameter maps can be achieved with a golden angle based radial IR TrueFISP readout in approximately 7 seconds per slice. The previous reconstruction technique with the KWIC filter is limited by its broad filter bandwidth and thus in the temporal resolution. Especially at high spatial frequencies, a very large number of projections are combined to generate an image. This ensures that tissue components with a short T1* relaxation time (e.g., fat or myelin) can not be accurately resolved. To circumvent this problem, the T1* shuffling reconstruction was developed based on the T2 Shuffling approach. This reconstruction technique takes advantage of the smooth signal courses of the IR TrueFISP sequence and allows the application of a PCA. The iterative reconstruction ensures that with only eight combined projections per generated image a significantly improved temporary resolution can be achieved. A drawback, however, is the increased noise in the first pictures of the time series due to the applied PCA. This increased noise manifests itself in the slightly increased standard deviations in the calculated parameter maps. However, the mean value is closer to the reference values compared to the results with the KWIC filter. Finally, it can be said that the results are slightly noisier, but more accurate. By means of additional regularization techniques or prior knowledge of the noise level, it would also be possible to improve the SNR of the first images, thereby reducing the described effect. Basically, the accuracy of IR TrueFISP depends on the T1/T2 ratio of the tissue and the selected flip angle. In this work, the flip angle has been optimized for white and gray matter in the human brain. With the 35° used, it was also chosen slightly smaller, in order to minimize magnetization transfer effects. With these settings, the precision is very good, especially for high T1 and low T2 values, but gets worse, especially for higher T2 values. However, this is a general problem of the sequence and is not related to the developed reconstruction method. In addition, the fifth chapter presented an acquisition technique that provides 3D coverage of quantitative brain measurements in a clinically acceptable time of less than 10 minutes. This is achieved through the use of parallel imaging, since there is a combination of radial scanning within one partition and a Cartesian acquisition in the slice direction (stack-of-stars). A major problem in the steady-state sequence (and therefore also in IR TrueFISP) are magnetic field inhomogeneities that are caused by susceptibility differences of various tissues and/or inhomogeneities of the main magnetic field. These lead to signal cancellations and associated with the described banding artifacts. Using the analytically determined correction formulas, it is now possible to correct the calculated (T1,T2) value pairs for a large range taking the actually occurring off-resonance frequency into account. However, even at the critical points where the bandings occur, this correction does not provide useable results. In principle, it is always recommended for the accuracy of the results to additionally acquire the flip angle and B0 map in order to know exactly these parameters for the quantitative evaluation. With the methods described in chapter 6, it could in principle also be possible to determine the off-resonance frequency out of the signal course and to dispense with the additional measurement of the B0 map. B0 changes during the measurement, which are caused by the heating of the passive shim elements in the MR system, are difficult to correct. A stable scanner without B0 drift is therefore required for quantitative evaluations. The mentioned measurement time of 7 seconds per slice guarantees that even tissues with longer relaxation components are approximately in the steady-state, which in turn is necessary for the reversal of the signal towards the exponential decay to zero and the subsequent multi-component analysis (see chapter 7). With the inverse Laplace transformation, it is possible to examine signal courses over several components within a single voxel. The originally assumed mono-exponential signal course is replaced by a multi-exponential behavior, which is more true, especially in biological tissue. Tissues with short relaxation components (T1*< 200 ms) are clinically relevant and detectable by T1* shuffling. In particular, myelin within the brain is an indicator of early diagnosis in neurological problems (e.g., for neurodegenerative diseases) and therefore of particular interest. The integration across different T1* time ranges in the T1* spectrum allows the generation of tissue component maps that would make clinical evaluations useful. The generation of these maps is possible in principle and works quite well for medium and long tissue components. The clinically relevant short tissue components, however, are not yet satisfactory in the radial measurements with a single shot. Therefore, the acquisition technique has evolved into a quasi-random Cartesian multi-shot acquisition. The results were presented in Chapter 7 and are promising. Only the measurement time should be further reduced with additional accelerations and extended to a Cartesian 3D acquisition. The limitation to T1* spectra in multicomponent analysis, and the fact that their amplitude depends on a combination of S0 and Sstst, makes it not readily possible to access the T1 and T2 information for a single tissue type. In chapter 8 it was shown that this can be achieved with an additional measurement. The final result of these measurements, with and without inversion, are two-dimensional spectra in which the T1 and T2 values can be obtained for each tissue component within a voxel. Important here is the fact that the used approach requires no prior knowledge of the number of expected tissue components (peaks) in the voxel. Also in this method, the knowledge about the actual flip angle is important because it is used in the formulas for calculating T1 and T2. The stability of the B0 field is also of enormous importance here, since changes between the two measurements lead to a different steady-state and thus to deviations in the subsequent calculations, which are designed for the same steady-state value. In summary, this work has laid the foundations for more accurate and robust quantitative measurements by means of steady-state sequences. It has been shown that relaxation time spectra can be generated for each individual voxel. As a result, an improved evaluation is possible in order to be able to make more precise statements about the composition of a sample (especially in the case of human tissue). In addition, the theory for ultrafast 2D relaxography measurements was presented. First proof of principle experiments show that it is possible to measure and graph 2D relaxation time spectra in a very short time. This acquisition and data processing technique is unique in this form, and up to now in literature no faster method can be found. KW - Kernspintomographie KW - Relaxometrie KW - Relaxographie KW - Steady-State-Sequenzen KW - balanced SSFP KW - Relaxometry KW - Relaxography KW - Steady-State Sequences KW - balanced SSFP KW - Relaxation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181578 ER - TY - THES A1 - Wilfert, Stefan T1 - Rastertunnelmikroskopische und -spektroskopische Untersuchung von Supraleitern und topologischen Supraleitern T1 - Scanning Tunneling Microscopy and Spectroscopy Study of Superconductors and Topological Superconductors N2 - Quantencomputer können manche Probleme deutlich effizienter lösen als klassische Rechner. Bisherige Umsetzungen leiden jedoch an einer zu geringen Dekohärenzzeit, weshalb die Lebenszeit der Quantenzustände einen limitierenden Faktor darstellt. Topologisch geschützte Anregungen, wie Majorana-Fermionen, könnten hingegen dieses Hindernis überwinden. Diese lassen sich beispielsweise in topologischen Supraleitern realisieren. Bis zum jetzigen Zeitpunkt existieren nur wenige Materialien, die dieses Phänomen aufweisen. Daher ist das Verständnis der elektronischen Eigenschaften für solche Verbindungen von großer Bedeutung. In dieser Dissertation wird die Koexistenz von Supraleitung an der Probenoberfläche und topologischem Oberflächenzustand (engl. topological surface state, TSS) auf potentiellen topologischen Supraleitern überprüft. Diese beiden Bedingungen sind essentiell zur Ausbildung von topologischer Supraleitung in zeitumkehrgeschützten Systemen. Hierzu wird mittels Landaulevelspektroskopie und Quasiteilcheninterferenz das Vorhandensein des TSS am Ferminiveau auf Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ verifiziert, die mittels Transportmessungen als supraleitend identifiziert wurden. Anschließend folgen hochaufgelöste Spektroskopien an der Fermienergie, um die supraleitenden Eigenschaften zu analysieren. Zur Interpretation der analysierten Eigenschaften wird zu Beginn der Ni-haltige Schwere-Fermion-Supraleiter TlNi$_{2}$Se$_{2}$ untersucht, der eine vergleichbare Übergangstemperatur besitzt. Anhand diesem werden die gängigen Messmethoden der Rastertunnelmikroskopie und -spektroskopie für supraleitende Proben vorgestellt und die Leistungsfähigkeit der Messapparatur demonstriert. Im Einklang mit der Literatur zeigt sich ein $s$-Wellencharakter des Paarungsmechanismus sowie die Formation eines für Typ~II-Supraleiter typischen Abrikosov-Gitters in schwachen externen Magnetfeldern. Im folgenden Teil werden die potentiellen topologischen Supraleiter Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ begutachtet, für die eindeutig ein TSS bestätigt wird. Allerdings weisen beide Materialien keine Oberflächensupraleitung auf, was vermutlich durch eine Entkopplung der Oberfläche vom Volumen durch Bandverbiegung zu erklären ist. Unbeabsichtigte Kollisionen der Spitze mit der Probe führen jedoch zu supraleitenden Spitzen, die wesentlich erhöhte Werte für die kritische Temperatur und das kritische Feld zeigen. Der letzte Abschnitt widmet sich dem supraleitenden Substrat Nb(110), für den der Reinigungsprozess erläutert wird. Hierbei sind kurze Heizschritte bis nahe des Schmelzpunktes nötig, um die bei Umgebungsbedingungen entstehende Sauerstoffrekonstruktion effektiv zu entfernen. Des Weiteren werden die elektronischen Eigenschaften untersucht, die eine Oberflächenresonanz zum Vorschein bringen. Hochaufgelöste Messungen lassen eine durch die BCS-Theorie gut repräsentierte Struktur der supraleitenden Energielücke erkennen. Magnetfeldabhängige Experimente offenbaren zudem eine mit der Kristallstruktur vereinbare Anisotropie des Paarungspotentials. Mit diesen Erkenntnissen kann Nb(110) zukünftig als Ausgang für das Wachstum von topologischen Supraleitern herangezogen werden. N2 - Quantum computers are able to solve certain problems a lot more efficiently than classical processors. However, current realizations lack of a suitable decoherence \mbox{time} resulting in insufficient lifetimes of quantum states as the major limiting factor. Topological protected excitations such as Majorana fermions living in topological superconductors show great potential to overcome this obstacle. Since there exists only a small amount of materials with these characteristics the understanding of the electronic properties of such compounds is very important. In this thesis, the coexistence of a topological surface state (TSS) and superconductivity at the sample's surface of potential topological superconductors is studied. These two conditions must be fulfilled for the formation of topological superconductivity in time reversal invariant systems. For this purpose, Landau level spectroscopy and quasiparticle interference are carried out on Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ to verify the TSS at the Fermi energy. Transport measurements showed superconductivity in the bulk for both materials. High resolution spectroscopy experiments at the Fermi energy are performed to analyze the superconductivity. For interpretation of these data, we study the Ni-based heavy fermion superconductor TlNi$_{2}$Se$_{2}$ with a comparable transition temperature to the above mentioned compounds. In this context, the common measuring methods of scanning tunneling microscopy and spectroscopy for superconducting samples are presented and the performance capability of our experimental setup is demonstrated. In consistence with the literature, we find an $s$-wave pairing mechanism and the formation of an Abrikosov lattice typical for type~II superconductors in small external fields. The following part of this work is the investigation of the potential topological superconductors Tl$_{x}$Bi$_{2}$Te$_{3}$ und Nb$_{x}$Bi$_{2}$Se$_{3}$ that clearly confirm the presence of a TSS on both materials. No surface superconductivity can be discovered on both compounds presumably caused due to band bending thus leading to a decoupling of the surface from the bulk. However, unintentional collisions between tip and sample lead to the formation of superconducting tips with considerably higher values for the critical temperature and field as compared to the bulk results. In the last paragraph, the superconducting substrate Nb(110) is characterized. Firstly, a cleaning procedure including flashing the sample to temperatures close to the melting point is necessary to remove the oxygen reconstruction that has been formed at ambient conditions. A surface resonance is found upon analyzing the electronic properties. High resolution spectroscopy measurements lead to a superconducting gap in good agreement with the BCS theory. Additionally, magnetic field dependent experiments show an anisotropy of the pair potential accordingly to the crystal symmetry. These findings confirm that Nb(110) shows great potential as a superconducting substrate for growing topological superconductors in the future. KW - Supraleitung KW - Topologischer Isolator KW - Rastertunnelmikroskop KW - Supraleiter 2. Art KW - Topologische Supraleitung KW - Rastertunnelspektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180597 ER - TY - THES A1 - Elsholz, Markus T1 - Das akademische Selbstkonzept angehender Physiklehrkräfte als Teil ihrer professionellen Identität – Dimensionalität und Veränderung während einer zentralen Praxisphase T1 - Pre-Service Teachers‘ Academic Self-Concept as Part of their Professional Identity – Dimensionality and Change during a Practical Training N2 - Die vorliegende Arbeit untersucht die Struktur und die Veränderung des akademischen Selbstkonzepts angehender Physiklehrkräfte. Als selbstbezogene Kognition wird es als eine Grundlage der professionellen Identität von Lehrkräften verstanden. Selbstkonzepte bilden sich aus der Kategorisierung selbstrelevanter Informationen, die eine Person in verschiedenen Kontexten sammelt, bewertet und interpretiert. Für angehende Lehrkräfte wird der professionelle Kontext durch die Struktur und die Inhalte des Lehramtsstudiums gebildet. Daraus folgt die erste zentrale Hypothese der Arbeit: Im akademischen Selbstkonzept angehender Physiklehrkräfte lassen sich drei Facetten empirisch trennen, die den inhaltlichen Domänen des Lehramtsstudiums entsprechen. Demnach strukturieren Studierende ihre Fähigkeitszuschreibungen in Bezug auf (1) die Fachwissenschaft Physik, (2) die Fachdidaktik Physik sowie (3) die Erziehungswissenschaften. Konkrete Erfahrungen bilden als Quelle selbstrelevanter Informationen die Basis für den Aufbau bzw. die Veränderung von domänenspezifischen Selbstkonzeptfacetten. Sie stabilisieren das Selbstkonzept, falls sie im Einklang mit dem bisherigen Bild der Person von sich selbst stehen bzw. können eine Veränderung des Selbstkonzepts initiieren, wenn sie sich nicht konsistent in dieses Bild einfügen lassen. Vor diesem Hintergrund folgt die zweite zentrale Hypothese der vorliegenden Arbeit: Während der Praxisphasen des Studiums verändert sich das akademische Selbstkonzept der Studierenden. Die Hypothesen werden mit Ansätzen der latenten Modellierung untersucht. Mittels konfirmatorischer Faktorenanalyse wird die empirische Trennbarkeit der drei angenommenen Facetten bestätigt. In einer querschnittlichen Betrachtung zeigt sich ein deutlicher Einfluss des Geschlechts der Studierenden auf den Zusammenhang zwischen ihrem fachdidaktischen Selbstkonzept und ihrer bisherigen Praxiserfahrung. Die längsschnittliche Analyse der Veränderung des Selbstkonzepts während einer zentralen fachdidaktischen Lehrveranstaltung mit ausgeprägten Praxisphasen (Lehr-Lern-Labor-Seminar) wird mit einem latenten Wachstumskurvenmodell untersucht. Das auf die Fachdidaktik Physik bezogene Selbstkonzept steigt während des Seminars leicht an, wenn die Studierenden zum Seminarbeginn bereits über Praxiserfahrung verfügten. Fehlt diese, so ist ein leichter Rückgang in der Ausprägung des Selbstkonzepts feststellbar, der für weibliche Studierende stärker ausfällt als für ihre männlichen Kommilitonen. Mit den Befunden zu Struktur und Veränderung des akademischen Selbstkonzepts angehender Physiklehrkräfte trägt die vorliegende Arbeit dazu bei, die überwiegend qualitativen Analysen von Identitätsprozessen bei Studierenden durch den Einsatz eines theoretisch fundierten und klar umrissenen Konstrukts um eine quantitative Perspektive zu ergänzen. N2 - This study examines the structure and the change of the academic self-concept of preservice physics teachers. As a self-directed cognition, self-concept is understood as a basis for the professional identity of teachers. Self-concepts are formed by the categorization of context specific self-relevant information that a person collects, evaluates and interprets. In teacher education, the professional context for prospective teachers is formed by the structure and content of the specific teacher education program. Therefore the first central hypothesis of this thesis can be deduced: In the academic self-concept of pre-service physics teachers three facets can be separated empirically, which correspond to the content domains of the teacher education program, i. e. (1) physics, (2) physics didactics, and (3) educational sciences. Self-relevant experiences form the basis for building up or changing domain-specific self-concept facets. They are the source of self-relevant information that either stabilizes the self-concept if it is consistent with the person’s perception of him- or herself or can initiate a self-concept change if it can not be consistently integrated. Against this background, the second central hypothesis of the study follows: Practical trainings in initial teacher education are accompanied by a change in the pre-service teachers’ academic self-concept. The hypotheses are examined within a latent modeling approach. Confirmatory factor analysis confirms the empirical separability of the three assumed self-concept facets. A cross-sectional analysis reveals the influence of gender on the interrelation between pre-service teachers’ didactic self-concept and their prior teaching experience. The change in self-concept accompanying to a mandatory course in physics didactics and a practical training (Lehr-Lern-Labor-Seminar) is evaluated fitting a latent growth curve model. The self-concept facet related to physics didactics slightly increases during the seminar if the pre-service teachers already had teaching experience at the beginning of the seminar. In the subsample without teaching experience, a slight decline in the self-concept is noticeable. With the findings on the structure and change of the academic self-concept, this study contributes to supplementing the predominantly qualitative analyzes of identity processes in prospective teachers with a quantitative perspective by using a theoretically founded and clearly defined construct. KW - Selbstbild KW - Identität KW - Lehrerbildung KW - Analyse latenter Strukturen KW - Fachdidaktik KW - Selbstkonzept KW - self-concept KW - pre-service teachers KW - Lehramtsstudierende Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172153 N1 - Erscheint auch als Buchhandelsausgabe im Logos Verlag Berlin (2019) ER - TY - JOUR A1 - Schmidt‐Mende, Lukas A1 - Olthof, Selina A1 - Dyakonov, Vladimir T1 - Eine Halbleiter‐Tinte für die Zukunft JF - Physik in unserer Zeit N2 - Das Forschungsgebiet der Perowskit‐Halbleiter entwickelt sich rasant. Ein Vorteil besteht darin, dass sich damit Solarzellen und optoelektronische Bauelemente von der Fotodiode bis zum Laser einfach aus einer Lösung herstellen lassen. Damit ist zum Beispiel die Herstellung durch Drucken einer „Solarzellentinte“ möglich. Der geringe Energiebedarf durch niedrige Prozesstemperaturen verkürzt zudem die Energierückgewinnungszeit drastisch im Vergleich zu konventionellen Solarzellen. Obwohl noch eine junge Technologie, erreichen Perowskit‐Solarzellen bereits heute Wirkungsgrade bis etwa 25 % und sind damit auf Augenhöhe mit konventionellen Dünnschichttechnologien. Ein weiterer Vorteil besteht darin, dass sich die Bandlücke durch chemische Modifikation einfach an Anwendungen anpassen lässt. Zu den Herausforderungen der Forschung zählen noch die geringe Lebensdauer und chemische Langzeitstabilität sowie die Suche nach ungiftigen Ersatzstoffen für das Blei. Kommerzielle Anwendungen sind bereits absehbar. KW - Perowskit‐Halbleiter KW - Perowskit‐Solarzellen KW - aufdruckbare Solarzellenfarbe KW - Energierückgewinnungszeit KW - Fotodetektoren KW - Halbleiter‐Laser Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213562 VL - 50 IS - 6 SP - 298 EP - 304 ER - TY - THES A1 - Fiedler, Sebastian T1 - Strukturelle und elektronische Zusammenhänge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl) T1 - Structural and electronic dependencies of non-centrosymmetric semiconductors with strong spin-orbit-coupling; BiTeX (X = I, Br, Cl) N2 - Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabhängigen Spinaufspaltung der Bandstruktur führt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabhängigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplementärer, oberflächensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zusätzliche Experimente werden an dünnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgeführt. Die inversionsasymmetrische Kristallstruktur in BiTeX führt zur Existenz zweier nicht-äquivalenter Oberflächen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberflächen gespaltener Einkristalle belegen für BiTeI(0001) eine Koexistenz beider Terminierungen auf einer Längenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zurückführen lassen. Diese Domänen sind groß genug, um eine vollständig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei räumlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen Längenskala aus. Atomar aufgelöste STM-Messungen zeigen für die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberflächen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativität der Halogene resultiert in verschieden starken Ladungsübergängen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberflächeneigenschaften ist durch die Bedampfung mit Cs möglich, wobei eine Änderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfläche durch Heizen im Vakuum, bewirkt dies eine Veränderung der Bandstruktur in zwei Schritten. So führt zunächst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberflächenzustände hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfläche - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von Dünnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Veränderung der Morphologie und elektronischen Struktur in Abhängigkeit von Stöchiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der Dünnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberflächenzustands auf. N2 - This thesis is about the analysis and manipulation of semiconductor surfaces, for which Spin-Orbit-Coupling (SOC) in combination with a break of structural symmetry leads to a k-dependent spin separation in the electronic structure. Therefore, the relation between the spin-dependent electronic structure and the atomic geometry is of particular interest. Suitable model systems have been investigated by a combination of complementary surface-sensitive measuring methods, e.g. Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (PES). In this work, the main experimental focus is on the BiTeX (X =I, Br, Cl) polar semiconductors. Additional experiments have been carried out on thin films of topological insulators (TI) Bi1,1-xSb0,9+xSe3 (X = 0. . . 1.1) and Bi2Te2Se. The non-centrosymmetric crystal structure of BiTeX results in two non-equivalent surfaces with different terminations (Te or X) and inverted layer structure. STM measurements of the surface of cleaved single crystals show a coexistence of both terminations for BiTeI(0001) on a length scale of around 100 nm, which is caused by bulk stacking faults. These domains are large enough to show a fully developed band dispersion and therefore yield a combined band structure of both terminations when investigated with spatially integrating methods. By contrast, BiTeBr(0001) and BiTeCl(0001) show homogeneous terminations on a macroscopic scale. Atomically resolved STM measurements on each of the three systems reveal different defect densities for each of the atomic layers as well as different structural influences of the halogens. PES measurements show a strong influence of the termination on several surface properties, e.g. electronic band structure, work function and absorbate interaction. The different electronegativities of the halogens result in a varying degree of charge transfer within the covalently-ionically bonded BiTe+ X- unit cell. A more detailed study of the surface properties has been facilitated by Cs deposition and the subsequent investigation of alterations of the electronic structure resulting from interactions with the alkali metal. A surface modification of the crystal structure and chemical properties of BiTeI(0001) by vacuum annealing results in a variation of the band structure in two steps. At first, the loss of I causes a disappearance of the Rashba-splitting, which might be caused by the loss of non-centrosymmetry of the unit cell. In a second step, a new unit cell forms at the surface, which generates non-trivial topological surface states. This reordering only affects the surface while the unit cells of the crystal bulk remain non-centrosymmetric. Hybrid systems like this are expected to exhibit novel electronic properties. A systematic analysis of thin _lm TIs grown by molecular beam epitaxy (MBE) shows changes in morphology and electronic structure as a function of stoichiometry and substrate. The comparison of MBE and grown single crystals reveals a considerable difference between sample properties. One particular system even shows a locally inhomogeneous density of states within the binding energy regime of the topological surface state. KW - Rashba-Effekt KW - Inversionsasymmetrische Halbleiter KW - Polarer Halbleiter KW - Spin-Bahn-Wechselwirkung KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - BiTeI KW - BiTeBr KW - BiTeCl KW - Spin-Bahn-Kopplung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155624 ER - TY - THES A1 - Pfenning, Andreas Theo T1 - Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren T1 - Optoelectronic Transport Spectroscopy on Resonant Tunneling Diode Photodetectors N2 - Die vorliegende Arbeit beschäftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren für den Telekommunikationswellenlängenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minoritätsladungsträger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein für die spätere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verlässlichen und sensitiven Fotodetektoren für Telekommunikationsanwendungen sowie für die optische Molekül- und Gasspektroskopie in das übergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erläutert ausgewählte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem Überblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngrößen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quaternärer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren für den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenlänge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivität und Fähigkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivität basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungsträger. Diese verändern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabhängigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen Überblick über das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erläuterung des Fotodetektionsmechanismus. Über Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzustände ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivität bestimmen, auf ihre Spannungsabhängigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und über drei spannungsabhängige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minoritätsladungsträger (Löcher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann über eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach Überschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) fällt exponentiell mit zunehmender Spannung V ab. Über einen Vergleich mit thermisch limitierten Lebensdauern in Quantentrögen können Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgeschätzt werden. Basierend auf diesen Ergebnissen wird ein Modell für die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage für die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivität beschränken, detailliert auf ihre Abhängigkeit gegenüber der einfallenden Lichtleistung untersucht. Nur für kleine Lichtleistungen wird eine konstante Sensitivität von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. Für steigende Lichtleistungen fällt die Sensitivität um mehrere Größenordnungen ab. Die abfallende, nichtkonstante Sensitivität ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abfällt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivität vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse können genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivität betrieben werden kann, oder um den idealen Arbeitspunkt für eine minimale rauschäquivalente Leistung (NEP) zu identifizieren. Dieser liegt für eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verhältnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualität des Halbleiterkristallwachstums und des Fabrikationsprozesses zurückgeführt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche dafür sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zustände am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln über den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen ternären Vorquantentopfemittern untersucht. Der primäre Zweck der Vorquantentopfstrukturen liegt in der Erhöhung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport über L- Kanäle unterdrückt und Elektronenzustände am Γ-Punkt wiederbevölkert werden. Zudem ist bei genügend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften möglich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verhältnis von PVCR=8,2, während bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen führt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verhältnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abhängigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erhöhung der As-Stoffmengenkonzentration führt zu einem erhöhten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportvermögen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualität zurückgeführt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren für den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren für den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungsträgerpolarität (p- statt n-Dotierung, Löcher als Majoritätsladungsträger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quaternären GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. Über das Photolumineszenz-Spektrum wird die Bandlückenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenlänge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von Löchern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngrößen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuität zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet für eine spätere Integration mit Typ-II-Übergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majoritätsladungsträger setzt, bietet speziell im für den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, lässt sich aber auch auf das InP- oder GaAs- Materialsystem übertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgeprägte Fotosensitivität im MIR-Spektralbereich. Fotostromuntersuchungen werden für optische Anregung mittels eines Halbleiterlasers der Wellenlänge λ=2,61 µm durchgeführt. Bei dieser Wellenlänge liegen fundamentale Absorptionslinien atmosphärischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik bestätigt, dass die Fotosensitivität auf einer Modulation des resonanten Lochstroms über Coulomb-Wechselwirkung akkumulierter photogenerierter Minoritätsladungsträger (Elektronen) beruht. Es werden Sensitivitäten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht lässt sich die Sensitivität auf S_I=2,71 A W-1 erhöhen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert. N2 - The present thesis addresses the optoelectronic transport spectroscopy of different resonant tunneling diodes (RTDs). The thesis comprises two main topics. Firstly, the accumulation dynamics of photogenerated minority charge carriers and their impact on the RTD tunneling current is investigated for GaAs based RTD photosensors for the telecommunication wavelength region at 1.3 µm. Secondly, Al(As)Sb/GaSb double barrier quantum well RTDs are proposed and investigated with regard to their room temperature functionality. These works finally lead to the realization of RTD photodetectors in the mid infrared (MIR) spectral region. A brief summary of the content of the individual chapters is given below. Chapter 1 introduces the topic of RTD photodetectors in the context of a rapidly increasing demand for reliable and sensitive photodetectors for telecommunication applications as well as for optical molecular and gas spectroscopy. Chapter 2 explains some selected physical and technological basics of RTD photodetectors. Starting from a short overview depicting the development of RTDs, current areas of application are presented, and a concise introduction into electronic transport of RTDs is given. Subsequently, basic principles, definitions and characteristic parameters of optical detectors and sensors are defined. Finally, the physical fundamentals of light-induced effects on electronic transport in RTDs are described. In Chapter 3 an investigation on AlGaAs/GaAs double barrier quantum well resonant tunneling diodes (DBQW-RTDs) with a lattice-matched quaternary absorption layer as room temperature photodetectors for the near-infrared (NIR) spectral region at the telecommunication wavelength of λ=1.3 µm is presented. RTDs are photosensitive semiconductor devices that have inspired considerable interest in recent years due to their remarkable photosensitivity and ability to detect even individual photons. The RTD photosensitivity is based on Coulomb-interaction of photogenerated and accumulated charge carriers. These modulate the local electrostatic potential, and thus control a resonant tunneling current. Knowledge of the underlying physical parameters and their voltage dependence is essential to identify optimal operating points and device-design. In Subchapter 3.1 an overview of the sample design of the investigated RTD photodetectors, their fabrication process and a description of the photodetection mechanism is given. Low-temperature electroluminescence spectroscopy is used to determine the effective RTD quantum well width to d_DBQW⋍3.4 nm. The quantization energies of the electron and heavy hole ground states are found to be E_Γ1≈144 meV and E_hh1≈39 meV. Finally, the experimental setup used in this work is presented. In Subchapter 3.2 the physical parameters that limit the RTD photosensitivity are investigated with regard to their voltage dependence. The photocurrent-voltage characteristics of the RTD photodetector is nonlinear and determined by three voltage-dependent parameters: the RTD quantum efficiency η(V), the mean lifetime of photogenerated and accumulated minority charge carriers (holes) τ(V), and the RTD I(V)-characteristics in the dark I_dark (V). The RTD quantum efficiency η(V) can be modeled by a Gaussian error function, which describes that hole accumulation can only occur after surpassing a critical threshold voltage. The mean lifetime τ(V) decreases exponentially with increasing bias voltage V. Through a comparison with thermionically limited lifetimes in quantum wells, conduction and valence band offsets can be estimated to be Q_C≈0.55 and Q_V≈0.45, respectively. Based on these results, a model for the photocurrent-voltage characteristics is developed, which provides a framework for the characterization of RTD photodetectors. In Subchapter 3.3 the physical parameters limiting the RTD photosensitivity are investigated with regard to their dependence on the incident light power. Only for low light powers P<50 pW, a constant sensitivity S_I= 5.82×〖10〗^3 A W 1 is observed, which corresponds to a multiplication factor of M=3.30×〖10〗^5. For increasing light powers, the sensitivity decreases by several orders of magnitude. The decreasing, non-constant sensitivity is mainly due to a reduction of the average lifetime τ, which decreases exponentially with increasing hole population. In combination with the results from Subchapter 3.2, a model of the RTD photosensitivity is provided, which gives the basis for the complete characterization of RTD photodetectors. The results can be used to determine the critical light power up to which the RTD photodetector can be operated with constant sensitivity, or to identify the ideal operation point in terms of a minimum noise equivalent power (NEP). For an RTD limited by (theoretical) shot noise, the optimal working point is located at V=1.5 V with a noise-equivalent power of NEP=1.41×〖10〗^(-16) W Hz-1/2. In Chapter 4 different Al(As)Sb/GaSb DBQW RTDs are described via their electronic transport properties and for the first time resonant tunneling of electrons at room temperature is demonstrated in such structures. Subchapter 4.1 describes the growth and manufacturing process of the studied Al(As)Sb/GaSb-DBQW-RTDs. In Subchapter 4.2 electron transport through an AlSb/GaSb DBQW resonance tunneling structure is investigated. At low temperatures of T=4.2 K, resonant tunneling with unprecedented high peak-to-valley current ratios (PVCRs) of up to PVCR=20.4 can be observed. This is ascribed to the excellent quality of the semiconductor crystal growth and manufacturing process. Resonant tunneling at room temperature cannot be observed. This is attributed to a characteristic material property of the semiconductor GaSb, which results in the majority of electrons occupying states at the L-point instead of the Γ-point, at room temperature. Resonant tunneling via the typical Γ- Γ- Γ tunneling path is suppressed. In Subchapter 4.3 the electronic transport properties of AlAsSb/GaSb DBQW-RTDs with pseudomorphically grown ternary prewell emitters are investigated. The primary purpose of the prewell structures is to increase the energy separation between Γ- and L-point. Thus, electron transport via L-channels can be depopulated, which in turn leads to a repopulation of electron states at the Γ-point. In addition, an improvement of the RTD transport properties is possible with sufficiently deep prewell structures due to quantization effects. Structures without prewell emitters show a low-temperature (T=77 K) peak-to-valley current ratio of PVCR=8.2, while at room temperature, no resonant tunneling can be observed. The integration of Ga0.84In0.16Sb and GaAs0.05Sb0.95 prewell structures, leads to resonant tunneling at room temperature with peak-to-valley current ratios of PVCR=1.45 and 1.36, respectively. In Subchapter 4.4 the dependence of the electronic transport properties of Al(As)Sb/GaSb RTDs on the As mole fraction of the GaAsSb emitter prewell and the AlAsSb tunneling barriers is investigated. An increase in the As mole fraction leads to an increased room temperature PVCR with values of up to PVCR=2.36 with a simultaneously reduced PVCR at cryogenic temperatures. The reduced low-temperature transport properties are attributed to a decreasing semiconductor crystal quality with an increasing As concentration. In Chapter 5 RTD photodetectors for the MIR spectral region are presented for the first time and their optoelectronic transport properties are studied. In addition, a p-type doped RTD photodetector is demonstrated for the first time. In Subchapter 5.1 the sample design of the studied GaSb-based RTD photodetectors for the MIR spectral region are provided. In particular, structures with inverted charge carrier polarity (p-type instead of n-type doping, holes as majority charge carriers) are presented. In Subchapter 5.2 the optical properties of the lattice-matched quaternary GaInAsSb absorption layer are investigated by Fourier transform infrared spectroscopy. From the spectrum a bandgap energy of E_Gap≅(447±5) meV is determined. This corresponds to a cut-off wavelength of λ_G≅(2.77±0.04) µm. An Urbach energy of E_U=10 meV is extracted from the mono-exponential decline of the line shape at the low-energy side. At the high-energy side, the exponential decline follows the Boltzmann distribution function with k_B T=25 meV. In Subchapter 5.3, the electronic transport properties of the studied RTD photodetectors are presented and compared with an n-type doped reference sample. For the first time, room temperature resonant tunneling of holes in Al(As)Sb/GaSb DBQW-RTDs is demonstrated, with PVCR=1.58. At T=4.2 K, resonant tunneling of holes and electrons show comparable peak-to-valley current ratios of PVCR=10.1 and PVCR=11.4, respectively. The symmetrical I(V)-characteristics of the p-doped RTD photodetectors indicate a low valence band discontinuity between GaSb and the GaInAsSb absorption layer. In addition, they are particularly suitable for later integration with Type II superlattices. In Subchapter 5.4, the optoelectronic transport properties of p-type doped RTD photodetectors are described. The presented RTD photodetector concept, which relies on resonant tunneling transport of holes as majority charge carriers, offers advantages in particular for the GaSb material system that is used to cover the MIR spectral region. The concept of p-type doping may also be applied to the InP or GaAs material system. The examined RTD photodetectors show a pronounced photosensitivity in the MIR spectral range. Photocurrent investigations are performed under optical excitation with a semiconductor laser with wavelength λ=2.61 µm. Fundamental absorption lines of atmospheric water vapor are located at this wavelength. The photocurrent-voltage characteristics confirms that the photosensitivity is based on a modulation of the resonant hole current via the Coulomb interaction of accumulated photogenerated minority charge carriers (electrons). Sensitivities of S_I=0.13 A W-1 are determined. An improved RTD quantum efficiency due to an optimized doping profile of the absorption layer increases the sensitivity up to S_I=2.71 A W-1, which corresponds to a multiplication factor M≈8.6. At the same time, however, the RTD leverage factor is reduced so that n_(RTD p2)=0.42⋅n_(RTD p1). For the first time, gas absorption spectroscopy by an MIR RTD photodetector is demonstrated by means of H2O vapor on three adjacent absorption lines. KW - Resonanz-Tunneldiode KW - Photodetektor KW - AlGaAs KW - Elektronischer Transport KW - RTD KW - Resonanztunneldiode KW - GaAs KW - GaSb KW - Fotodetektor KW - Transportspektroskopie KW - Antimonide KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163205 ER - TY - THES A1 - Maier, Patrick T1 - Memristanz und Memkapazität von Quantenpunkt-Speichertransistoren: Realisierung neuromorpher und arithmetischer Operationen T1 - Memristance and memcapacitance of quantum dot floating gate transistors: realization of neuromorphic and arithmetic operations N2 - In dieser Arbeit werden Quantenpunkt-Speichertransistoren basierend auf modulationsdotierten GaAs/AlGaAs Heterostrukturen mit vorpositionierten InAs Quantenpunkten vorgestellt, welche in Abhängigkeit der Ladung auf den Quantenpunkten unterschiedliche Widerstände und Kapazitäten aufweisen. Diese Ladungsabhängigkeiten führen beim Anlegen von periodischen Spannungen zu charakteristischen, durch den Ursprung gehenden Hysteresen in der Strom-Spannungs- und der Ladungs-Spannungs-Kennlinie. Die ladungsabhängigen Widerstände und Kapazitäten ermöglichen die Realisierung von neuromorphen Operationen durch Nachahmung von synaptischen Funktionalitäten und arithmetischen Operationen durch Integration von Spannungs- und Lichtpulsen. N2 - In this thesis, state-dependent resistances and capacitances in quantum dot floating gate transistors based on modulation doped GaAs/AlGaAs heterostructures with site-controlled InAs quantum dots are presented. The accumulation of electrons in the quantum dots simultaneously increases the resistance and decreases the capacitance, which leads to characteristic pinched hysteresis loops in the current-voltage- and the charge-voltage-characteristics when applying periodic input signals. The concurrent resistance and capacitance switching enables the realization of neuromorphic operations via mimicking of synaptic functionalities and arithmetic operations via the integration of voltage and light pulses. KW - Nichtflüchtiger Speicher KW - Memristor KW - Neuroinformatik KW - Quantenpunkt KW - Transportspektroskopie KW - Künstliche Synapsen KW - Speichertransistor KW - GaAs/AlGaAs Heterostruktur KW - transport spectroscopy KW - artificial synapse KW - floating gate transistor KW - GaAs/AlGaAs heterostructure KW - Elektronengas KW - Halbleiterphysik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164234 ER - TY - THES A1 - Strauß, Micha Johannes T1 - Molekularstrahlepitaxie von niederdimensionalen GaInAs(N) Systemen für AlGaAs Mikroresonatoren T1 - Molecular beam epitaxy of GaInAs(N) low dimensional Systems for AlGaAs micro resonators N2 - Die Erforschung von Quantenpunkten mit ihren quantisierten, atomähnlichen Zuständen, bietet eine Vielzahl von Möglichkeiten auf dem Weg zum Quantencomputer und für Anwendungen wie Einzelphotonenquellen und Quantenpunktlasern. Vorangegangene Studien haben grundlegend gezeigt, wie Quantenpunkte in Halbleiterresonatoren integriert und mit diesen gekoppelt werden können. Dazu war es zum einen notwendig, die Quantenpunkte und ihr epitaktisches Wachstum besser zu verstehen und zu optimieren. Zum anderen mussten die Bragg-Resonatoren optimiert werden, sodass Güten von bis zu 165.000 realisiert werden konnten. Eingehende Studien dieser Proben zeigten im Anschluss einen komplexeren Zusammenhang von Q-Faktor und Türmchendurchmesser. Man beobachtet eine quasi periodische Oszillation des Q-Faktors mit dem Pillar Durchmesser. Ein Faktor für diese Oszillation ist die Beschaffenheit der Seitenflanken des Resonatortürmchens, bedingt durch die unterschiedlichen Eigenschaften von AlAs und GaAs bei der Prozessierung der Türmchen. Darüber hinaus wurden in der Folge auf den Grundlagen dieser Strukturen sowohl optisch als auch elektrisch gepumpte Einzelphotonenquellen realisiert. Da in diesen Bauteilen auch die Lage des Quantenpunkts innerhalb des Resonatortürmchens einen erheblichen Einfluss auf die Effizienz der Kopplung zwischen Resonator und Quantenpunkt hat, war das weitere Ziel, die Quantenpunkte kontrolliert zu positionieren. Mit einer gezielten Positionierung sollte es möglich sein, ein Resonatortürmchen direkt über dem Quantenpunkt zu plazieren und den Quantenpunkt somit in das Maximum der optischen Mode zu legen. Besondere Herausforderung für die Aufgabenstellung war, Quantenpunkte in einem Abstand von mind. der Hälfte des angestrebten Türmchendurchmessers, d.h 0,5 μm bis 2 μm, zu positionieren. Die Positionierung musste so erfolgen, dass nach dem Wachstum eines AlAs/GaAs DBR Spiegel über den Quantenpunkten, Resonatortürmchen zielgenau auf die Quantenpunkte prozessiert werden können. Es wurden geeignete Prozesse zur Strukturierung eines Lochgitters in die epitaktisch gewaschene Probe mittels Elektronenstrahllithographie entwickelt. Für ein weiteres Wachstum mittels Molekularstrahlepitaxie, mussten die nasschemischen Reinigungsschritte sowie eine Reinigung mit aktivem Wasserstoff im Ultrahochvakuum optimiert werden, sodass die Probe möglichst defektfrei überwachsen werden konnte, die Struktur des Lochgitters aber nicht zerstört wurde. Es wurden erfolgreich InAs-Quantenpunkte auf die vorgegebene Struktur positioniert, erstmals in einem Abstand von mehreren Mikrometern zum nächsten Nachbarn. Eine besondere Herausforderung war die Vorbereitung für eine weitere Prozessierung der Proben nach Quantenpunktwachstum. Eine Analyse mittels prozessierten Goldkreuzen, dass 30 % der Quantenpunkte innerhalb von 50 nm und 60 % innerhalb von 100 nm prozessiert wurden. In der Folge wurde mit der hier erarbeiteten Methode Quantenpunkte erfolgreich in DBR-Resonatoren sowie photonische Kristalle eingebaut Die gute Abstimmbarkeit von Quantenpunkten und die bereits gezeigte Möglichkeit, diese in Halbleiterresonatoren einbinden zu können, machen sie auch interessant für die Anwendung im Telekommunikationsbereich. Um für Glasfasernetze Anwendung zu finden, muss jedoch die Wellenlänge auf den Bereich von 1300 nm oder 1550 nm übertragen werden. Vorangegangene Ergebnisse kamen allerdings nur knapp an die Wellenlänge von 1300nm. Eine fu ̈r andere Bauteile sowie für Laserdioden bereits häufig eingesetzte Methode, InAs-Quantenpunkte in den Bereich von Telekommunikationswellenla ̈ngen zu verschieben, ist die Verwendung von Stickstoff als weiteres Gruppe-V-Element. Bisherige Untersuchungen fokussierten sich auf Anwendungen in Laserdioden, mit hoher Quantenpunktdichte und Stickstoff sowohl in den Quantenpunkten als in den umgebenen Strukturen. Da InAsN-Quantenpunkte in ihren optischen Eigenschaften durch verschiedene Verlustmechanismen leiden, wurde das Modell eines Quantenpunktes in einem Wall (Dot-in-Well) unter der Verwendung von Stickstoff weiterentwickelt. Durch gezielte Separierung der Quantenpunkte von den stickstoffhaltigen Schichten, konnte e eine Emission von einzelnen, MBE-gewachsenen InAs Quantenpunkten von über 1300 nm gezeigt werden. Anstatt den Stickstoff direkt in die Quantenpunkte oder unmittelbar danach in die Deckschicht ein zu binden, wurde eine Pufferschicht ohne Stickstoff so angepasst, dass die Quantenpunkte gezielt mit Wellenlängen größer 1300 nm emittieren. So ist es nun möglich, die Emission von einzelnen InAs Quantenpunkten jenseits dieser Wellenlänge zu realisieren. Es ist nun daran, diese Quantenpunkte mit den beschriebenen Mikroresonatoren zu koppeln, um gezielt optisch und elektrisch gepumpte Einzelphotonenquellen für 1300nm zu realisieren. N2 - The research of quantum dots with their quantized, atom-like states provides many possibilities for quantum computing and for application in technologies like single photon sources and quantum dot lazers. Previous studies have demonstrated how quantum dots can be integrated with and linked to semiconductor resonator. For this reason, it is necessary to better understand and optimize the epitaxial growth of quantum dots. Within the context of this work, the Bragg-Resonators must be optimized so that Q factors of up to 165.000 can be realized. Extensive studies of these samplings indicate a complex dependency between Q factors and diameter of the micropillar. This is how a quasi-periodic Q factor oscillation looks. One factor for these oscillations is the composition of the side flanks of the resonator micropillars, caused by the various properties of AIAs and GaAs during processing the micropillar. In addition, both optically and electrically pumped single photon sources have been realized on the basis of this structure. Due to the fact that the position of the quantum dot within the resonator micropillar has a significant effect on the efficiency of the coupling between the resonator and the quantum dot, a further goal was to control the position of the quantum dot. With a precise positioning, it should be possible to place a micropillar directly over a quantum dot, thus the quantum dot is located in the center of the pillar mode. A particular challenge in the scope of work was to position the quantum dots with a distance of at least half of the target micropillar diameter,in other words, between 0,5μm and 2μm. The positioning must be done in such a way so that a AIAs/GaAs DBR micropillar can be processed over the quantum dot. Therefore processes were developed to place a lattice of holes on an MBE grown sample via Electron Beam Lithography. The lithographical process was optimized by additional steps of wet chemical cleaning, and cleaning with hydrogen under ultra high vacuum, to avoid defects during MBE overgrowth. InAs quantum dots have positions on a given structure in a distance of several micrometers to each other. It could be proved by processing gold pattern, that 30% of the quantum dots are placed within 50 nm precision and 60% within 100 nm . In the following work quantum dots have been placed in DBR micro pillars and photonic crystals. Because quantum dots have a wide spectral range and because they can be integrated in micropillars, they are also of interest for applications within telecommunication systems. Therefore the spectral range around 1300 nm and 1550 nm has to be re- ached to link them to fiber cable. Former studies have shown results tight under 1300nm. Nitrogen is an additional way to get InAs quantum emitting at 1300nm at 8 K. Until now research for InAs quantum dots containing nitrogen was focused on high density dots for laser application. The Dot- In-A-Well design was transferred, in this work, to this problem by using nitrogen in a well above the quantum dots. With this development, single quantum dots, emitting above 1300nm at 8 K, have been grown for the first time. The next step would be to integrated this InAs Quantum dots with the nitrogen well, within the micro pillar to achieve single photon sources at 1300nm. KW - Quantenpunkt KW - Molekularstrahlepitaxie KW - Mikroresonator KW - Drei-Fünf-Halbleiter KW - Optischer Resonator Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159024 ER - TY - THES A1 - Dremel, Kilian T1 - Modellbildung des Messprozesses und Umsetzung eines modellbasierten iterativen Lösungsverfahrens der Schnittbild-Rekonstruktion für die Röntgen-Computertomographie T1 - Modeling of the process of measurement and development of a model-based iterative reconstruction for X-ray computed tomography N2 - In der computertomographischen Schnittbildgebung treten Artefakte, also Anteile des Ergebnisses auf, die nicht Teil des gemessenen Objekts sind und die somit die Auswertbarkeit der Ergebnisse beeinflussen. Viele dieser Artefakte sind auf die Inkonsistenz des Modells der Rekonstruktion zur Messung zurückzuführen. Gerade im Hinblick auf Artefakte durch die Energieabhängigkeit der rekonstruierten Schwächungskoeffizienten und Abweichungen der Geometrieinformation des Rekonstruktionsmodells wird häufig der Weg einer Nachbearbeitung der Messdaten beschritten, um Rekonstruktionsartefakte zu vermeiden. Im Zuge dieser Arbeit wird ein Modell der computertomographischen Aufnahme mit Konzentration auf industrielle und materialwissenschaftliche Systeme erstellt, das nicht genutzt wird um die Messdaten zu verändern, sondern um das Rekonstruktionsmodell der Aufnahmerealität anzupassen. Zunächst werden iterative Rekonstruktionsverfahren verglichen und ein passender Algorithmus ausgewählt, der die gewünschten Modifikationen des Aufnahmemodells erlaubt. Für diese Modifikationen werden bestehende Methoden erweitert und neue modellbasierte Ansätze entwickelt, die in den Rekonstruktionsablauf integriert werden können. Im verwendeten Modell werden die Abhängigkeiten der rekonstruierten Werte vom polychromatischen Röntgenspektrum in das Simulationsmodell des Rekonstruktionsprozesses eingebracht und die Geometrie von Brennfleck und Detektorelementen integriert. Es wird gezeigt, dass sich durch die verwendeten Methoden Artefakte vermeiden lassen, die auf der Energieabhängigkeit der Schwächungskoeffizienten beruhen und die Auflösung des Rekonstruktionsbildes durch Geometrieannahmen gesteigert werden kann. Neben diesen Ansätzen werden auch neue Erweiterungen der Modellierung umgesetzt und getestet. Das zur Modellierung verwendete Röntgenspektrum der Aufnahme wird im Rekonstruktionsprozess angepasst. Damit kann die benötigte Genauigkeit dieses Eingangsparameters gesenkt werden. Durch die neu geschaffene Möglichkeit zur Rekonstruktion der Kombination von Datensätzen die mit unterschiedlichen Röntgenspektren aufgenommen wurden wird es möglich neben dem Schwächungskoeffizienten die Anteile der Comptonabsorption und der photoelektrischen Absorption getrennt zu bestimmen. Um Abweichungen vom verwendeten Geometriemodell zu berücksichtigen wird eine Methode auf der Basis von Bildkorrelation implementiert und getestet, mit deren Hilfe die angenommene Aufnahmegeometrie automatisch korrigiert wird. Zudem wird in einem neuartigen Ansatz zusätzlich zur detektorinternen Streustrahlung die Objektstreustrahlung während des Rekonstruktionsprozesses deterministisch simuliert und so das Modell der Realität der Messdatenaufnahme angepasst. Die Umsetzung des daraus zusammengesetzten Rekonstruktionsmodells wird an Simulationsdatensätzen getestet und abschließend auf Messdaten angewandt, die das Potential der Methode aufzeigen. N2 - In computed tomography, parts of the result which are not features of the measured object -- so called artifacts -- occur and thus impair the evaluability of the results. Reconstruction methods require a model of the measurement. Many artifacts are induced by the inconsistency between the model of reconstruction and the measurement. Especially with regard to artifacts due to the energy dependence of the reconstructed attenuation coefficients and deviations of the geometry information of the reconstruction model, a frequently used method is the postprocessing of the measurement data to avoid reconstruction artifacts. In this thesis a model of computed tomography measurements with focus on systems used for industrial and material science purposes is developed that is not used to change the measured data, but to adapt the reconstruction model to the reality of measurement. Firstly, iterative reconstruction methods are compared and a suitable algorithm is selected that allows the desired modifications of the model. Therefore existing methods are extended and new model-based approaches are developed that can be integrated in the reconstruction process. The dependencies of the reconstructed values ??from the polychromatic X-ray spectrum are incorporated into the simulation model of the reconstruction process and the geometry of the focal spot and detector elements are integrated. Thereby artefacts caused by the energy-dependency of the attenuation coefficients are shown to be reduced and the resolution of the resulting data is shown to be increased by geometric modelling. Alongside these approaches of modeling new methods are developed and implemented. The X-ray spectrum used for the modeling is adapted during the reconstruction. Thereby the accuracy needed for this input parameter is lowered. Due to possibility of the combination of data sets scanned using different spectra the reconstruction of the Compton- and photoelectric parts of the attenuation coefficient becomes possible. To consider deviations of the geometry model used in the reconstruction a correlation-based method is implemented and tested to automatically correct these aberrations. In addition to radiation scattered within the detector, a new method is developed to simulate the object scattering during the reconstruction process and the model is therefore adapted to the reality of the measurement. The implementation of the reconstruction model composed therefrom is tested on simulation data sets and finally applied to measurement data which show the potential of the method. KW - Dreidimensionale Rekonstruktion KW - Computertomografie KW - Modellbasierte Rekonstruktion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157718 ER - TY - THES A1 - Winter, Patrick T1 - Neue Methoden zur Quantitativen Kardiovaskulären MR-Bildgebung T1 - New methods for quantitative cardiovascular magnetic resonance imaging N2 - Herzkreislauferkrankungen stellen die häufigsten Todesursachen in den Industrienationen dar. Die Entwicklung nichtinvasiver Bildgebungstechniken mit Hilfe der Magnetresonanz-Tomografie (MRT) ist daher von großer Bedeutung, um diese Erkrankungen frühzeitig zu erkennen und um die Entstehungsmechanismen zu erforschen. In den letzten Jahren erwiesen sich dabei genetisch modifzierte Mausmodelle als sehr wertvoll, da sich durch diese neue Bildgebungsmethoden entwickeln lassen und sich der Krankheitsverlauf im Zeitraffer beobachten lässt. Ein große Herausforderung der murinen MRT-Bildgebung sind die die hohen Herzraten und die schnelle Atmung. Diese erfordern eine Synchronisation der Messung mit dem Herzschlag und der Atmung des Tieres mit Hilfe von Herz- und Atemsignalen. Konventionelle Bildgebungstechniken verwenden zur Synchronisation mit dem Herzschlag EKG Sonden, diese sind jedoch insbesondere bei hohen Feldstärken (>3 T) sehr störanfällig. In dieser Arbeit wurden daher neue Bildgebungsmethoden entwickelt, die keine externen Herz- und Atemsonden benötigen, sondern das MRT-Signal selbst zur Bewegungssynychronisation verwenden. Mit Hilfe dieser Technik gelang die Entwicklung neuer Methoden zur Flussbildgebung und der 3D-Bildgebung, mit denen sich das arterielle System der Maus qualitativ und quantitativ erfassen lässt, sowie einer neuen Methode zur Quantisierung der longitudinalen Relaxationszeit T1 im murinen Herzen. Die in dieser Arbeit entwickelten Methoden ermöglichen robustere Messungen des Herzkreislaufsystems. Im letzten Kapitel konnte darüber hinaus gezeigt werden dass sich die entwickelten Bildgebungstechniken in der Maus auch auf die humane Bildgebung übertragen lassen. N2 - Cardiovascular diseases are one of the main causes of death in western countries. Hence, the development of non-invasive imaging techniques using Magnetic Resonance Imaging (MRI) is very important for early detection of these illnesses and for examination of the biological mechanisms. In the past years genetically modified mouse models have proven to be great assets, since they allow the development of new imaging techniques and to investigate the progress of cardiovascular diseases in time lapse. The main challenge of murine MRI is the high heart rate und the fast respiration. Hence, synchronization of the measurement with cardiac motion and breathing by using cardiac and respiration signals is required. Most imaging techniques use ECG leads for synchronization with the heartbeat, however, these probes are prone to disturbances at high magnetic field strengths (>3 T). In this work new imaging techniques were developed that do not use external cardiac and respiration signals but the MRI signal itself for motion synchronization. With these techniques new methods for flow quantification und 3D imaging could be developed for qualitative and quantitative measurements in the murine arteries. Furthermore, a new method for quantification of the longitudinal relaxation time T1 in the murine heart could be developed. The methods presented in this work enable more robust measurements of the cardiovascular system. In the last chapter it could be shown that the imaging techniques developed in the mouse can also be transferred to human MRI. KW - Kernspintomografie KW - Kardiovaskuläres System KW - Flussbildgebung KW - 3D-Bildgebung KW - Selbstnavigation KW - T1 KW - UTE KW - Maus KW - Aorta KW - Herzmuskel KW - Herzschlag Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174023 ER - TY - THES A1 - Kolb, Verena T1 - Einfluss metallischer Nanostrukturen auf die optoelektronischen Eigenschaften organischer Halbleiter T1 - Impact of metal nanostructures on the optoelectronic properties of organic semiconductors N2 - Opto-elektronische Bauelemente auf Basis organischer Moleküle haben in den letzten Jahren nicht nur in Nischenbereichen, wie der Kombination organischer Photovoltaik mit gebäudeintegrierten Konzepten, sondern vor allem auch in der Entwicklung von kommerziell verfügbaren OLED (organische lichtemittierende Dioden) Bauteilen, wie 4K TV-Geräten und Handy Displays, an Bedeutung gewonnen. Im Vergleich zu anorganischen Bauteilen weisen jedoch vor allem organische Solarzellen noch weitaus geringere Effizienzen auf, weswegen die Erforschung ihrer Funktionsweise und der Einflüsse der einzelnen Bestandteile auf mikroskopischer Ebene für die Weiterentwicklung und Verbesserung des Leistungspotentials dieser Technologie unabdingbar ist. \\ Um dies zu erreichen, wurde in dieser Arbeit die Wechselwirkung zwischen der lokalisierten Oberflächenplasmonenresonanz (LSPR) metallischer Nanopartikel mit den optischen Anregungen organischer Dünnschichten in dafür eigens präparierten opto-elektronischen Hybrid-Bauteilen aus kleinen Molekülen untersucht. Durch die Implementierung und Kopplung an solche plasmonischen Nanostrukturen kann die Absorption bzw. Emission durch das lokal um die Strukturen erhöhte elektrische Feld gezielt beeinflusst werden. Hierbei ist der spektrale Überlapp zwischen LSPR und den Absorptions- bzw. E\-missions\-spek\-tren der organischen Emitter entscheidend. In dieser Arbeit wurden durch Ausnutzen dieses Mechanismus sowohl die Absorption in organischen photovoltaischen Zellen erhöht, als auch eine verstärkte Emission in nanostrukturierten OLEDs erzeugt. \\ Besonderer Fokus wurde bei diesen Untersuchungen auf mikroskopische Effekte durch neu entstehende Grenzflächen und die sich verändernden Morphologien der aktiven organischen Schichten gelegt, da deren Einflüsse bei optischen Untersuchungen oftmals nur unzureichend berücksichtigt werden. In der Arbeit wurden daher die nicht zu vernachlässigenden Folgen der Einbringung von metallischen Nanostrukturen auf die Morphologie und Grenzflächen zusammen mit den spektralen Veränderungen der Absorptions- und Emissionscharakteristik organischer Moleküle analysiert und in Zusammenhang gebracht, wodurch eine Verbesserung der Effizienzen opto-elektronischer Bauteile erreicht werden soll. N2 - In recent years, opto-electronic devices based on organic molecules have drawn increasing attention, not only in niche markets like building-integrated photovoltaics, but also in the development of organic light emitting diodes (OLEDs) for 4K TV and smartphone displays. Compared to devices based on inorganic semiconductors, especially, organic solar cells lack in efficiency. Therefore, the investigation and understanding of microscopic effects influencing the overall performance are crucial for further efficiency improvements of these technologies.\\ These circumstancs have motivated the topic of this thesis namely the investigation of the electromagnetic interaction between metallic nanostructures and molecular semiconductors, the latter constituting the key unit in organic opto-electronics thin film devices. The unique properties of metal nanostructures and nanoparticles, in particular, their localized surface plasmon resonances (LSPR) and the accompanying enhancement of the local electrical field and the scattering of incoming light are able to enhance both, the absorption and the emission of organic molecules in close proximity. \\ In this thesis, both phenomena were used to enhance the absorption of small molecule organic solar cells, as well as the emission in nanostructured OLEDs. Especially, the effect of artificially generated interfaces and the induced change in morphology due to nanoparticles are investigated with respect to the optical properties of the organic emitters and absorbers. \\ KW - Nanostruktur KW - Organischer Halbleiter KW - Oberflächenplasmonen KW - organische Halbleiter KW - localized surface plasmon KW - organic semiconductor KW - Silber KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170279 ER - TY - THES A1 - Weih, Robert T1 - Interbandkaskadenlaser für die Gassensorik im Spektralbereich des mittleren Infrarot T1 - Interband Cascade Lasers for Gas Sensing in the Mid Infrared Spectral Region N2 - Aufgrund der hohen Sensitivität bei der Absorptionsmessung von Gasen im Spektral- bereich des mittleren Infrarot steigt die Nachfrage nach monolithischen, kompakten und energieeffizienten Laserquellen in Wellenlängenfenster zwischen 3 und 6 μm ste- tig. In diesem Bereich liegen zahlreiche Absorptionsbanden von Gasen, welche sowohl in der Industrie als auch in der Medizintechnik von Relevanz sind. Mittels herkömm- licher Diodenlaser konnte dieser Bereich bisher nur unzureichend abgedeckt werden, während Quantenkaskadenlaser infolge ihrer hohen Schwellenleistungen vor allem für portable Anwendungen nur bedingt geeignet sind. Interbandkaskadenlaser kom- binieren die Vorteile des Interbandübergangs von konventionellen Diodenlasern mit der Möglichkeit zur Kaskadierung der Quantenkaskadenlaser und können einen sehr breiten Spektralbereich abdecken. Das übergeordnete Ziel der Arbeit war die Optimierung von molekularstrahlepitak- tisch hergestellten Interbandkaskadenlasern auf GaSb - Basis im Spektralbereich des mittleren Infrarot für den Einsatz in der Gassensorik. Dies impliziert die Ermögli- chung von Dauerstrichbetrieb bei Raumtemperatur, das Erreichen möglichst geringer Schwellenleistungen sowie die Entwicklung eines flexiblen Konzepts zur Selektion von nur einer longitudinalen Mode. Da die Qualität der gewachsenen Schichten die Grundvoraussetzung für die Herstel- lung von performanten Bauteilen darstellt, wurde diese im Rahmen verschiedener Wachstumsserien eingehend untersucht. Nachdem das Flussverhältnis zwischen den Gruppe -V Elementen Sb und As ermittelt werden konnte, bei dem die InAs/AlSb - Übergitter der Mantelschichten verspannungskompensiert hergestellt werden können, wurde die optimale Substrattemperatur beim Wachstum dieser zu 450 ◦C bestimmt. Anhand von PL - sowie HRXRD- Messungen an Testproben konnte auch die opti- male Substrattemperatur beim Wachstum der charakteristischen W- Quantenfilme zu 450 ◦C festgelegt werden. Als weiterer kritischer Parameter konnte der As - Fluss beim Wachstum der darin enthaltenen InAs - Schichten identifiziert werden. Die bes- ten Ergebnisse wurden dabei mit einem As - Fluss von (1.2 ± 0.2) × 10−6 torr erzielt. Darüber hinaus konnte in Kooperation mit der Technischen Universität Breslau eine sehr hohe guteWachstumshomogenität auf den verwendeten 2′′ großen GaSb -Wafern nachgewiesen werden. Im Anschluss an die Optimierung des Wachstums verschiedener funktioneller Be- standteile wurden basierend auf einem in der Literatur veröffentlichten Laserschicht- aufbau diverse Variationen mit dem Ziel der Optimierung der Laserkenndaten unter- sucht. Zum Vergleich wurden 2.0 mm lange und 150 μm breite, durch die aktive Zone geätzte Breitstreifenlaser herangezogen. Eine erhebliche Verbesserung der Kenndaten konnte durch die Anwendung des Kon- zepts des Ladungsträgerausgleichs in der aktiven Zone erreicht werden. Bei einer Si - Dotierkonzentration von 5.0 × 1018 cm−3 in den inneren vier InAs - Filmen des Elektroneninjektors konnte die niedrigste Schwellenleistungsdichte von 491W/cm2 erreicht werden, was einer Verbesserung von 59% gegenüber des Referenzlasers ent- spricht. Mithilfe längenabhängiger Messungen konnte gezeigt werden, dass der Grund für die Verbesserung in der deutlichen Reduzierung der internen Verluste auf nur 11.3 cm−1 liegt. Weiterhin wurde die Abhängigkeit der Laserkenngrößen von der Anzahl der verwendeten Kaskaden in den Grenzen von 1 bis 12 untersucht. Wie das Konzept der Kaskadierung von Quantenfilmen erwarten ließ, wurde eine mo- notone Steigerung des Anstiegs der Strom - Lichtleistungskennlinie sowie eine Pro- portionalität zwischen der Einsatzspannung und der Kaskadenzahl nachgewiesen. Für ICLs mit einer gegebenen Wellenleiterkonfiguration und einer Wellenlänge um 3.6 μm wurde bei einer Temperatur von 20 ◦C mit 326W/cm2 die niedrigste Schwel- lenleistungsdichte bei einem ICL mit vier Kaskaden erreicht. Des Weiteren konnte für einen ICL mit 10 Kaskaden und einer Schwellenstromdichte von unter 100A/cm2 ein Bestwert für Halbleiterlaser in diesem Wellenlängenbereich aufgestellt werden. Eine weitere Reduktion der Schwellenleistungsdichte um 24% konnte anhand von Lasern mit fünf Kaskaden durch die Reduktion der Te - Dotierung von 3 × 1017 cm−3 auf 4 × 1016 cm−3 im inneren Teil der SCLs erreicht werden. Auch hier wurde mit- tels längenabhängiger Messungen eine deutliche Reduktion der internen Verluste nachgewiesen. In einer weiteren Untersuchung wurde der Einfluss der SCL - Dicke auf die spektralen sowie elektro - optischen Eigenschaften untersucht. Darüber hin- aus konnten ICLs realisiert werden, deren Mantelschichten nicht aus kurzperiodigen InAs/AlSb - Übergittern sondern aus quaternärem Al0.85Ga0.15As0.07Sb0.93 bestehen. Für einen derartig hergestellten ICL konnte eine Schwellenstromdichte von 220A/cm2 bei einer Wellenlänge von 3.4 μm gezeigt werden. Mithilfe der durch die verschiedenen Optimierungen gewonnenen Erkenntnisse so- wie Entwurfskriterien aus der Literatur wurden im Rahmen diverser internationaler Kooperationsprojekte ICLs bei verschiedenen Wellenlängen zwischen 2.8 und 5.7 μm hergestellt. Der Vergleich der Kenndaten zeigt einen eindeutigen Trend zu einer stei- genden Schwellenstromdichte mit steigender Wellenlänge. Die charakteristische Tem- peratur der untersuchten Breitstreifenlaser nimmt von circa 65K bei lambda=3.0 μm mit steigender Wellenlänge auf ein Minimum von 35K im Wellenlängenbereich um 4.5 μm ab und steigt mit weiter steigender Wellenlänge wieder auf 45K an. Ein möglicher Grund für dieses Verhalten konnte mithilfe von Simulationen in der Anordnung der Valenzbänder im W-Quantenfilm gefunden werden. Zur Untersuchung der Tauglichkeit der epitaktisch hergestellten Schichten für den in der Anwendung hilfreichen Dauerstrichbetrieb oberhalb von Raumtemperatur wur- den Laser in Stegwellenleitergeometrie mit einer aufgalvanisierten Goldschicht zur verbesserten Wärmeabfuhr hergestellt. Nach dem Aufbau der Laser auf Wärmesen- ken wurde der Einfluss der Kavitätslänge sowie der Stegbreite auf diverse Kennda- ten untersucht. Des Weiteren wurden eine Gleichung verifiziert, welche es erlaubt die maximal erreichbare Betriebstemperatur im Dauerstrichbetrieb aus der auf die Schwellenleistung bezogenen charakteristischen Temperatur sowie dem thermischen Widerstand des Bauteils zu berechnen. Mithilfe von optimierten Bauteilen konn- ten Betriebstemperaturen von mehr als 90 ◦C und Ausgangsleistungen von mehr als 100mW bei einer Betriebstemperatur von 20 ◦C erreicht werden. Im Hinblick auf die Anwendung der Laser in der Absorptionsspektroskopie wurde ab- schließend ein DFB-Konzept, welches zuvor bereits in konventionellen Diodenlasern zur Anwendung kam, erfolgreich auf das ICL - Material übertragen. Dabei kommt ein periodisches Metallgitter zum Einsatz, welches seitlich der geätzten Stege aufge- bracht wird und aufgrund von Verlustkopplung eine longitudinale Mode bevorzugt. Durch den Einsatz von unterschiedlichen Gitterperioden konnten monomodige ICLs basierend auf dem selben Epitaxiematerial in einem spektralen Bereich von mehr als 100nm hergestellt werden. Ein 2.4mm langer DFB- Laser konnte einen Abstimmbe- reich von mehr als 10nm bei Verschiebungsraten von 0.310nm/K und 0.065nm/mA abdecken. Der DFB- ICL zeigte im Dauerstrichbetrieb in einem Temperaturbereich zwischen 10 und 35 ◦C monomodigen Betrieb mit einer Ausgangsleistung von mehre- ren mW. Basierend auf dem in dieser Arbeit gewachsenem Material und dem DFB- Konzept konnte im Rahmen verschiedener Entwicklungsprojekte bereits erfolgreich Absorptionsspektroskopie in einem breiten Spektralbereich des mittleren Infrarot be- trieben werden. N2 - Due to the high sensitivity regarding absorption spectroscopy in the mid infrared spectral range the demand for monolithic, compact and energy efficient laser sourcesin the wavelength window between 3 and 6 μm is steadily increasing. Numerous absorption bands of gases relevant in industrial and medical applications are situated in this window. Utilizing conventional diode lasers this range could not be sufficiently covered, whereas quantum cascade lasers are of limited suitability for portable applications due to their high threshold power. Interband cascade lasers combine the advantage of interband transitions with the possibility of cascading from quantum cascade lasers and can cover a very wide spectral range. The main objective of this work was the optimization of molecular epitaxially grown mid infrared interband cascade lasers based on GaSb substrates for their utilization in gas sensing. This implies the realization of continuous wave operation at room temperature, to achieve as low threshold powers as possible and also the development of a flexible concept that realizes the selection of a single longitudinal mode. Since the quality of epitaxially grown layers is of high importance for the fabrication of high performance devices it was investigated and optimized in various growth series. After the flux ratio between the group -V elements Sb and As, that enables strain compensation in InAs/AlSb superlattices, was found the optimal substrate temperature during growth of these was determined to 450 °C. Using PL - as well as HRXRD- measurements of test samples the optimal substrate temperature during growth of the characteristic W- quantum wells was also set to 450 ◦C. The As - flux during the growth of the InAs layers inside these wells could be identified as a critical parameter as well. The best results could be achieved at an As - flux of (1.2 ± 0.2) × 10−6 torr. Moreover a very high growth homogeneity on the GaSb wafers of 2′′ size could be verified in cooperation with the Wrocław University of Science and Technology. Subsequently to the growth optimizations of the different functional groups of the laser structure various variations based on a published laser design were investigated in order to optimize the laser characteristics. To compare the results 2.0mm long and 150 μm wide broad area lasers were processed and characterized. A significant improvement of the laser characteristics could be achieved due to the implementation of the carrier rebalancing concept inside the active region. A Si -doping concentration of 5.0 × 1018 cm−3 in the inner four InAs - layers of the electron injector lead to a threshold power density as low as 491 W/cm2. This equals a 59% reduction from the value of the reference structure. By conducting cavity length dependent measurements the reason for this improvement could be found in the reduction of the internal losses to a value of only 11.3 cm−1. Furthermore the dependence of different characteristic variables on the number of cascades inside the active region was investigated within the limits of 1 to 12 cascades. As expected from the concept of cascading a monotonic increase of the slope of the current - output power characteristic with the number of cascades and a proportionality between set in voltage and the number of cascades was found. For ICLs with a given waveguide configuration and a wavelength of 3.6 μm the lowest threshold power density of 326 W/cm2 at a temperature of 20 °C was achieved for a four stage ICL. Beyond that a threshold current density of less than 100 A/cm2 could be found for a device with 10 cascades - a record for semiconductor lasers in this wavelength range. Additionally a reduction of the threshold power density in five stage ICLs of 24% could be achieved with the reduction of the doping density in the inner part of the separate confinement layers from 3 × 1017 cm−3 to 4 × 1016 cm−3. The reason for this was also found in a significant reduction of the internal loss. In a further test series the influence of the separate confinement layer - thickness on the spectral and electro - optic properties was investigated. Additionally ICLs were realized with cladding layers made of quaternary Al0.85Ga0.15As0.07Sb0.93 instead of InAs/AlSb - superlattices. For an ICL of this kind a threshold current density of 220 A/cm2 at a wavelength of 3.4 μm could be reached. Based on the before mentioned improvements and design rules from literature several ICLs in the wavelength window between 2.8 and 5.7 μm were fabricated in the framework of different international projects. Comparing these results a clear trend towards an increase in threshold current density with increasing wavelength was found. The characteristic temperature of the processed broad area lasers decreases from 65 K at λ = 3.0 μm to a minimum of 35K in the wavelength region around 4.5 μm and increases again for ICLs with even longer wavelengths. A possible reason for this was found in the arrangement of the valence bands in the W-quantum well. To investigate the capability of continuous wave operation above room temperature, which brings a clear benefit in applications, ridge waveguide lasers with a thick electroplated gold layer for improved heat dissipation were processed. After mounting the lasers on heat sinks the influence of the device length and width on several characteristics was determined. Furthermore an equation was verified which allows predicting the maximum operation temperature in continuous wave operation from the threshold power based characteristic temperature and the thermal resistance of a laser device. Optimized devices could reach a maximum operation temperature in continuous wave mode of more than 90 ◦C and an output power of more than 100 mW at an operation temperature of 20 ◦C. With regard to the application in absorption spectroscopy a DFB concept, which has already been demonstrated in conventional diode lasers, could be successfully adapted for ICLs. The concept is based on a metal grating that is placed on the side of the laser ridge and favours one longitudinal mode due to loss coupling. By utilizing different grating periods single mode ICLs based on the same epitaxial material could be fabricated in a spectral range of more than 100 nm width. A 2.4 mm long DFB - laser could cover a tuning range of more than 10nm with temperature and current tuning rates of 0.310 nm/K and 0.065 nm/mA respectively. The DFB- ICL device showed single mode operation in a temperature range from 10 to 35 °C with an output power of several mW. Based on the epitaxial material grown in this work and the DFB- concept a variety of absorption spectroscopy experiments in the framework of several projects could be carried out in a wide range of the mid infrared spectral region. KW - Halbleiterlaser KW - Interbandkaskadenlaser KW - Infrarotemission Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169247 ER - TY - THES A1 - Schielein, Richard T1 - Analytische Simulation und Aufnahmeplanung für die industrielle Röntgencomputertomographie T1 - Analytical simulation and acquisition planning for industrial x-ray computed tomography N2 - Röntgencomputertomographie (CT) hat in ihrer industriellen Anwendung ein sehr breites Spektrum möglicher Prüfobjekte. Ziel einer CT-Messung sind dreidimensionale Abbilder der Verteilung des Schwächungskoeffizienten der Objekte mit möglichst großer Genauigkeit. Die Parametrierung eines CT-Systems für ein optimales Messergebnis hängt stark vom zu untersuchenden Objekt ab. Eine Vorhersage der optimalen Parameter muss die physikalischen Wechselwirkungen mit Röntgenstrahlung des Objektes und des CT-Systems berücksichtigen. Die vorliegende Arbeit befasst sich damit, diese Wechselwirkungen zu modellieren und mit der Möglichkeit den Prozess zur Parametrierung anhand von Gütemaßen zu automatisieren. Ziel ist eine simulationsgetriebene, automatische Parameteroptimierungsmethode, welche die Objektabhängigkeit berücksichtigt. Hinsichtlich der Genauigkeit und der Effizienz wird die bestehende Röntgensimulationsmethodik erweitert. Es wird ein Ansatz verfolgt, der es ermöglicht, die Simulation eines CT-Systems auf reale Systeme zu kalibrieren. Darüber hinaus wird ein Modell vorgestellt, welches zur Berechnung der zweiten Ordnung der Streustrahlung im Objekt dient. Wegen des analytischen Ansatzes kann dabei auf eine Monte-Carlo Methode verzichtet werden. Es gibt in der Literatur bisher keine eindeutige Definition für die Güte eines CT-Messergebnisses. Eine solche Definition wird, basierend auf der Informationstheorie von Shannon, entwickelt. Die Verbesserungen der Simulationsmethodik sowie die Anwendung des Gütemaßes zur simulationsgetriebenen Parameteroptimierung werden in Beispielen erfolgreich angewendet beziehungsweise mittels Referenzmethoden validiert. N2 - Industrial X-ray computed tomography (CT) can be applied to a large variety of different specimens. The result of a CT measurement is a three-dimensional image containing the position-dependent attenuation coefficient of the specimen. For an optimal imaging CT-measurement parameters depend on both the properties of the CT-System and the specimen. To predict such an optimal parameterization both the physical interactions with X-rays of the CT-System and the specimen, must be taken into account. This thesis sets out to address the modelling of the interactions as well as the automatization of the parameter finding. The latter is based on a figure of merit for CT-measurements. Aim is a simulation-based, automatic parameter optimization method which includes the object-dependency on distinct specimens. The currently existing X-ray simulation methods are enhanced with respect to accuracy and efficiency. Therefore a method for the calibration of the simulation to a real CT-system is presented. Additionally, a model for second order X-ray scattering is developed in order to calculate the specimen-scattered radiation. This is done using an analytical ansatz and no Monte-Carlo method has to be applied. So far, no universal definition of a figure of merit for CT-results has been given in literature. Using Shannon's information theory such a definition is developed. The improvements of the simulation method and the application of the figure of merit for simulation-based parameter optimization are used in examples or are validated using reference methods. KW - Computertomografie KW - Zerstörungsfreie Werkstoffprüfung KW - Optimierung KW - Aufnahmeplanung KW - Analytische Simulation KW - CT KW - Computersimulation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169236 ER - TY - THES A1 - Treisch, Florian T1 - Die Entwicklung der Professionellen Unterrichtswahrnehmung im Lehr-Lern-Labor Seminar T1 - Assessing the professional vision of pre-service teachers in the Student-Lab N2 - Der Übergang vom der ersten Phase der Lehramtsausbildung ins Referendariat wird häufig mit dem Begriff „Praxisschock“ verbunden. Viele Studierende und Referendare fühlen sich unzureichend auf den Unterricht in der Schule vorbereitet. Sie fordern deshalb eine stärkere Verzahnung von Theorie und Praxis, also eine Anwendung der erlernten Theorien in „echten“ Praxisphasen auch schon in der ersten Phase der Lehramtsausbildung. Das Lehr-Lern-Labor Seminar der Universität Würzburg kann dazu beitragen, diese Verbindung von Theorie und Praxis herzustellen. Grundlegend sollen die Studierenden in diesem Seminar ihr fachliches, didaktisches und pädagogisches (Vor-)Wissen aufgreifen und in komplexitätsreduzierten Handlungsumgebungen anwenden. Dabei sollen sie im Rahmen des Lehr-Lern-Labor Seminars zunächst Experimentierstationen zu vorgegebenen Themengebieten aus dem bayerischen Lehrplan konzipieren, um anschließend mehrmals Schülerinnen und Schüler an diesen Stationen zu betreuen. Im Sinne einer iterativen Praxis werden die Betreuungen mehrmals von den Studierenden zusammen mit zwei Dozenten reflektiert. Letztlich wiederholen sich die Betreuungen, die Reflexionsphasen und mögliche Verbesserungen der Stationen viermal in einem zyklischen Prozess. Für die Verknüpfung von theoretischem Wissen in konkreten Handlungssituationen sind Wahrnehmungsprozesse von Bedeutung. Die sogenannte Professionelle Unterrichts-wahrnehmung beschreibt die Fähigkeit, relevante Unterrichtssituationen zu erkennen und theoriebezogen zu bewerten. Sie verknüpft das zugrunde liegende Wissen mit konkreten Handlungssituationen und dient somit als Bindeglied zwischen dem Wissen und dem Handeln, welches speziell in Reflexionsphasen gefördert werden kann. Durch die mehrmaligen Reflexionsprozesse der eigenen Betreuungen und die der Kommilitonen im Lehr-Lern-Labor Seminar könnte es eine vielversprechende Grundlage zur Förderung der Professionellen Unterrichtswahrnehmung darstellen. Die grundlegende Fragestellung der vorliegenden Arbeit ist es daher zu untersuchen, ob sich die Professionelle Unterrichtswahrnehmung im Rahmen des Lehr-Lern-Labor Seminars fördern lässt und inwieweit neu integrierte Videoanalysen der eigenen Betreuungen und die der Kommilitonen die Professionelle Unterrichtswahrnehmung der Studierenden zusätzlich fördern. Weiterhin interessiert, ob personenspezifische Merkmale einen zusätzlichen Einfluss auf die Entwicklung der Professionellen Unterrichtswahrnehmung ausüben. Ergänzend wird untersucht, ob zwischen dem Fachwissen, dem didaktischen Wissen und der Professionellen Unterrichtswahrnehmung Zusammenhänge bestehen. Dies könnte Aufschluss darauf geben, inwieweit Fachwissen und didaktisches Wissen die Entwicklung der Professionellen Unterrichtswahrnehmung im Seminar bedingen. Diese Arbeit leistet somit einen wichtigen Beitrag zur Untersuchung der Wirksamkeit eines Lehr-Lern-Labor Seminars, welches in die Ausbildung von Physiklehrkräften integriert wurde und zeigt auf, wie das Seminar bezüglich der Förderung der Professionellen Unterrichtswahrnehmung effektiver gestaltet werden kann. N2 - The transition from the first phase of the teacher education at the university to the two-year teacher training at school is often associated with the term “reality shock”. Many pre-service and in-service teachers feel inadequately prepared for teaching in schools. Therefore, there is an increasing call for a stronger connection of theory and practice. More precisely, pre-service teachers and educators demand an application of the theoretical knowledge in real practice situations already during education at the university. The Student-Lab seminar at the University of Würzburg can contribute to the connection of theory and practice. In this seminar, the participating pre-service teachers should use their content, didactical and pedagogical knowledge to create experimental stations for students on a given topic based on the Bavarian curriculum. Following, the pre-service teachers teach students on microteaching settings at the experimental stations. After every run, the pre-service teachers will reflect their teaching peer to peer and with the instructors. According to an iterative practice, there is an ongoing change of practice, reflection and improvement of the stations and the teaching. The connection of theory and practice is strongly related to professional vision. Professional vision describes the ability of a teacher to notice relevant teaching situations and to provide proper reasoning based on theoretical background. It links theoretical knowledge to specific teaching situations and serves as a connection between dispositions and performance, which can be learned during reflection. Due to the iterative reflections of their own teaching and the teaching of fellow students, the Student-Lab seminar could be a promising learning environment for the development of pre-service teachers’ professional vision. Therefore, the fundamental research questions are as follows: Is it possible to foster the pre-service teachers’ professional vision in the Student-Lab seminar? Furthermore, is there an additional effect due to newly integrated video analysis of their own and their fellows’ teaching in the Student-Lab? There is also an interest in the influence of individual characteristics on the development of professional vision. Another interest concerns the relation between the pre-service teachers’ content knowledge, didactical knowledge and their professional vision. This provides a hint to what extent the content knowledge and the didactical knowledge determine the development of professional vision. This work provides an important contribution to the investigation of the effectiveness of a Student-Lab integrated in the education of physics teachers. It gives indications for the organization and the learning contents of a Student-Lab seminar. KW - Lehramtsstudium KW - Lehr-Lern-Forschung KW - Schülerversuch KW - Lehr-Lern-Labor KW - Student-Lab KW - Professionelle Unterrichtswahrnehmung KW - professional vision KW - Videoanalyse KW - video analysis KW - Lehramt KW - Lehranalyse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164170 ER - TY - THES A1 - Graus, Martin T1 - Anwendung und Weiterentwicklung der Orbitaltomographie T1 - Application and Advancement of Orbital Tomography N2 - Als Orbitaltomographie wird eine junge Methode innerhalb der Photoelektronenspektrokopie bezeichnet, welche es ermöglicht, Molekülorbitale mit hoher Ortsauflösung abzubilden. Hierfür werden die zu untersuchenden Moleküle durch elektromagnetische Strahlung angeregt und die mittels Photoeffekt emittierten Elektronen hinsichtlich ihres Impulses und ihrer kinetischen Energie charakterisiert. Moderne Photoemissionsexperimente erlauben die simultane Vermessung des gesamten Impulshalbraumes oberhalb der Probe. Die detektierte Intensitätsverteilung stellt dann unter bestimmten Bedingungen das Betragsquadrat eines hemisphärischen Schnittes durch den Fourierraum des spektroskopierten Orbitals dar, wobei der Radius der Hemisphäre von der Energie der anregenden Strahlung abhängt. Bei den in dieser Arbeit untersuchten Systemen handelt es sich um adsorbierte Moleküle, die hochgeordnete Schichten auf kristallinen Edelmetalloberflächen bilden. Im Fall eindomänigen Wachstums liefern die parallel orientierten Moleküle identische Photoemissionssignale. Kommt es hingegen zur Ausbildung von Rotations- und Spiegeldomänen, stellt die gemessene Impulsverteilung eine Superposition der unterschiedlichen Einzelbeiträge dar. Somit lassen sich Rückschlüsse auf die Orientierungen der Moleküle auf den Substraten ziehen. Diese Charakterisierung molekularer Adsorptionsgeometrien wird anhand verschiedener Modellsysteme vorgestellt. Variiert man die Energie der anregenden Strahlung und somit den Radius der hemisphärischen Schnitte durch den Impulsraum, ist es möglich den Fourierraum des untersuchten Molekülorbitals dreidimensional abzubilden. Kombiniert man die gemessenen Intensitäten mit Informationen über die Phase der Wellenfunktion im Impulsraum, die durch zusätzliche Experimente oder rechnerisch gewonnen werden können, lässt sich durch eine Fouriertransformation ein dreidimensionales Bild des Orbitals generieren, wie Schritt für Schritt gezeigt wird. Im Zuge eines Photoemissionsprozesses kann das Molekül in einen angeregten vibronischen Zustand übergehen. Mittels Photoemissionsexperimenten mit hoher Energieauflösung lassen sich Unterschiede zwischen den Impulsverteilungen der schwingenden Moleküle und denen im vibronischen Grundzustand feststellen. Ein Vergleich der Messdaten mit Simulationen kann die Identifikation der angeregten Schwingungsmode ermöglichen, was eine neue Methode darstellt, Erkenntnisse über die Elektron-Phonon-Kopplung in molekularen Materialien zu gewinnen. N2 - Orbital tomography is a relatively young method within the field of photoelectron spectroscopy, which allows for imaging of molecular orbitals with high spatial resolution. After excitation of the specimen by electromagnetic radiation, electrons are emitted via the photoelectric effect and characterised regarding their momenta and kinetic energies by a photoelectron detector system. State-of-the-art photoemission experiments are capable of simultaneous mapping of the full emission hemisphere above the sample. Under certain conditions, measured intensity distributions are then proportional to the square of the absolute value of a hemispherical section through the investigated orbital's Fourier space. The radius of the hemisphere is dependent on the excitation energy. In this study, the systems under investigation constitute adsorbed molecules which form highly ordered layers on surfaces of noble metal crystals. If the growth process leads to a single domain in which all molecules are aligned parallel, the molecules send out identical photoemission signals. If rotational or mirror domains are however formed, the measured momentum distribution is a superposition of the individual contributions. As a consequence, conclusions on the orientation of the molecules on the substrate can be drawn. This characterization of molecular adsorption geometries is presented by means of various modell systems. Variation of the excitation energy associated with a change in the radius of the hemispherical section allows for a three-dimensional imaging of the investigated orbital's Fourier space. A combination of measured intensities with information on the phase of the wave function in momentum space, which can be derived experimentally or numerically, renders a three-dimensional reconstruction of the orbital possible via a Fourier transform, as shown step by step. As part of the photoemission process, the molecule can be transfered into an excited vibronic state. Employing photoemission experiments with high energy resolution, one can detect differences between the momentum distributions of vibrant molecules and those in the vibronic ground state. A comparison of experimental data with simulations can enable identification of the relevant vibronic mode, showcasing a new method to gain information on electron-phonon coupling in molecular materials. KW - ARPES KW - Molekülorbital KW - Photoelektronenspektroskopie KW - Orbitaltomographie KW - Impulsmikroskopie KW - Molekülspektroskopie KW - Molekülspektroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163194 ER - TY - THES A1 - Kampf, Thomas T1 - Quantifizierung myokardialer Mikrostruktur und Perfusion mittels longitudinaler NMR Relaxation T1 - Quantification of myocardial micro structure and perfusion exploiting longitudinal NRM relaxation times N2 - Ziel der Arbeit war es die Quantifizierung funktioneller bzw. mikrostruktureller Parameter des Herzmuskels mit Hilfe T1-basierter Methoden zu verbessern. Diese Methoden basieren darauf, die gewünschte Information durch eine geeignete Präparation der Magnetisierung bzw. durch die Gabe von Kontrastmittel in den Zeitverlauf der longitudinalen Relaxation zu kodieren. Aus der Änderung der Relaxationszeit läßt sich dann die gewünschte Information bestimmen. Dafür sollte sowohl der Einfluß der Anatomie als auch derjenige der Meßmethodik auf die Bestimmung der longitudinalen Relaxationszeit und damit auf die Quantifizierung der Funktion bzw. Mikrostrukturparameter untersucht werden. Speziell der Einfluß der Bildgebungssequenz führt dazu, daß nur eine scheinbare Relaxationszeit gemessen wird. Während dies keinen Einfluß auf die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter hatte, ergab sich für die Perfusionsquantifizierung eine deutliche Abhängigkeit von den Parametern der verwendeten IRLL-Sequenz. Um diesen Einfluß gerecht zu werden, wurden an die Meßmethodik angepaßte Gleichungen zur Bestimmung der Perfusion gefunden mit denen die systematischen Abweichungen korrigiert werden können. Zusätzlich reduzieren die angepaßten Gleichungen die Anforderungen bezüglich der Inversionsqualität im schichtselektiven Experiment. Dies wurde in einem weiteren Projekt bei der Bestimmung der Nierenperfusion im Mausmodell ausgenutzt. Neben der Untersuchung der Auswirkungen der Meßmethode wurde auch der Einfluß der anatomischen Besonderheiten des Blutkreislaufs am Herzen auf die Parameterquantifizierung mittels T1-basierter Methoden untersucht. Es konnte gezeigt werden, daß auf Grund der Anatomie des Herzens bei typischen Orientierungen der Bildgebungsschicht, auch bei der schichtselektiven Inversionspräparation der Magnetisierung des Herzmuskels ein Anteil des Blutpools invertiert wird. Daraus folgt, daß die vereinfachende Annahme, nach welcher bei schichtselektiver Präparation in Folge von Perfusion nur Blut mit Gleichgewichtsmagnetisierung den Herzmuskel erreicht, nicht erfüllt ist. Es konnte gezeigt werden, daß dies bei Perfusion zu einer deutlichen Unterschätzung der berechneten Perfusionswertes führt. Um mit diesem Problem umgehen zu können, wurde aufbauend auf einem vereinfachten Modell der zeitlichen Entwicklung der Blutmagnetisierung eine Korrektur für die Bestimmung der Perfusionswerte gefunden welche den Einfluß der anatomischen Besonderheiten berücksichtigt. Das für die Perfusionskorrektur eingeführte Model prognostiziert ebenso, daß auch bei schichtselektiver Inversion die T1-basierte Bestimmung der untersuchten Mikrostrukturparameter von der Perfusion abhängig wird und eine systematische Überschätzung der quantifizierten Werte verursacht. Da die Perfusion im Kleintier deutlich höher ist als im Menschen, ist dieser Einfluß besonders in der präklinischen Forschung zu beachten. So können dort allein durch verminderte Perfusion deutliche Änderungen in den bestimmten Werten der Mikrostrukturparameter erzeugt werden, welche zu einer fehlerhaften Interpretation der Ergebnisse führen und somit ein falsches Bild für die Vorgänge im Herzmuskel suggerieren. Dabei bestätigt der Vergleich mit experimentellen Ergebnissen aus der Literatur die Vorhersagen für das Rattenmodell. Beim Menschen ist der prognostizierte Effekt deutlich kleiner. Der prognostizierte Fehler bspw. im RBV-Wert liegt in diesem Fall bei etwa 10% und wird üblicherweise in der aktuellen Forschung vernachlässigt. Inwieweit dies in er klinischen Forschung gerechtfertigt ist, muß in weiteren Untersuchungen geklärt werden. Den untersuchten Methoden zur Bestimmung von funktionellen und mikrostrukturellen Parametern ist gemein, daß sie eine exakte Quantifizierung der longitudinalen Relaxationszeit T1 benötigen. Dabei ist im Kleintierbereich die klassische IRLL-Methode als zuverlässige Sequenz zur T1-Quantifizierung etabliert. In der klinischen Bildgebung werden auf Grund der unterschiedlichen Zeitskalen und anderer technischer Voraussetzungen andere Anforderungen an die Datenakquisition gestellt. Dabei hat in den letzten Jahren die MOLLI-Sequenz große Verbreitung gefunden. Sie ist eine Abwandlung der IRLL-Sequenz, bei der mit einer bSSFP-Bildgebungssequenz getriggert ganze Bilder während eines Herzschlages aufgenommen werden. Die MOLLI-Sequenz reagiert dabei empfindlich auf die Wartezeiten zwischen den einzelnen Transienten. Um mit diese Problematik in den Griff zu bekommen und gleichzeitig die Meßzeit verkürzen zu können wurde eine neue Methode zum Fitten der Daten entwickelt, welche die Abhängigkeit der scheinbaren Relaxationszeit von der Wartezeit zwischen den einzelnen Transienten, sowie der mittleren Herzrate fast vollständig eliminiert. Diese Methode liefert für das ganze klinisch Spektrum an erwarteten T1-Zeiten, vor und nach Kontrastmittelgabe, stabile Ergebnisse und erlaubte ein deutliche Verkürzung der Meßzeit, ohne die Anzahl der aufgenommenen Meßzeitpunkte zu reduzieren. Dies wurde in einer initialen klinischen Studie genutzt, um ECV-Werte in Patienten zu bestimmen. Ein Nachteil der Verwendung der MOLLI-Sequenz ist, daß nur die scheinbare Relaxationszeit aus den Fit der Meßdaten bestimmt wird. Die standardmäßig genutzte Korrektur benutzt aber dem gefitteten Wert der Gleichgewichtsmagnetisierung um den wahren T1-Wert zu bestimmen. Somit ist es für die Bestimmung des T1-Wertes notwendig, die Qualität der Inversionspräparation zu kennen. Auf Basis der neuen Fitmethode wurde eine Anpassung der MOLLI-Sequenz demonstriert, welche die Bestimmung der Gleichgewichtsmagnetisierung unabhängig von der Qualität der Inversionspräparation erlaubt. Dafür verlängert sich die Meßdauer lediglich um einen Herzschlag um in geeigneter Weise ein zusätzliches Bild aufnehmen zu können. Abschließend wurde in dieser Arbeit der Signal-Zeit-Verlauf der MOLLI-Sequenz eingehend theoretische untersucht um ein besseres Verständnis der getriggerten IRLL-Sequenzen zu entwickeln. In diesem Zusammenhang konnte eine einfache Interpretation der scheinbaren Relaxationszeit gefunden werden. Ebenso konnte erklärt werden, warum die für ungetriggerte IRLL-Sequenzen abgeleitete Korrekturgleichung auch im getriggerten Fall erstaunlich gute Ergebnisse liefert. Weiterhin konnten Fehlerquellen für die verbleibenden Abweichungen identifiziert werden, welche als Ausgangspunkt für die Ableitung verbesserter Korrekturgleichungen genutzt werden können. N2 - The goal of this work was to improve T1-based methods for quantification of functional and microstructural parameters of the heart muscle. These methods encode the desired information in the longitudinal relaxation by a dedicated magnetization preparation or by due to the administration of contrast agents. Hence, the alteration of the longitudinal relaxation time can be used to determine the desired information. To accurately quantify these parameters, the influence of the anatomy as well as the data acquisition on the longitudinal relaxation time and hence the quantification of the functional and micro structural parameters is investigated. It is known, that the choice of imaging sequence may influence the recovery of the magnetization and only an apparent relaxation time can be measured. While this had no effect on the T1-based quantification of the investigated microstructural parameters, the calculated perfusion value showed a strong dependence on the parameters of the used IRLL sequence. To take the influence of the imaging sequence into account, adapted equations for perfusion quantification were found. Hence, it was possible to correct for the systematic deviation by the IRLL sequence. Additionally, it could be shown that these adapted equations relax some of the requirements on the slice selective inversion experiment which could be utilized in the quantification of renal perfusion in a mouse model. Beside the influence of the imaging sequence also the influence of cardiovascular anatomy of the heart on the T1-based quantification methods was investigated. It was shown that for typical orientations of the imaging slice, also for the slice selective preparation a part of the blood pool magnetization is inverted. This violates the assumption that in the slice selective case only magnetization in equilibrium state enters the heart muscle and leads to a drastic underestimation of the quantified perfusion value. Based on a simplified model of the evolution of the blood magnetization the effects of the partial blood pool inversion were derived for perfusion quantification. The same simplified model was used, to investigate the influence of the imperfect slice selective inversion preparation in the T1-based quantification of the investigated micro structural parameters. It was shown, that the inflow of partially inverted blood into the capillary bed results in a perfusion dependent overestimation of the investigated microstructural parameters. As perfusion in small mammals is higher than in humans, the resulting bias has to be considered particularly in pre-clinical studies. In these animal models a reduced perfusion can result in a strong variation of the microstructural parameters which could be misinterpreted and hence may lead to a wrong understanding of the processes in the heart muscle. The predicted bias was compared with residual errors in the literature neglecting the partial inversion and found a good agreement in a rat model. For humans the expected bias is much smaller due to the lower perfusion values. The predicted bias for the RBV value is approximately 10% and hence, the effect is neglected in the current literature. However, if this justified must be investigated in further studies. All investigated methods for parameter quantification require the exact knowledge of the longitudinal relaxation time T1. For small animals the usual choice is an IRLL sequence, which have been established and demonstrated to be reliable and robust. Due to the different timescales and other technical aspects, however, the requirements in clinical imaging are different for data acquisition. In recent years the MOLLI sequence has become popular for T1 quantification. The MOLLI sequence is modification of IRLL sequence with a single shot bSSFP imaging module triggered usually to the end diastolic heart phase. However, the MOLLI sequence shows a strong dependence on the waiting times between the inversion prepared transients. To overcome this problem and provide a robust quantification of the apparent relaxation time with reduced the overall measurement time a new fitting procedure was developed. Thus, it was able to almost completely eliminate the dependence on the waiting time between the transients as well as the mean heart rate. The new method provided robust quantification over the complete range of clinical relevant longitudinal relaxation times (pre and post administration of contrast agents). Additionally, it was possible to reduce the measurement time without reducing the number of acquired data. This method was used in a pilot study to measure ECV in patients. A disadvantage of the MOLLI sequence is that in only provides an apparent relaxation time from the data fit and a correction for the real relaxation time is necessary. To calculate $T_1$, the common correction requires the knowledge of the equilibrium as well as the steady state magnetization. Hence, the quality of the inversion preparation is important and must be determined. Exploiting the properties of the new fitting method an adaption of the MOLLI sequence was proposed which allows the measurement of the equilibrium magnetization independent from quality of the inversion preparation by extending the measurement time for only a single heart beat to acquire a single additional image before the first inversion preparation. The final part of this work was dedicated improve the understanding of triggered IRLL sequences as the MOLLI. Hence, the signal evolution of these triggered sequences was investigated theoretically. Hence, a simple interpretation of the apparent relaxation time could be found from the results. Furthermore, a better understanding was reached for the surprisingly good results of the commonly used correction which was derived from the untriggered continuous case. Additionally, sources of the remaining deviations were identified and can be used for subsequent investigations to find better correction equations which allow for a more accurate quantification of T1. KW - Kernspintomographie KW - Relaxationszeit KW - Perfusion KW - Spin-Gitter-Relaxation KW - T1 Relaxation KW - Herzbildgebung KW - MRT KW - MOLLI KW - Inversion Recovery Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174261 ER - TY - THES A1 - Finkenberg, Frank T1 - Flipped Classroom im Physikunterricht T1 - Flipped Classroom in Physics Education N2 - In der Unterrichtsmethode Flipped Classroom sind schulische und häusliche Aktivitäten vertauscht. Instruktionale Elemente werden in online verfügbare Lernvideos ausgelagert, welche die Schüler als häusliche Vorbereitung ansehen. Im Unterricht stehen dann schülerzentrierte Tätigkeiten im Vordergrund, in denen die Schüler ihr Wissen anwenden und vertiefen können. Durch die Auslagerung von Inputphasen wandelt sich die Rolle des Lehrers vom Instructor zum Lernbegleiter. Die vorliegende quasi-experimentelle Studie im Pre-/Postdesign mit Kontrollgruppe untersuchte die Wirkungen des Flipped Classroom in Physikkursen der Oberstufe (Grundkursniveau) an zwei deutschen Gymnasien mit N = 151 Schülerinnen und Schülern. Acht Physikkurse der 11. Jahrgangsstufe nahmen an der Studie teil, die sich über einen Zeitraum von zwei Schuljahren erstreckte (2015/16 und 2016/17). Vier der fünf teilnehmenden Lehrkräfte unterrichteten sowohl einen Kontroll- als auch einen Treatmentkurs. Sämtliche Lernvideos wurden von den Lehrkräften selbst erstellt. Dabei integrierten sie reale Experimente, um dem Anspruch physikauthentischen Unterrichts gerecht zu werden. Die Forschungsfragen richteten sich sowohl auf die Leistung in einem Fachwissenstest als auch auf affektive Lernmerkmale wie die Motivation, das Interesse und das Selbstkonzept. Zusätzlich wurden die wahrgenommene Lehrerunterstützung und das Hausaufgabenverhalten untersucht. Die Anwendung von Flipped Classroom im Physikunterricht zeigte größtenteils positive Effekte. Die Schülerinnen und Schüler im Flipped Classroom hatten einen höheren kognitiven Lernzuwachs und ein besseres Selbstkonzept als ihre Mitschüler, die traditionell unterrichtet wurden. Das Leistungsniveau und das Geschlecht der Schülerinnen und Schüler hatten dabei keinen Einfluss auf diese Effekte. Während die Motivation, sich mit Physik zu beschäftigen, in der Kontrollgruppe sank, blieb sie in der Treatmentgruppe auf konstantem Niveau. Bei genauerem Blick zeigte sich, dass die Motivation bei Schülerinnen im Flipped Classroom anstieg, bei Schülerinnen im traditionellen Unterricht jedoch abnahm. Das Interesse am Unterrichtsfach Physik wurde in beiden Gruppen geringer. Sowohl die wahrgenommene Lehrerunterstützung als auch die Hausaufgabendauer blieben in beiden Gruppen zwischen Pre- und Posttest unverändert. Die Hausaufgabendisziplin war im Flipped Classroom jedoch deutlich höher, was zeigt, dass die Schülerinnen und Schüler eher bereit waren, sich instruktionale Lernvideos anzusehen als klassische Hausaufgaben zu bearbeiten. N2 - Flipped Classroom inverts traditional teaching methods by delivering direct instruction in online learning videos. The students watch the videos at home so that class time is freed up for student centered and collaborative activities that allow a deeper exploration of the con-tent. By outsourcing lectures, the role of the teacher shifts from instructing to coaching the students. The quasi-experimental pre/post-study with control group examined the effects of flipped classroom applied to basic physics courses at two German secondary schools with N = 151 students in a three-months-treatment. Eight 11th grade physics courses took part in the study that was conducted in the school years 2015/16 and 2016/17. Four of five teachers in-volved in the study taught both control and treatment courses. All videos were produced by the teachers and incorporated real experiments to ensure an authentic physics education experience. The research questions focused on the performance in a content knowledge test as well as non-cognitive attitudes such as motivation, interest and self-concept. In addition, perceived teacher support and homework habits were also evaluated. Applying flipped classroom in physics school education showed largely positive results. The students in flipped classroom had a higher gain in cognitive learning and a better self-concept than those in a traditional classroom setting. Physics aptitude as well as gender did not moderate these effects. Whereas the motivation to engage in physics declined in the control group, it remained unchanged in the treatment group. In particular, female students in flipped classroom developed a higher motivation to engage in physics than their female peers who lost motivation in the traditional classroom. The interest in physics as a school subject decreased in both groups. The perceived teacher support and the average length of homework stayed the same in both groups between pre- and post-test. However, the homework discipline was considerably higher in flipped classroom which showed that stu-dents were more likely to watch instructional videos than do traditional homework. KW - Physikunterricht KW - Lernvideos KW - active learning KW - Integriertes Lernen KW - Vergleichsstudie KW - Schüleraktivierung KW - explanatory videos KW - comparative study KW - performance KW - motivation KW - Lernerfolg KW - Kooperatives Lernen KW - E-Learning KW - Aktivierung KW - Motivation KW - Interesse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164146 ER - TY - THES A1 - Kreutner, Jakob T1 - Charakterisierung des Knochens und seiner Mikrostruktur mit hochauflösender 3D-MRT T1 - Characterization of Bone and its Microstructure using High-resolution 3D-MRI N2 - Neue Therapieansätze durch Tissue Engineering erfordern gleichzeitig angepasste Diagnosemöglichkeiten und nicht-invasive Erfolgskontrollen. Speziell die 3D-MR-Bildgebung ist ein vielversprechendes Instrument, um Parameter mit hoher räumlicher Präzision zu quantifizieren. Vor diesem Hintergrund wurden im Rahmen dieser Arbeit neue Ansätze für die hochauflösende 3D-MRT in vivo entwickelt und deren Eignung im Bereich des Tissue Engineerings gezeigt. Welchen Vorteil die Quantifizierung von Parametern bietet, konnte im Rahmen einer prä-klinischen Studie an einem Modell der Hüftkopfnekrose gezeigt werden. Der Therapieverlauf wurde zu verschiedenen Zeitpunkten kontrolliert. Trotz der niedrigen räumlichen Auflösung, konnten durch eine systematische Auswertung der Signalintensitäten von T1- und T2-FS-gewichteten Aufnahmen Rückschlüsse über Veränderungen in der Mikrostruktur gezogen werden, die darüber hinaus in guter Übereinstimmung mit Ergebnissen von ex vivo µCT-Aufnahmen waren. Dort konnte eine Verdickung der Trabekelstruktur nachgewiesen werden, welche sehr gut mit einer Signalabnahme in den T1-gewichteten Aufnahmen korrelierte. Die radiale Auswertung der Daten erlaubte dabei eine komprimierte Darstellung der Ergebnisse. Dadurch wurde eine effiziente Auswertung der umfangreichen Daten (verschiedene Tiere an mehreren Zeitpunkten mit einer Vielzahl an Einzelaufnahmen) ermöglicht und eine unabhängige Bewertung erreicht. Um die Limitationen der begrenzten Auflösung von 2D-Multi-Schichtaufnahmen aufzuheben, wurden neue Ansätze für eine hochaufgelöste 3D-Aufnahme entwickelt. Hierfür wurden Spin-Echo-basierte Sequenzen gewählt, da diese eine genauere Abbildung der Knochenmikrostruktur erlauben als Gradienten-Echo-basierte Methoden. Zum einen wurde eine eigene 3D-FLASE-Sequenz entwickelt und zum anderen eine modifizierte 3D-TSE-Sequenz. Damit an Patienten Aufnahmen bei klinischer Feldstärke von 1,5 T mit einer hohen räumlichen Auflösung innerhalb einer vertretbaren Zeit erzielt werden können, muss eine schnelle und signalstarke Sequenz verwendet werden. Eine theoretische Betrachtung bescheinigte der TSE-Sequenz eine um 25 % höhere Signaleffizienz verglichen mit einer FLASE-Sequenz mit identischer Messzeit. Dieser Unterschied konnte auch im Experiment nachgewiesen werden. Ein in vivo Vergleich der beiden Sequenzen am Schienbein zeigte eine vergleichbare Darstellung der Spongiosa mit einer Auflösung von 160 × 160 × 400 µm. Für die Bildgebung des Hüftkopfs mit der neuen Sequenz waren jedoch aufgrund der unterschiedlichen Anatomie weitere Modifikationen notwendig. Um längere Messzeiten durch ein unnötig großes Field-of-View zu vermeiden, mussten Einfaltungsartefakte unterdrückt werden. Dies wurde durch die orthogonale Anwendung der Anregungs- und Refokussierungspulse in der TSE-Sequenz effizient gelöst. Technisch bedingt konnte jedoch nicht eine vergleichbare Auflösung wie am Schienbein realisiert werden. Der Vorteil der 3D-Bildgebung, dass Schichtdicken von deutlich weniger als 1 mm erreicht werden können, konnte jedoch erfolgreich auf den Unterkiefer übertragen werden. Der dort verlaufende Nervus Mandibularis ist dabei eine wichtige Struktur, deren Verlauf im Vorfeld von verschiedenen operativen Eingriffen bekannt sein muss. Er ist durch eine dünne knöcherne Wand vom umgebenden Gewebe getrennt. Im Vergleich mit einer 3D-VIBE-Sequenz zeigte die entwickelte 3D-TSE-Sequenz mit integrierter Unterdrückung von Einfaltungsartefakten eine ähnlich gute Lokalisierung des Nervenkanals über die gesamte Länge der Struktur. Dies konnte in einer Studie an gesunden Probanden mit verschiedenen Beobachtern nachgewiesen werden. Durch die neue Aufnahmetechnik konnte darüber hinaus die Auflösung im Vergleich zu bisherigen Studien deutlich erhöht werden, was insgesamt eine präzisere Lokalisierung des Nervenkanals erlaubt. Ein Baustein des Tissue Engineerings sind bio-resorbierbare Materialien, deren Abbau- und Einwachsverhalten noch untersucht werden muss, bevor diese für die klinische Anwendung zugelassen werden. Die durchgeführten in vitro µMR-Untersuchungen an Polymerscaffolds zeigten die reproduzierbare Quantifizierung der Porengröße und Wandstärke. Darüber hinaus wurde eine inhomogene Verteilung der Strukturparameter beobachtet. Die Ergebnisse waren in guter Übereinstimmung mit µCT-Aufnahmen als Goldstandard. Unterschiedliche Varianten der Scaffolds konnten identifiziert werden. Dabei bewies sich die MR-Bildgebung als zuverlässige Alternative. Insgesamt zeigen die Ergebnisse dieser Arbeit, welche Vorteile und Anwendungsmöglichkeiten die 3D-MRT-Bildgebung bietet, und dass auch mit klinischer Feldstärke in vivo Voxelgrößen im Submillimeterbereich für alle Raumrichtungen erreichbar sind. Die erzielten Verbesserungen in der räumlichen Auflösung erhöhen die Genauigkeit der verschiedenen Anwendungen und ermöglichen eine bessere Identifikation von kleinen Abweichungen, was eine frühere und zuverlässigere Diagnose für Patienten verspricht. N2 - New tissue engineering based therapies require adjusted diagnostic methods as well as non-invasive therapy monitoring. Especially 3D MR imaging is a promising tool for parameter quantification at high spatial precision. To serve that need new approaches for high resolution in vivo 3D MRI were developed and their applications in combination with tissue engineering have been demonstrated. The advantages of parameter quantification have been demonstrated in a preclinical study of a femoral heck necrosis model in a large animal. Therapy progress has been monitored at different time points. Despite a commonly used 2D imaging protocol a systematic evaluation of signal intensities from T1 and T2-FS weighted images allowed to draw conclusions about changes in bone microstructure. These results were in good agreement with ex vivo µCT images. The observed increase of trabecular thickness were highly correlated with a signal decrease in the T1 weighted images. The radial evaluation of the data allowed a compressed representation of the results. This lead to an efficient evaluation of numerous data (different animals at various time points with huge number of images each) and allowed an observer independent evaluation. To overcome the limitations from the limited spatial resolution in 2D multi slice images, new approaches for a high-resolution 3D imaging were developed. The focus was on spin echo based sequences due to their better representation of bone microstructure compared to gradient echo based sequences. On one hand a 3D FLASE sequence was developed and on the other hand a modified 3D TSE sequence. To achieve a high resolution in vivo at clinical field strength of 1.5 T within a reasonable scan time, a fast and signal intense sequence is strongly required. A theoretical evaluation of signal equations attributed an increase of 25 % to the TSE sequence compared to the FLASE sequence at identical scan time and resolution. This difference was also observed in experimental results. An in vivo comparison of both sequences at the distal tibia showed a comparable depiction of bone microstructure at a resolution of 160 × 160 × 400 µm. To apply this sequence for high resolution imaging of the femoral head, further modifications were necessary due to the different anatomy. A large field of view had to be avoided to reduce the overall scan time, thus aliasing artifacts had to be suppressed. This was achieved by orthogonal application of excitation and refocusing pulses in the TSE sequence. However, due to technical limitations the achievable resolution was lower than at the distal tibia. A slice thickness much smaller than 1 mm is one of the biggest advantages of 3D MRI and this sequence was successfully applied to imaging of the mandible. The course of the mandibular canal must be known before many surgeries, in order to avoid damaging this structure. The canal is separated from the surrounding only by a small bony wall. In comparison to a 3D VIBE sequence the developed 3D TSE sequence with incorporated aliasing suppression showed a comparable good localization of the canal across the full length of the structure. This was demonstrated in a study with various healthy volunteers and different observers. In comparison to previous results the new imaging technique allowed an increase of spatial resolution to a isotropic voxel size of 0.5 mm, which in total provides a higher precision for localizing the nerve canal. One important element in tissue engineering are bio resorbable materials. Their degradation and ingrowth process must be evaluated before they can be approved for clinical application. The performed in vitro µMRstudies at polymer scaffolds showed a reproducible quantification of pore size and wall thickness for different samples. Additionally, an inhomogeneous distribution of parameters in some samples was observed. The results were in good agreement with data based on µCT images, which are considered to be gold standard for this evaluation and showed significant differences between different groups of scaffolds. The results of this work demonstrate the advantages and possible applications of 3D MRI in clinical applications. Even at clinical field strength it is possible to achieve submillimeter resolution for all three spatial dimension within reasonable scan time. The achieved improvements in spatial resolution allow for an improved precision of the different applications as well as a better identification of small local deviations, which promises an earlier and more reliable diagnosis for patients. KW - Kernspintomografie KW - Mikrostruktur KW - Knochen KW - hochauflösende Bildgebung KW - 3D-Bildgebung KW - Knochenstruktur KW - Spin-Echo KW - Trabekel KW - Hüftkopfnekrose KW - Tissue Engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168858 ER - TY - THES A1 - Brendel, Harald T1 - Wärmetransport in keramischen Faserisolationen bei hohen Temperaturen T1 - Heat-transfer in ceramic fibre-insulation-materials at high temperatures N2 - Das Ziel dieser Arbeit ist eine umfassende numerische und experimentelle Charakterisierung des Wärmetransports in oxidkeramischen Faserisolationen im Hochtemperaturbereich. Zugleich sollen neue Konzepte für eine optimierte technische Auslegung von Faserisolationen erarbeitet werden. Oxidkeramiken zeigen im Infrarotbereich ein semitransparentes Verhalten. Das bedeutet, ein Teil der Strahlung gelangt durch die Probe, ohne gestreut oder absorbiert zu werden. Durch die Ausgestaltung als disperses Medium mit Abmessungen der Fasern im $\mu m$ Bereich wird jedoch eine starke Wechselwirkung mit infraroter Lichtstrahlung erzeugt. Man befindet sich im optischen Resonanzbereich. Technisch relevante Faserisolationen besitzen eine Rohdichte zwischen $50 \mathrm{kg/m^3}$ und $700 \mathrm{kg/m^3}$ und können als optisch dichtes Medium betrachtet werden. Eine Optimierung hinsichtlich der Dämmwirkung gegen Wärmestrahlung bedeutet eine massenspezifische Maximierung des Lichtstreuvermögens im relevanten Wellenlängenbereich. Hierzu werden in einer numerischen Studie keramische Hohlfaserisolationen mit konventionellen Fasern verglichen. Diese Abhandlung unter Berücksichtigung anwendungsnaher Aspekte gelangt zu der Schlussfolgerung, dass die Strahlungswärmestromdichte in Hohlfaserisolationen, im Vergleich zu konventionellen Isolationen, signifikant erniedrigt wird. Hinsichtlich der Gesamtwärmeleitfähigkeit ist eine Reduzierung um den Faktor zwei zu erwarten. \\ Trotz moderner Rechner ist die Anwendung der vollen Maxwellschen Streutheorie, insbesondere im Rahmen von Optimierungsaufgaben mehrschichtiger Streukörper, ein zeitaufwendiges Unterfangen. Um sinnvolle Parameterkonfigurationen bereichsweise eingrenzen zu können, wird eine Näherungsmethode für die Lichtstreuung an mehrschichtigen Zylindern weiterentwickelt und mit der vollständigen Maxwellschen Streutheorie verglichen. Es zeigt sich, dass das Modell für kleine bis moderate Brechungsindizes sehr gute Vorhersagekraft besitzt und auch zur näherungsweisen Berechnung der Streueffizienzen für räumlich isotrop angeordnete Zylinder herangezogen werden kann. \\ Neben den numerischen Studien wird im experimentellen Teil dieser Arbeit eine kommerzielle Faserisolierung aus Aluminiumoxid hinsichtlich ihrer Wärmetransporteigenschaften charakterisiert. Die optischen Transportparameter Albedo und Extinktion werden mittels etablierter Messmethoden bestimmt. Bei bekannter Faserdurchmesserverteilung können diese Messwerte dann mit den theoretischen Vorhersagen der Maxwellschen Streutheorie verglichen werden.\\ Um technische Optimierungsmaßnahmen experimentell zu verifizieren, besteht die Notwendigkeit, die Temperaturleitfähigkeit bzw. die Wärmeleitfähigkeit auch bei hohen Temperaturen oberhalb von $1000^\mathrm{o}\mathrm{C}$ zuverlässig bestimmen zu können. Zu diesem Zweck wird ein Versuchsaufbau realisiert, um in diesem Temperaturbereich erstmals die sogenannte Thermal-Wave-Analyse anzuwenden. Durch Abgleich mit einem gekoppelten Wärmetransportmodell und einem etablierten Messverfahren wird die besondere Eignung der Thermal-Wave-Analyse für berührungsfreie Hochtemperaturmessungen gezeigt. N2 - The objective of the present thesis is a comprehensive numerical and experimental characterization of the heat transfer properties in thermal insulation materials made of ceramic fibers at high temperatures. At the same time, new concepts for further improvement of fibrous insulation materials are developed. In general, ceramic oxides appear semitransparent in the infrared range, meaning that a part of the thermal radiation is transmitted through a sample without being scattered or absorbed. However, in a dispersed medium containing fibers with diameters in the micrometer range a strong interaction with infrared radiation occurs. Since typical fibrous insulation materials of technical relevance show raw densities between $50 \mathrm{kg/m^3}$ and $700 \mathrm{kg/m^3}$ they could be considered as optically dense. The optimization of the insulation effect involves the maximization of the mass specific scattering coefficient in the wavelength range of substantial thermal radiation. Therefore, the heat transfer properties of hollow-fiber insulation materials are compared to conventional insulations made of solid fibers by means of a numerical study. This treatise concludes that thermal insulations made of hollow fibers can provide a significant reduction of heat losses in wide ranges of practical interest. In particular, by application of hollow fiber insulations the effective thermal conductivity could be lowered by a factor of two.\\ However, in connection with optimization problems of stratified scattering objects the application of the full Maxwell-scattering theory is a time consuming task. In order to locate reasonable parameter configurations in layered cylindrical media an enhanced version of the so-called anomalous diffraction approximation is presented. By comparison with the results of the exact Maxwell-scattering formulas it is shown that within the limit of moderate refractive indices the simplified theory delivers good agreement in a broad size parameter range. Even the extinction efficiency of randomly oriented stratified cylinders is reproduced astonishingly well.\\ Apart from numerical investigations the heat transfer properties of a commercial fibrous insulation material are characterized experimentally. Therefore, the optical transport parameters extinction and albedo are determined by established methods. With knowledge of the fiber diameter distribution the experimental results could be compared to the theoretical predictions of light scattering at infinite fibers. The verification of optimization measures, requires also an adequate experimental determination of thermal diffusivity or thermal conductivity, respectively. For this purpose the potential of measuring thermal diffusivity of heterogeneous materials in a temperature range above $1000^\mathrm{o}C$ by thermal wave analysis is investigated for the first time. By comparison with a coupled numerical heat transfer model and an established measurement method the feasibility of measuring thermal diffusivity at high temperatures by thermal wave analysis is demonstrated KW - Wärmeübertragung KW - Hochtemperatur-Wärmeisolation KW - high temperature thermal insulation materials KW - partizipierende Medien KW - Wärmetransport KW - keramische Fasern KW - light scattering and absorption KW - heat transfer KW - ceramic fibers KW - Keramikfaser KW - Faser KW - Hohlfaser KW - Hochtemperatur Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157917 ER - TY - THES A1 - Zimmermann, Christian T1 - Halbleiterlaser mit lateralem Rückkopplungsgitter für metrologische Anwendungen T1 - Semiconductor lasers with lateral feedback for metrological applications N2 - In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bezüglich ihrer Nutzung für metrologische Untersuchungen zu analysieren und zu verbessern. Hierfür wurden die räumlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. Für kommerziell erhältliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie bestätigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit Überlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die veränderte Fernfeldsituation wurde zunächst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlgüteuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3). Eine weitere Untersuchung betraf die Linienbreitenabhängigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorlänge, der Facettenvergütung und der Gitterkopplung. Die erste Beobachtung betraf die Verschmälerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Veränderung der Resonatorlänge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorlänge eine Verschmälerung der Linienbreite um mehr als einen Faktor 3. Die Verlängerung der Kavität begünstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der Rückkopplung sehr klein ist. Im Falle reiner Indexkopplung wäre dies durch die veränderte κ · L-Lage deutlich zu spüren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivitäten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies lässt sich ausnutzen, um die Photonenlebensdauer in der Kavität zu erhöhen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen Längen die reine gebrochene Facette mit einer vergüteten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30% gehalten und die Rückfacette durch einen doppelten Reflektor auf ca. 85% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die Hälfte. Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zusätzlich eingebrachten Verluste zu einer Vergrößerung der Linienbreiten beitragen, wird bei einem größeren geometrischen Gitterüberlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment bestätigen. Zudem wurde eine Längenabhängigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei längeren Bauteilen ist deutlich ausgeprägter als bei kürzeren. So ist bei ähnlicher Verringerung des Gitterüberlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur“ 1,85 beobachtbar, aber bei der doppelten Kavitätslänge ist dieser Faktor schon auf 3,60 angestiegen. Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt für lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde. In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer veränderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterlängen untersucht. Die Phasenlage kann reversibel über den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, bestätigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenlänge mit ihrer zugehörigen Seitenmodenunterdrückung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass für die verschiedenen Längen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdrückung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zukünftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer. N2 - The goal of this thesis was to analyze and improve the characteristics of complex-coupled DFB-lasers due to their use for metrological investigations. For this purpose, the spatial properties of the laterally complex-coupled DFB-lasers were discussed in extensive studies. It has been explained why the asymmetry of the far field for this special type of laser diode is typically quite high due to the required coupling strength. For commercially available lasers, the far field was calculated in both lateral and vertical direction. The corresponding far field measurements proofed the theory, and as expected, the divergence angles of 52° FWHM in the epitaxial direction and 12° FWHM in lateral direction (see fig. 6.4 and 6.5) showed very huge differences and confirmed the predicted high far field asymmetry. The layer stack was optimized first with regard to the optical and electrical confinement potential to change the far field situation. The far field in the epitaxial direction has been reduced by more than 50% to a value of 25° FWHM. As a result, the asymmetry of the far field could be reduced by a factor of more than 4. Beam profile measurements showed a nearly diffraction limited Gaussian beam profile in the slow axis with a M2-value of 1.13 (fig. 6.3). Additional investigations were done to determine the dependency between the linewidth of such lasers and their optical output power, resonator length, facet reflectivity and grating coupling strength. The first study was related to the narrowing of the linewidth due to the increased optical output power ending up in a rebroadening (compare fig. 7.3). The influence of the resonator length to the linewidth was very close to theory and thus a doubling of the resonator length led to a linewidth narrowing of more than factor 3. Increasing the cavity length did not favour the negative effect of the so-called rebroadening since the portion of index coupling within the used lateral complex-coupling technology is very small. In case of pure index coupling the influence due to the changed κ·L-condition would be increased. A further advantage of the complex-coupling mentioned above is the fact that the influence of the facet reflectivities on the DFB yield and laser characteristics is significantly smaller compared to pure index coupling. This can be used to increase the photon lifetime in the cavity without decreasing the DFB yield. The influence on the linewidth of as-cleaved facets was compared to coated ones with lasers of different length. The front facet was passivated to hold the as-cleaved reflectivity of about 30%, and the rear facet was coated with a layer stack to end up at about 85% reflectivity. The linewidth was more than halved. In addition to these results, the influence of complex-coupling was also investigated. As extra losses are introduced by the grating itself, the frequency noise, produced by a higher geometric overlap of the grating with the lasing mode will rise. This could also be confirmed in the experiment. It was also observed that this effect has a length driven component. Narrowing the linewidth by reducing the grating overlap has a higher influence on a longer device compared to shorter laser diodes. A factor of 1.85 on a 900 μm long device has been observed, but diodes with doubled length showed a factor of 3.60. Within the scope of this thesis, DFB-lasers were produced showing linewidths down to 198 kHz. Regarding complex-coupled laser diodes, this value for the linewidth is an absolute record. Compared to index-coupled DFB-lasers, this value matches to latest research findings [CTR+11]. In the last chapter of this work the influence of the phasing of grating and facet was discussed. Special laser diodes (3-segment DFB-lasers) with different grating lengths were produced. The phasing was determined by the injection current of the grating-free segments. As predicted, the experimental results proved the significant influence of the phasing to output power, wavelength including SMSR and the linewidth. It was also observed that for different lengths the inverse linewidth is proportional to the SMSR. This relationship could be used for improved and faster optimization of complex-coupled DFB-lasers as an investigation of the linewidth is typically more complex than a simple analysis on an optical spectrometer. KW - DFB-Laser KW - Metrologie KW - komplexe Gitterkopplung KW - Linienbreite KW - Atomuhr Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159618 ER - TY - THES A1 - Swimm, Katrin T1 - Experimentelle und theoretische Untersuchungen zur gasdruckabhängigen Wärmeleitfähigkeit von porösen Materialien T1 - Experimental and theoretical investigations on the gas-pressure dependent thermal conductivity of porous materials N2 - Als Wärmedämmstoffe werden üblicherweise makroporöse Stoffsysteme wie Schäume, Pul-verschüttungen, Faservliese und – wolle eingesetzt. Zusätzlich finden mikro- und mesoporöse Dämmstoffe wie Aerogele Anwendung. Um effiziente Wärmedämmstoffe entwickeln zu können, muss der Gesamtwärmetransport in porösen Materialien verstanden werden. Die ein-zelnen Wärmetransport-Mechanismen Festkörperwärmeleitung, Gaswärmeleitung und Wärme-strahlung können zuverlässig analytisch beschrieben werden. Bei manchen porösen Materialien liefert jedoch auch eine Wechselwirkung zwischen den verschiedenen Wärmetransport-Mechanismen, d.h. die Kopplung von Festkörper- und Gaswärmeleitung, einen hohen Beitrag zur Gesamtwärmeleitfähigkeit. Wie hoch dieser Kopplungseffekt bei einer bestimmten Probe ausfällt, kann bisher schwer abgeschätzt werden. Um den Kopplungseffekt von Festkörper- und Gaswärmeleitung besser zu verstehen, sind sowohl experimentelle als auch theoretische Untersuchungen an verschiedenen porösen Stoffsystemen erforderlich. Zusätzlich kann ein zuverlässiges theoretisches Modell dazu beitragen, die mittlere Porengröße von porösen Mate-rialien zerstörungsfrei anhand von gasdruckabhängigen Wärmeleitfähigkeitsmessungen zu bestimmen. Als Modellsystem für die experimentellen Untersuchungen wurde der hochporöse Feststoff Aerogel verwendet, da seine strukturellen Eigenschaften wie Porengröße und Dichte während der Synthese gut eingestellt werden können. Es wurden Resorcin-Formaldehyd-Aerogele mit mittleren Porengrößen von etwa 600 nm, 1 µm und 8 µm sowie daraus mittels Pyrolyse abge-leitete Kohlenstoff-Aerogele synthetisiert und jeweils hinsichtlich ihrer Struktur und Wärme-leitfähigkeiten experimentell charakterisiert. Die Gesamtwärmeleitfähigkeiten dieser Aerogele wurden für verschiedene Gasatmosphären (Kohlenstoffdioxid, Argon, Stickstoff und Helium) in Abhängigkeit vom Gasdruck durch das Hitzdraht-Verfahren bestimmt. Hierfür wurde der Messbereich der Hitzdraht-Apparatur des ZAE Bayern mittels einer Druckzelle auf 10 MPa erweitert. Die Messergebnisse zeigen, dass bei allen Aerogel-Proben Festkörper- und Gaswär-meleitung einen deutlichen Kopplungsbeitrag liefern: Die gemessenen gasdruckabhängigen Wärmeleitfähigkeiten sind um Faktor 1,3 bis 3,3 höher als die entsprechenden reinen Gas-wärmeleitfähigkeiten. Die jeweilige Höhe hängt sowohl vom verwendeten Gas (Gaswärmeleitfähigkeit) als auch vom Aerogeltyp (Festkörperwärmeleitfähigkeit und Festkörperstruktur) ab. Ein stark vernetzter Festkörper verursacht beispielsweise einen niedrigeren Kopplungsbei-trag als ein weniger stark vernetzter Festkörper. Andererseits wurde die gasdruckabhängige Wärmeleitfähigkeit von Melaminharzschaum – einem flexiblen, offenporigen und hochporösen Material – in einer evakuierbaren Zwei-Plattenapparatur unter Stickstoff-Atmosphäre bestimmt. Das Material zeichnet sich dadurch aus, dass die Addition der Einzelwärmeleitfähigkeiten gut erfüllt ist, d.h. kein Kopplungsef-fekt auftritt. Allerdings konnte gezeigt werden, dass die gestauchte und damit unregelmäßige Struktur von Melaminharzschaum die Kopplung von Festkörper- und Gaswärmeleitung deut-lich begünstigt. Je stärker die Melaminharzschaumprobe komprimiert wird, umso stärker fällt der Kopplungseffekt aus. Bei einer Kompression um 84 % ist beispielsweise die gemessene gasdruckabhängige Wärmeleitfähigkeit bei 0,1 MPa um ca. 17 % gegenüber der effektiven Wärmeleitfähigkeit von freiem Stickstoff erhöht. Die experimentellen Untersuchungen wurden durch theoretische Betrachtungen ergänzt. Zum einen wurde die Kopplung von Festkörper- und Gaswärmeleitung anhand einer Serienschal-tung der thermischen Widerstände von Festkörper- und Gasphase dargestellt, um die Abhän-gigkeit von verschiedenen Parametern zu untersuchen. Dadurch konnte gezeigt werden, dass der Kopplungsterm stets von den Verhältnissen aus Festkörper- und Gaswärmeleitfähigkeit sowie aus den geometrischen Parametern beider Phasen abhängt. Des Weiteren wurden mit dem Computerprogramm HEAT2 Finite-Differenzen-Simulationen an Modellstrukturen durchgeführt, die für poröse Stoffsysteme, insbesondere Aerogel, charakteristisch sind (Stege, Hälse, Windungen und tote Enden). Die simulierten gasdruckabhängigen Wärmeleitfähigkeiten zeigen deutlich, dass die Festkörperstruktur mit der geringsten Vernetzung, d.h. das tote Ende, am meisten zur Kopplung von Festkörper- und Gaswärmeleitung beiträgt. Dies korre-liert mit den experimentellen Ergebnissen. Darüber hinaus kann man erkennen, dass die Ge-samtwärmeleitfähigkeit eines schlecht vernetzten porösen Systems, wo also ein hoher Kopp-lungseffekt (Serienschaltung) auftritt, niemals größer wird als die eines gut vernetzten Sys-tems mit gleicher Porosität, wo hauptsächlich paralleler Wärmetransport durch beide Phasen stattfindet. Schließlich wurden drei Modelle entwickelt bzw. modifiziert, um die gasdruckabhängige Wärmeleitfähigkeit von porösen Stoffsystemen theoretisch beschreiben zu können. Zunächst wurde ein für Kugelschüttungen entwickeltes Modell für Aerogel angepasst, d.h. Kopplung von Festkörper- und Gaswärmeleitung wurde nur in den Lücken zwischen zwei benachbarten Partikeln berücksichtigt. Ein Vergleich mit den Messkurven zeigt, dass der ermittelte Kopplungsterm zu gering ausfällt. Daher wurde ein bereits existierendes Aerogelmodell mit kubischer Einheitszelle, welches zusätzlich Kopplung zwischen den einzelnen Partikelsträngen beinhaltet, verbessert. Auch dieses Modell liefert keine zufriedenstellende Übereinstimmung mit den Messwerten, denn der Kopplungsbeitrag wird immer noch unterschätzt. Das liegt daran, dass die gewählte regelmäßige kubische Struktur für Aerogel zu ungenau ist. So geht bei der Berechnung des Kopplungsterms der bereits erwähnte hohe Beitrag durch tote Enden (und auch Windungen) verloren. Erfahrungsgemäß können jedoch alle für Aerogel erhaltenen gasdruckabhängigen Messkurven mit dem sogenannten Skalierungsmodell relativ gut beschrieben werden. Das entspricht dem Knudsen-Modell für reine Gaswärmeleitung, welches mit einem konstanten Faktor skaliert wird. Die Anwendung dieses einfachen Modells auf die Messdaten hat gezeigt, dass die Akkommodationskoeffizienten von Helium in Aerogel deut-lich höher sind als die Literaturwerte (ca. 0,3 auf Metalloberflächen): In den vermessenen RF- und Kohlenstoff-Aerogelen lassen sich Akkommodationskoeffizienten nahe 1 für Helium ab-leiten. Darüber hinaus ist das Skalierungsmodell gut geeignet, die mittleren Porengrößen poröser Materialien zuverlässig aus gasdruckabhängig gemessenen Wärmeleitfähigkeitskurven zu bestimmen. Dies stellt somit eine unkomplizierte und zerstörungsfreie Charakterisierungsmethode dar. N2 - Common thermal insulation materials are macro porous material systems such as foams, powders, fleeces and fibers. Additionally, micro and meso porous thermal insulations such as aerogels are employed. In order to further optimize thermal insulation materials, the total heat transfer in porous materials has to be quantified. The individual heat transfer mechanisms solid thermal conduction, gaseous thermal conduction and thermal radiation can be described reliably by analytic models. But for some porous materials an interaction of the different heat transfer mechanisms, i.e. coupling of solid and gaseous thermal conduction, occurs and can contribute significantly to the total effective thermal conductivity. So far, it is hard to predict the amount of this coupling contribution for a certain sample. For a better understanding of the coupling effect of solid and gaesous thermal conduction, both experimental and theoretical investigations on different porous material systems are required. Additionally, a reliable theoretical model can help to determine the mean pore size of porous materials in a nonde-structive way from gas-pressure dependent thermal conductivity measurements. Highly porous aerogel was used as model system for the experimental investigations, because its structural properties such as pore size and density can be adapted relatively well during synthesis. Resorcinol formaldehyde aerogels with mean pore sizes of about 600 nm, 1 µm and 8 µm as well as corresponding carbon aerogels obtained by pyrolysis were synthesized and experimentally characterized regarding their structural and thermal properties. Their total ef-fective thermal conductivities were determined by means of hot-wire measurements in different gas atmospheres (carbon dioxide, argon, nitrogen and helium) as a function of gas pressure. For this purpose, the measurement range of the hot-wire apparatus at ZAE Bayern was extended up to 10 MPa using a pressure chamber. The measurement results show that in all aerogel samples an obvious amount of coupling between solid and gaseous thermal conduction occurs: The gas-pressure dependent thermal contributions measured are by a factor of 1.3 to 3.3 higher than the corresponding pure gaseous thermal conductivities, depending on the pore gas (gaseous thermal conductivity) and the kind of aerogel (solid thermal conductivity and solid backbone structure). For example, a strongly connected solid phase causes a lower cou-pling contribution than a loosely connected one. On the other hand, the gas-pressure dependent thermal conductivity of melamine resin foam – a flexible and highly porous material with open pores – was determined with an evacuable guarded hot-plate apparatus in a nitrogen atmosphere. For this kind of material the simple ad-dition of the individual thermal conductivities is observed, i.e. no coupling occurs for standard conditions. However, if compressed, the structure of melamine resin foam becomes irregular and coupling of solid and gaseous thermal conduction occurs. The more the melamine resin foam sample is compressed, the stronger is the coupling effect. For example, the measured gas-pressure dependent thermal coductivity belonging to a compression by 84 % exceeds the effective thermal conductivity of free nitrogen by about 17 % at 0.1 MPa. The experimental investigations were supplemented by theoretical considerations. First of all, coupling of solid and gaseous thermal conduction was described by means of a series connec-tion of the thermal resistances of the solid and the gas phase, in order to examine the depend-ence on different parameters. This investigation shows, that the coupling term depends on the ratios of solid and gaseous thermal conductivity as well as of the geometrical parameters in both phases. Furthermore, with the computer program HEAT2, finite difference calculations were performed for model structures that are characteristic of porous material systems, espe-cially aerogel (struts, necks, torsions and dead ends). The simulated gas-pressure dependent thermal conductivity data show clearly, that the solid backbone structure with the weakest connectivity, i.e. the dead end, causes the highest amount of coupling between solid and gas-eous thermal conduction. This agrees with the experimental results. Moreover, it was found that the total effective thermal conductivity of a weakly connected porous system, where a high coupling effect (serial connection) occurs, never becomes larger than that of a well-connected system with the same porosity, where the heat transfer in both phases happens mostly in parallel. Finally, three models were developed or rather modified, in order to be able to describe the gas-pressure dependent thermal conductivity of porous material systems theoretically. At first, a model originally developed for packed beds of spherical particles was adapted to aerogel, i.e. coupling of solid and gaseous thermal conduction was only taken into account for the gaps between two adjacent particles. Comparison with the experimental curves shows that the coupling term calculated is too low. Therefore, an already existing aerogel model with a cubic unit cell, which includes additional coupling between the individual particle strings, was improved. The agreement of this model with the measurement curves is also very poor, because the cou-pling contribution is still underrated. This is due to the chosen regular cubic structure being too imprecise for irregularly formed aerogel backbones. Thus, when calculating the coupling term, the above-mentioned high contribution due to dead ends (and also torsions) gets lost. Empiri-cally however, all gas-pressure dependent measurement curves received for aerogel, can be described relatively well by the so-called scaling model. This is Knudsen’s model for pure gaseous thermal conduction scaled with a constant factor. The application of this simple model to the experimental data shows that the accommodation coefficients of helium in aerogel are significantly higher than the literature values (around 0.3 on metal surfaces): Within the RF and carbon aerogels investigated accommodation coefficients close to 1 can be derived for helium. Moreover, the scaling model is suitable for a reliable determination of the mean pore sizes of porous materials from gas-pressure dependent thermal conductivity data. Therefore, a straightforward and nondestructive characterization method was found. KW - Wärmeleitfähigkeit KW - Gasdruck KW - Poröser Stoff KW - Kopplung von Festkörper- und Gaswärmeleitung KW - Porengröße KW - coupling of gaseous and solid thermal conduction KW - pore size KW - Aerogel KW - Hitzdrahtverfahren Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153887 ER - TY - THES A1 - Maier, Sebastian T1 - Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen T1 - Quantum dot based single photon sources and light-matter-interfaces N2 - Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie Lösungen für aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abhörsichere Kommunikationsprotokolle und könnte, mit der Realisierung von Quantenrepeatern, auch über große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) könnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu lösen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik genügen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu können. In halbleiterbasierten Ansätzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten für diese Experimente etabliert. Halbleiterquantenpunkte weisen große Ähnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich überdies als exzellente Emitter für einzelne und ununterscheidbare Photonen aus. Außerdem können mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So können stationäre Quantenbits (Qubits) in Form von Elektronenspinzuständen gespeichert werden und mittels Spin-Photon-Verschränkung weit entfernte stationäre Qubits über fliegende photonische Qubits verschränkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften für Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis für das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie ermöglicht höchste kristalline Qualitäten und bietet die Möglichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erhöht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verstärkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. Für die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind für Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration für Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Kohärenzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavitäten weisen größere Werte für die Spindephasierungszeit auf als Mikro- und Nanotürmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle für einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensität und optische Qualität mit Halbwertsbreiten nahe der natürlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42% für reine Einzelphotonenemission bestimmt und übersteigt damit die, für eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33%) deutlich. Als Grund hierfür konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavitäten einerseits als Nukleationszentren für das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtbündelung verbessern. In weiterführenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschränkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein für halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es möglich, die komplette Tomographie eines verschränkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. Überdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei räumlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein für Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen für optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerstörungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein kürzlich veröffentlichtes theoretisches Konzept könnte hierzu einen eleganten Weg eröffnen: Hierbei wird die spinabhängige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgenützt. So könnte die Spin-Information zerstörungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits über größere Distanzen ermöglicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abhängig von der Güte des Mikroresonators, über mehrere μm ausdehnen kann. Dies und weitere mögliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems wünschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universität Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavität mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualität und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer Nähe zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: Für die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualität ist eine skalierbare technologische Produktionsplattform wünschenswert. Dazu müssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden können. Basierend auf zweidimensionalen, regelmäßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip für die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit geätzten Nanolöchern, welche als Nukleationszentren für das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erhöhte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenlänge erreicht werden. N2 - Quantum information technology is in the focus of worldwide intensive research, because of its promising solutions for current global problems. With tap-proofed communication protocols, the field of quantum key distribution (QKD) could revolutionize the broadcast of sensitive data and would be also available for large distance communication with the realization of quantum repeater systems. Quantum computing could be used to dramatically fasten the solution of difficult and complex mathematical problems. A critical building block of solid state based quantum information processing (QIP) is the allocation of semiconductor samples, which on the one side provide the desired quantum mechanical features and on the other side satisfy the requirements of the complex non-demolition measurement techniques. Semiconductor quantum dots are very promising candidates in solid state based approaches as they act like artificial atoms manifesting in discrete emission lines. They are excellent emitters of single and indistinguishable photons. Moreover they can save quantum information in stationary quantum bits (qubits) as electron spins and emit flying photonic qubits to entangle remote qubits via spin-photon entanglement. The fabrication and characterization of quantum dot based semiconductor samples, which serve as a basic building block for experiments in the field of QIP with pre-defined physical features, are in focus of the present thesis. The basic material system consists of In(Ga)As quantum dots on GaAs substrates. The growth of quantum dot based semiconductor samples via molecular beam epitaxy offers highest crystal quality and the possibility to integrate the quantum emitters in photonic resonators, which improve the light outcoupling efficiency and enhance the emission by light-matter-coupling effects. Against this background this thesis focusses on the preparation and characterization of different In(Ga)As based quantum dot samples. Morphologic properties were characterized via scannnig electron microscopy or atomic force microscopy. The characterization of optical properties was performed by spectroscopy of the reflectance, photoluminescence and resonance fluorescence signal as well as measurements of the second order correlation function. The main part is divided in three chapters which are briefly summarized below. Quasi-planar single photon source with high extraction efficiency: Planar quantum dot based highly efficient single photon sources are of great importance, as quantum dot electron and hole spins turned out to be promising candidates for spin manipulation experiments. To be able to intialize, manipulate and measure single electron spins, the quantum dots have to be charged with a single electron and build up a λ-system in a magnetic field in Voigt geometry. It is important that on the one side the spin configuration is stable, comprising a long spin coherence time and on the other side that the photon outcoupling efficiency is high enough for measurements. Quantum dots in planar microcavities have large spin coherence times but rather weak outcoupling efficiencies compared to micro- or nanopillar resonators. In this chapter a quasi-planar quantum dot based source for single (g(2)(0)=0,023) and indistinguishable photons (g(2)indist (0)=0,17) with a high purity is presented. This planar asymmetric microcavity doesn`t have any open surfaces in close proximity to the active layer, so that the spin dephasing is minimalized. The optical quality of the quantum dots is very high with emission linewidths near the natural linewidth of a quantum dot. Additionally the single photon source shows a high outcoupling efficiency of 42% which exceeds the outcoupling of a regular planar resonator (33%). This high extraction efficiency can be attributed to the coupling of the photon emission to Gallium-induced, Gaussian-shaped nanohill defects. Morphologic investigations and simulations show, that these defect cavity structures serve as nucleation centers during quantum dot growth and increase the outcoupling efficiency by lensing effects. In further experiments on this specific sample, entanglement of an electron spin and a photon was demonstrated, which is a critical building block for semiconductor based quantum repeaters. In this context also the full tomography of a polarization-entangled spin-photon-pair was measured with a surprisingly high fidelity. Moreover two photon interference and indistinguishability of two photons from remote quantum dots of this wafer was measured, which also constitutes a critical building block for quantum repeaters. Coupled quantum well - quantum dot system: Further challenges for optical controlled spin-qubit systems are fast readout of the quantum information with high fidelity and the implementation of a scalable one- and two-qubit gate. Therefore a proposal was adapted which is based on the coupling of an electron spin in a quantum dot to a gas of exciton-polaritons, formed in a quantum well in close proximity of the quantum dot. In cooperation with Yoshihisa Yamamoto's group from the Stanford University, a sample structure was designed and technologically realized as part of this thesis, to study the fundamental physical properties of this coupled system. By systematic epitactical improvement, a coupled quantum well-quantum dot system could successfully be implemented in a microresonator. The exciton-polariton gas was realized in a quantum well which is strongly coupled to a microcavity with a Rabi splitting of VR=2,5 meV. Although the distance to the quantum well is only a few nm, charged quantum dots with high optical quality and clear single photon emission character (g(2)(0)=0,24) could be measured. Site-controlled quantum dots: A scalable technological platform for bright sources of quantum light is highly desirable. Site-controlled quantum dots with high optical quality are very promising candidates to realize such a system. This concept offers the possibility to integrate single quantum dots in devices in a deterministic and scalable way and furthermore provides sample structures with a regular two dimensional array of site-controlled quantum dots to realize concepts for optically controlled two-qubits gates. The method to position the quantum dots used in this thesis is based on etched nanoholes in pre-patterned substrates, which serve as nucleation centers during the quantum dot growth process. An optimized layer structure and an increased light outcoupling efficiency using a dielectric mirror allowed the first measurement of resonance fluorescence on site-controlled quantum dots. In a further optimized design, emission of positioned quantum dots at 1,3 μm telecommunication wavelength was demonstrated for the first time for InGaAs quantum dots on GaAs substrates. KW - Quantenpunkt KW - Drei-Fünf-Halbleiter KW - Molekularstrahlepitaxie KW - Einzelphotonenemission KW - Photolumineszenzspektroskopie KW - InAs/GaAs Quantenpunkte KW - Positionierte Quantenpunkte KW - InAs/GaAs quantum dots KW - site-controlled quantum dots Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152972 ER - TY - THES A1 - Stender, Benedikt T1 - Einzelphotonenemitter und ihre Wechselwirkung mit Ladungsträgern in organischen Leuchtdioden T1 - Single Photon Emitters and their Interaction with Charge Carriers inside Organic Light Emitting Eiodes N2 - In dieser Arbeit wird die Photophysik von Einzelphotonenemittern unterschiedlicher Materialklassen, wie Fehlstellen in Diamant und Siliziumcarbid sowie organischer Moleküle bei Raumtemperatur untersucht. Zu diesem Zweck wurde ein hochauflösendes konfokales Mikroskop konzipiert und konstruiert, welches die optische Detektion einzelner Quantensysteme ermöglicht. Zusätzlich werden verschiedene Methoden wie die Rotationsbeschichtung, das Inkjet-Printing und das Inkjet-Etching in Bezug auf die Reproduzierbarkeit und Strukturierbarkeit von organischen Leuchtdioden (OLEDs) verglichen. Im weiteren Verlauf werden die optoelektronischen Prozesse in dotierten OLEDs untersucht, ausgehend von hohen Dotierkonzentrationen bis hin zur Dotierung mit einzelnen Molekülen. Dadurch kann die Exzitonen-Ladungsträger Wechselwirkung auf und in der Umgebung von räumlich isolierten Molekülen analysiert werden. N2 - In this work the room-temperature photophysics of single-photon sources of different material systems such as NV-centers, vacancies in silicon carbide and organic molecules are investigated. A high resolution home-built confocal microscope is used to detect and analyse the isolated single quantum emitters. Additionally, different methods and techniques for production of organic light emitting diodes (OLEDs) such as spin-coating, inkjet-printing and inkjet-etching are compared concerning their reproducibility and feasibility for structured OLED preparation. Subsequently, the opto-electronic processes in dye-doped polymeric OLEDs are examined for various doping concentrations ranging from high concentrations down to the doping by single molecules. This provides access to the investigation of the exciton-charge carrier interaction of single organic molecules in organic matrices. KW - Einzelphotonenquelle KW - Konfokale Mikroskopie KW - OLED KW - Single Photon Sources KW - confocal microscopy KW - Einzelphotonenemission KW - Konfokale Mikroskopie KW - OLED KW - Ladungsträger Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150913 ER - TY - THES A1 - Hansen, Nis Hauke T1 - Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und Dünnschichten T1 - Microscopic charge transport mechanisms and exciton annihilation in organic thin films and single crystals N2 - Um die Natur der Transportdynamik von Ladungsträgern auch auf mikroskopischen Längenskalen nicht-invasiv untersuchen zu können, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: löschen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen Dünnschicht durch die injizierten und akkumulierten Löcher in einer Transistorgeometrie analysiert. Diese Zusammenführung zweier Methoden - der elektrischen Charakterisierung von Dünnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die Änderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungsträgern. Dadurch werden räumlich aufgelöste Informationen über die Ladungsverteilung und deren Spannungsabhängigkeit im Transistorkanal zugänglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngrößen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngrößen alleine ermöglichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen möglich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten können. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungsträgerrekombination, Triplett-Übergänge oder Rekombination an Störstellen oder metallischen Grenzflächen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zuständen mit Elektronen und Löchern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare Überlapp sowie die Reorganisationsenergie in derselben Größenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie ermöglichen die Analyse der räumlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen. N2 - In order to study charge transport in organic thin-film transistors on a microscopic length scale noninvasively, photoluminescence quenching by injected holes in transistor geometry was analyzed. The combination of these two techniques – the electrical characterization of transistors and the photoluminescence spectroscopy – captures the variation of radiative recombination of excitons, which results from the interaction with the accumulated charge carriers. Thereby, spatially resolved information about the charge distribution and its voltage dependence in the transistor channel become accessible. By comparison with the macroscopic electrical parameters, such as the threshold voltage or the turn-on voltage, the mode of operation of the transistors can thus be described in more detail than the characteristic values alone permit. In addition, the quantification of these microscopic interactions becomes possible, which can occur, for example, as a loss channel in organic photovoltaic cells and organic light-emitting diodes. The delimitation to other dissipative processes, such as exciton-exciton annihilation, charge carrier recombination, triplet transitions or recombination at impurities or metallic interfaces, allows the detailed analysis of the interaction of optically excited states with electrons and holes. The second focus of this work is on the transport properties of the naphthalene diimide Cl2-NDI in which the molecular overlap as well as the reorganization energy are of the same order of magnitude of approximately 0.1 eV. In order to close experimentally on the microscopic transport, after the optimization of crystal growth, single crystal transistors are produced by means of which the mobility along different crystallographic directions can be measured as a function of the temperature. The single crystal nature of the samples and the special transistor geometry allow the analysis of the spatial anisotropy of the current flow. The measured mobility tensor is then compared with simulated tensors based on Levich-Jortner rates to infer the central charge transfer mechanism. KW - Organischer Halbleiter KW - Ladungstransport KW - organic field-effect transistor KW - photoluminescence spectroscopy KW - electronic transport KW - single crystal KW - Organischer Feldeffekttransistor KW - Photolumineszenzspektroskopie KW - Elektronischer Transport KW - Einkristall Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143972 ER - TY - JOUR T1 - Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb\(^{−1}\) of \(\sqrt{s}=13\) TeV \(pp\) collision data with the ATLAS detector JF - Journal of High Energy Physics N2 - A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (\(e\) or \(µ\)), or at least three isolated leptons, is presented. The analysis relies on the identification of \(b\)-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at \(\sqrt{s} = 13\) TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb\(^{−1}\), is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring \(R\)-parity conservation or \(R\)-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields. KW - High energy physics KW - Hadron-Hadron scattering (experiments) KW - Supersymmetry Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172787 VL - 2017 IS - 09 ER - TY - THES A1 - Unsleber, Sebastian Philipp T1 - Festkörperbasierte Einzelphotonenquellen als Grundbausteine der Quanteninformationstechnologie T1 - Solid-state single photon sources as building blocks for the quantum information technology N2 - Die vorliegende Arbeit hatte das Ziel basierend auf Halbleiternanostrukturen eine effiziente und skalierbare Quelle einzelner und ununterscheidbarer Photonen zu entwickeln. Dies ist eine Basiskomponente von zukünftigen quantenphysikalischen Anwendungen wie der Quantenkommunikation oder dem Quantencomputer. Diese Konzepte nutzen gezielt quantenmechanische Systeme um einerseits Kommunikation absolut abhörsicher zu machen oder um neuartige Computer zu konstruieren, die bestimmte Aufgaben - wie die Produktzerlegung großer Zahlen - effizienter lösen als heutige Systeme. Ein mögliche Realisierung der Quantenkommunikation ist beispielsweise die Schlüsselverteilung zwischen zwei Parteien durch Verwendung des BB84-Protokolls. Dazu wird eine Lichtquelle benötigt, welche die physikalisch kleinstmögliche Lichtmenge - ein einzelnes Photon - aussendet. Der Kommunikationskanal wird dann über verschiedene Polarisationszustände dieser Photonen gegen ein Abhören nach außen hin abgesichert. Da die maximale Kommunikationsdistanz aufgrund von Verlusten im Quantenkanal beschränkt ist, muss das Signal für größere Distanzen mit Hilfe eines sog. Quantenrepeaters aufbereitet werden. Ein solcher kann ebenfalls unter Verwendung von Einzelphotonenquellen realisiert werden. Das Konzept des Quantenverstärkers stellt aber die zusätzliche Anforderung an die Einzelphotonenquelle, dass die ausgesendeten Lichtteilchen in der Summe ihrer Eigenschaften wie Energie und Polarisation immer gleich und somit ununterscheidbar sein müssen. Auf Basis solcher ununterscheidbarer Photonen gibt es zudem mit dem linear optischen Quantenrechner auch mögliche theoretische Ansätze zur Realisierung eines Quantencomputers. Dabei kann über die Quanteninterferenz von ununterscheidbaren Photonen an optischen Bauteilen wie Strahlteilern ein Quanten-NOT-Gatter zur Berechnung spezieller Algorithmen realisiert werden. Als vielversprechende Kandidaten für eine solche Lichtquelle einzelner Photonen haben sich in den letzten Jahren Halbleiter-Quantenpunkte herauskristallisiert. Dank des festkörperbasierten Ansatzes können diese Strukturen in komplexe photonische Umgebungen zur Erhöhung der Photonen-Extraktionseffizienz und -Emissionsrate eingebettet werden. Ziel dieser Arbeit war somit eine effiziente Quelle einzelner ununterscheidbarer Photonen zu realisieren. Im Hinblick auf die spätere Anwendbarkeit wurde der Fokus zudem auf die skalierbare bzw. deterministische Fabrikation der Quantenpunkt-Strukturen gelegt und zwei technologische Ansätze - die kryogene in-situ-Lithographie und das positionierte Wachstum von Quantenpunkten - untersucht. Im ersten experimentellen Kapitel dieser Arbeit wird ein neuartiges Materialsystem vorgestellt, welches sich zur Generation einzelner Photonen eignet. Es können spektral scharfe Emissionslinien mit Linienbreiten bis knapp über 50 µeV aus Al$_{0,48}$In$_{0,52}$As Volumenmaterial beobachtet werden, wenn diese Schicht auf InP(111) Substraten abgeschieden wird. In Querschnitt-Rastertunnelmikroskopie-Messungen wurden ca. 16 nm große Cluster, welche eine um ungefähr 7 % höhere Indiumkonzentration im Vergleich zur nominellen Zusammensetzung des Volumenmaterials besitzen, gefunden. Über die Simulation dieser Strukturen konnten diese als Quelle der spektral scharfen Emissionslinien identifiziert werden. Zudem wurde mittels Auto- und Kreuzkorrelationsmessungen nachgewiesen, dass diese Nanocluster einzelne Photonen emittieren und verschieden geladene exzitonische und biexzitonische Ladungsträgerkomplexe binden können. Anschließend wurde der Fokus auf InGaAs-Quantenpunkte gelegt und zunächst im Rahmen einer experimentellen und theoretischen Gemeinschaftsarbeit die Kohärenzeigenschaften eines gekoppelten Quantenpunkt-Mikrokavität-Systems untersucht. Über temperaturabhängige Zwei-Photonen Interferenz Messungen und dem Vergleich mit einem mikroskopischen Modell des Systems konnten gezielt die Bestandteile der Quantenpunkt-Dephasierung extrahiert werden. Auf diesen Ergebnissen aufbauend wurde die gepulste, strikt resonante Anregung von Quantenpunkten als experimentelle Schlüsseltechnik etabliert. Damit konnten bei tiefen Temperaturen nahezu vollständig ununterscheidbare Photonen durch eine Zwei-Photonen Interferenz Visibilität von über 98 % nachgewiesen werden. Für ein skalierbares und deterministisches Quantenpunkt-Bauelement ist entweder die Kontrolle über die Position an welcher der Quantenpunkt gewachsen wird nötig, oder die Position an der eine Mikrokavität geätzt wird muss auf die Position eines selbstorganisiert gewachsenen Quantenpunktes abgestimmt werden. Im weiteren Verlauf werden Untersuchungen an beiden technologischen Ansätzen durchgeführt. Zunächst wurde der Fokus auf positionierte Quantenpunkte gelegt. Mittels in das Substrat geätzter Nanolöcher wird der Ort der Quantenpunkt-Nukleation festgelegt. Durch die geätzten Grenzflächen in Quantenpunkt-Nähe entstehen jedoch auch Defektzustände, die negativen Einfluss auf die Kohärenz der Quantenpunkt-Emission nehmen. Deshalb wurde an diesem Typus von Quantenpunkten die strikt resonante Anregung etabliert und zum ersten Mal die kohärente Kopplung des Exzitons an ein resonantes Lichtfeld demonstriert. Zudem konnte die deterministische Kontrolle der Exzitonbesetzung über den Nachweis einer Rabi-Oszillation gezeigt werden. Abschließend wird das Konzept der kryogenen in-situ-Lithographie vorgestellt. Diese erlaubt die laterale Ausrichtung der Mikrokavität an die Position eines selbstorganisiert gewachsenen Quantenpunktes. Damit konnte gezielt die Emission eines zuvor ausgewählten, spektral schmalen Quantenpunktes mit nahezu 75 % Gesamteffizienz eingesammelt werden. Die Ununterscheidbarkeit der Quantenpunkt-Photonen war dabei mit einer Zwei-Photonen Interferenz Visibilität von bis zu $\nu=(88\pm3)~\%$ sehr hoch. Damit wurde im Rahmen dieser Arbeit eine Einzelphotonenquelle realisiert, aus der sich sehr effizient kohärente Photonen auskoppeln lassen, was einen wichtigen Schritt hin zur deterministischen Fabrikation von Lichtquellen für quantenphysikalischen Anwendungen darstellt. N2 - The aim of this thesis was to develop an efficient and scalable source of single and indistinguishable photons. This is a fundamental element of future quantum physical applications like quantum communication or quantum networks. These concepts use quantum mechanical systems to either establish absolute secure communication or to construct new computers, whose calculating capacity for specialized algorithms - like integer factorization - is far beyond today's systems. One possible realization of quantum communication is the key distribution between two parties via using the BB84-protocol. This scheme needs a lights source that emits the physical smallest amount of light - a single photon. The communication channel between transmitter and receiver is then secured against eavesdropping by different polarisation states of these photons. The non-avoidable loses in the quantum channel limit the maximum possible communication distance, which is why the signal has to be amplified with a so called quantum repeater after a certain distance. Such a repeater can also be realized with a single photon source. In addition to the BB84-protocol, for realizing the concept of a quantum repeater the photons have to share all their properties like energy and polarization, i. e. they need to be indistinguishable. Over the past years, semiconductor quantum dots have been identified as a promising candidate for such a light source. Due to the solid state scheme, these structures can be implemented into complex photonic architectures to increase the outcoupling efficiency and the emission rate of single photons. The main goal of the following work was therefore the realization of an efficient source of single and indistinguishable photons. Keeping future applications in mind, the additional focus of this work was lying on the scalable and deterministic fabrication of these quantum dot structures and two technological approaches - the cryogenic in-situ-lithography and the positioned growth of quantum dots - were investigated. In the first part of this thesis, a novel material system, which serves as a source of single photons is presented. Spectrally sharp emission features with a linewidth down to 50 µeV from bulk Al$_{0,48}$In$_{0,52}$As grown on InP(111) substrates were observed. Via cross-section scanning tunneling microscopy measurements, nanoclusters with a diameter of approximately 16 nm and a 7 % increased indium concentration compared to the nominal composition, were found. Additional simulations of these complexes identify these nanoclusters as sources of the spectrally sharp emissions lines. Furthermore, single photon emission as well as the formation of multi excitonic charge complexes within these clusters via auto- and crosscorrelation measurements is confirmed. Afterwards, the work focusses on InGaAs-quantum dots and, as a first step, the coherence properties of a coupled quantum dot microcavity system are investigated within a joint theoretical and experimental work. Via temperature dependent two-photon interference measurements the single dephasing mechanisms of this system are extracted via modelling the results with a microscopic theory. Based on this results, the strict resonant excitation of quantum dots was established as a experimental key technique and quantum dot photons with a two-photon interference visibility above 98 % were generated at low temperatures. For scalable and deterministic quantum dot devices, one either needs to control the growth spot of a quantum dot or the position of an etched microcavity has to be aligned to the position of a self-organized quantum dot. In the subsequent parts if this work, studies on both technological approaches are presented. First, spectroscopic experiments on site controlled quantum dots were carried out. Via etched nanoholes, the nucleation spot of the quantum dot is defined. These etched surfaces may lead to defect states, which decrease the coherence of the quantum dot emission. In order to avoid these detrimental influence, the strict resonant excitation of such site controlled quantum dots is established and the coherent coupling of the site controlled quantum dot exciton to the resonant laser field is observed. In addition, deterministic control of the site controlled quantum dot population is achieved, which is verified via the observation of the first Rabi-oscillation. Finally, the so-called in-situ-lithography is presented, which allows for the lateral alignment of a self-organized quantum dot and the fundamental mode of a micropillar. Using this technique, an overall collection efficiency of single photons from a pre-selected quantum dot with a small linewidth of almost 75 % is shown. The coherence of this quantum dot was notably, which is demonstrated by a two-photon interference visibility as high as $\nu=(88\pm3)~\%$. In summary, an efficient source of single and indistinguishable photons was realized in this thesis, which is an important step towards the fabrication of deterministic quantum dot devices for quantum mechanical applications. KW - Quantenpunkt KW - Einzelphotonenemission KW - Quantenkommunikation KW - Einzelphotonenquelle KW - Mikrosäulenresonator KW - Nichtunterscheidbarkeit KW - Verteilte Bragg-Reflexion KW - Optischer Resonator Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147322 ER - TY - THES A1 - Pfaff, Florian Georg T1 - Spektroskopie und hochauflösende Mikroskopie zur Analyse der Grenzflächeneigenschaften in SrTiO\(_3\)-basierten Heterostrukturen T1 - Interface properties of SrTiO\(_3\)-based heterostructures studied by spectroscopy and high-resolution microscopy N2 - > In oxidischen Heterostrukturen kann es zur Ausbildung unerwarteter elektronischer und magnetischer Phasen kommen. Ein bekanntes Beispiel ist das Heterostruktursystem LaAlO\(_3\)/SrTiO\(_3\), an dessen Grenzfläche ein zweidimensionalen Elektronensystem (2DES) entsteht, sofern die LaAlO\(_3\)-Filmdicke einen kritischen Wert von mindestens vier Einheitszellen aufweist. Ähnliches Verhalten konnte an der Heterostruktur γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) beobachtet werden. Die gemessenen Elektronenbeweglichkeiten und Flächenladungsträgerdichten übertreffen hierbei die in LaAlO\(_3\)/SrTiO\(_3\) um mehr als eine Größenordnung. Die vorliegende Arbeit beschäftigt sich mit der Herstellung sowie der Analyse dieser beiden Heterostruktursysteme. Die Hauptaspekte sind dabei die Untersuchung der physikalischen Eigenschaften an der Grenzfläche sowie das Verständnis der zugrundeliegenden Mechanismen. > > Im Hinblick auf das Wachstum wird demonstriert, dass die für LaAlO\(_3\)/SrTiO\(_3\) etablierte Wachstumsroutine der gepulsten Laserablation sowie die zur Überwachung des Schichtwachstums verwendete Methode der Beugung hochenergetischer Elektronen in Reflexion (RHEED) für das γ-Al\(_2\)O\(_3\)-Wachstum modifiziert werden müssen. So kann gezeigt werden, dass durch eine geeignete Variation der Wachstumsgeometrie die Resonanz von Oberflächenwellen, welche im Falle des γ-Al\(_2\)O\(_3\)-Wachstums die Beobachtung von RHEED-Oszillationen erschwert, vermieden werden kann und somit auch hier die Überwachung des heteroepitaktischen Schichtwachstum mittels Elektronenbeugung möglich wird. > > Für die Ausbildung des 2DES in LaAlO\(_3\)/SrTiO\(_3\) wird das Szenario der elektronischen Rekonstruktion als mögliche Ursache diskutiert, wonach das divergierende Potential innerhalb des polaren LaAlO\(_3\)-Films durch einen Ladungstransfer von der Probenoberfläche in die obersten Atomlagen des unpolaren SrTiO\(_3\)-Substrats kompensiert wird. Zudem sind die Eigenschaften der Heterostruktur von den Wachstumsparametern abhängig. So wird in der vorliegenden Arbeit eine deutliche Zunahme der Ladungsträgerkonzentration und der räumliche Ausdehnung der leitfähigen Schicht insbesondere für Proben, welche bei sehr niedrigen Sauerstoffhintergrunddrücken gewachsen wurden, gezeigt und auf die Erzeugung von Sauerstofffehlstellen innerhalb des Substrats zurückgeführt. Darüber hinaus wird erstmalig die Herstellung atomar scharfer Grenzflächen mit sehr geringer Defektdichte selbst bei sehr niedrigen Wachstumsdrücken belegt und erstmals auch direkt elektronenmikroskopisch nachgewiesen. Es werden allenfalls vernachlässigbare Effekte der Sauerstoffkonzentration auf charakteristische, strukturelle Merkmale der Probe beobachtet. Desweiteren zeigt diese Arbeit erstmalig eine von den Wachstumsbedingungen abhängige Gitterverzerrung des Films, was in Übereinstimmung mit Rechnungen auf Basis der Dichtefunktionaltheorie einen Hinweis auf ein komplexes Zusammenspiel von elektronischer Rekonstruktion, Sauerstofffehlstellen an der LaAlO\(_3\)-Oberfläche und einer Verzerrung der Kristallstruktur als Ursache für die Entstehung des 2DES in LaAlO\(_3\)/SrTiO\(_3\) liefert. > > Neben der mikroskopischen Analyse des 2DES in LaAlO\(_3\)/SrTiO\(_3\) wird die elektronische Struktur dieses Systems zudem mithilfe der resonanten inelastischen Röntgenstreuung charakterisiert. Die vorliegende Dissertation zeigt dabei, neben dem Nachweis lokalisierter Ladungsträger vor dem Einsetzen metallischen Verhaltens ab einer kritischen Schichtdicke von vier Einheitszellen, die Existenz eines Raman- und eines fluoreszenzartigen Signals in Abhängigkeit der verwendeten Photonenenergie, was wiederum auf einen unterschiedlichen elektronischen Charakter im Zwischenzustand zurückgeführt werden kann. Gestützt wird diese Interpretation durch vergleichbare Messungen an γ- Al\(_2\)O\(_3\)/SrTiO\(_3\). In diesem System finden sich zudem ebenfalls Anzeichen lokalisierter Ladungsträger unterhalb der kritischen Schichtdicke für metallisches Verhalten, was ein Hinweis auf einen mit LaAlO\(_3\)/SrTiO\(_3\) vergleichbaren Grundzustand sein könnte. > > Weitere Messungen mithilfe der resonanten Photoelektronenspektroskopie ermöglichen zudem eine direkte Beobachtung und Analyse der Ti 3d-Valenzelektronen. Messungen an LaAlO\(_3\)/SrTiO\(_3\) und γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) liefern dabei Hinweise auf verschiedene elektronische Ti 3d-artige Zustände. Diese werden zum einen den mobilen Ladungsträgern des 2DES zugeschrieben, zum anderen als lokalisierte Elektronen in der Nähe von Sauerstofffehlstellen identifiziert. Eine Analyse des Resonanzverhaltens sowie der spektralen Form der beobachteten Signale zeigt quantitative Unterschiede, was auf einen unterschiedlichen treibenden Mechanismus in beiden Systemen hindeutet und im Hin- blick auf den Einfluss von Sauerstofffehlstellen auf das System diskutiert wird. Zudem zeigen impulsaufgelöste Messungen der Zustände am chemischen Potential eine unterschiedliche Intensitätsverteilung im k -Raum. Dies wird im Zusammenhang mit Matrixelementeffekten diskutiert und kann vermutlich auf Photoelektronendiffraktion bedingt durch die unterschiedliche Kristallstruktur des Filmmaterials, zurückgeführt werden. N2 - > Oxide heterostructures can exhibit a variety of unexpected electronic and magnetic phenomena at their interfaces. A prominent example is the interface in LaAlO\(_3\)/SrTiO\(_3\) heterostructures where a two-dimensional electron system (2DES) forms if the LaAlO\(_3\) thickness equals or exceeds a critical thickness of four unit cells. Similar to LaAlO\(_3\)/SrTiO\(_3\) an interface 2DES above a critical overlayer thickness has been observed in γ-Al\(_2\)O\(_3\)/SrTiO\(_3\). However, the electron mobility as well as the sheet carrier density exceed those of LaAlO\(_3\)/SrTiO\(_3\) heterostructures by more than one order of magnitude. This thesis is concerned with the growth and the characterization of these two types of interface systems with the main focus on the analysis of the physical properties at the interface and the understanding of their leading mechanisms. > > In regard to the sample fabrication it is demonstrated in the present thesis that the hitherto established growth routine of LaAlO\(_3\)/SrTiO\(_3\) by pulsed laser deposition has to be altered and optimized for the growth of γ-Al\(_2\)O\(_3\). It is shown that growth monitoring by analyzing reflection high energy electron diffraction (RHEED)intensity oscillations is hindered by the formation of surface wave resonances. In order to avoid this effect, a modified growth geometry has to be used whereby also in this heterostructucture systems monitoring of the layer-by-layer growth of γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) heterostructures by electron diffraction can be achieved. > > A so-called electronic reconstruction is discussed as the possible driving mechanism for the 2DES formation in LaAlO\(_3\)/SrTiO\(_3\). In this scenario, the built-up potential within the polar LaAlO\(_3\) overlayer is compensated by a charge transfer from the sample surface to the top most layers of the non-polar SrTiO\(_3\) substrate. Furthermore, the properties of these heterostructures strongly depend on the used growth conditions. In the present work, for instance, a significant increase in the charge carrier concentration as well as the 2DES spatial extension can be observed for samples grown at very low oxygen pressures, which is related to the creation of oxygen vacancies in SrTiO\(_3\) substrate. It is microscopically shown for the first time that sharp interfaces with a very low density of defects can also be grown at very low oxygen partial pressures. In addition, no significant effect of oxygen vacancies on specific structural properties is seen. Furthermore, a detailed analysis of the atomic spacing reveales a lattice distortion within the LaAlO\(_3\) film which shows a significant dependence on the used growth parameters and, supported by density functional theory, points towards a complex interplay of electronic reconstruction, surface oxygen vacancies and lattice distortions as the driving mechanism for the 2DES formation. > > Beside the study of the structural properties of the interface in LaAlO\(_3\)/SrTiO\(_3\) heterostructures by means of transmission electron microscopy, the electronic structure of the 2DES is analyzed by resonant inelastic x-ray scattering (RIXS) measurements which show clear indications for localized charge carriers below the critical thickness for conductivity of four unit cells. Moreover, a Raman- and a fluorescence-like signal can be identified by excitation energy dependent RIXS and attributed to the electronic character of the intermediate state. Similar results are obtained on γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) heterostructures which fortifies this interpretation and could be a hint for a similar ground state in both heterostructures and interface magnetism also to be present in this system. > > By using resonant photoelectron spectroscopy the Ti 3d valence electrons can directly be observed and analyzed. Comparative measurements on LaAlO\(_3\)/SrTiO\(_3\) and γ-Al\(_2\)O\(_3\)/SrTiO\(_3\) indicate the existence of different types of electronic states with Ti 3d character in both systems which can be attributed to mobile carriers forming the 2DES and carriers localized in states adjacent to oxygen vacancies. By analyzing the resonance behavior of the electronic states and their relative intensities and spectral shape substantial differences are revealed which point to a different mechanism at play for forming the 2DES in LaAlO\(_3\)/SrTiO\(_3\) and γ-Al\(_2\)O\(_3\)/SrTiO\(_3\). These observations are discussed in terms of the influence of oxygen vacancies on the two interface systems. Additionally, momentum-resolved measurements are performed to resolve the metallic states at the chemical potential and to map out the Fermi surface of LaAlO\(_3\)/SrTiO\(_3\) and γ-Al\(_2\)O\(_3\)/SrTiO\(_3\). Here, significantly different intensity distributions in k -space are observed and discussed with respect to matrix element effects while the results can most likely be ascribed to photoelectron diffraction due to the different crystal structure of the overlayer material KW - Übergangsmetalloxide KW - Heterostruktur KW - Grenzfläche KW - Physikalische Eigenschaft KW - Röntgenstreuung KW - Grenzflächeneigenschaften KW - Perowskit KW - Spinell KW - Sauerstofffehlstellen KW - oxygen vacancies KW - interface properties KW - matrix element effects KW - oxide heterostructures KW - Röntgen-Photoelektronenspektroskopie KW - Mehrschichtsystem KW - Durchstrahlungselektronenmikroskopie KW - Laserablation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145023 ER - TY - THES A1 - Geßler, Jonas T1 - Reduktion des Modenvolumens von Mikrokavitäten im Regime der schwachen und starken Kopplung T1 - Reduction of the mode volume of microcavities in the regime of weak and strong coupling N2 - Ziel dieser Arbeit war die Reduktion des Modenvolumens in Mikrokavitäten. Ein klei-nes Modenvolumen ist für die Stärke der Licht-Materie-Wechselwirkung wesentlich, weil dadurch z.B. die Schwelle für kohärente Lichtemission gesenkt werden kann [1]. Der Purcell-Faktor, ein Maß für die Rate der spontanen Emission, wird durch ein mi-nimales Modenvolumen maximiert [2, 3]. Im Regime der starken Kopplung steigt mit Abnahme des Modenvolumens die Rabi-Aufspaltung und damit die maximale Tempe-ratur, bei der das entsprechende Bauteil funktioniert [4, 5]. Spektrale Eigenschaften treten deutlicher hervor und machen die Funktion der Struktur stabiler gegenüber stö-renden Einflüssen. Der erste Ansatz, das Modenvolumen einer Mikrokavität zu reduzieren, zielte darauf, die Eindringtiefe der optischen Mode in die beiden Bragg-Spiegel einer Mikrokavität zu minimieren. Diese hängt im Wesentlichen vom Kontrast der Brechungsindizes der alternierenden Schichten eines Bragg-Spiegels ab. Ein maximaler Kontrast kann durch alternierende Schichten aus Halbleiter und Luft erreicht werden. Theoretisch kann auf diese Weise das Modenvolumen in vertikaler Richtung um mehr als einen Faktor 6 im Vergleich zu einer konventionellen Galliumarsenid/Aluminiumgalliumarsenid Mikro-kavität reduziert werden. Zur Herstellung dieser Strukturen wurden die aluminiumhal-tigen Schichten einer Galliumarsenid/Aluminiumgalliumarsenid Mikrokavität voll-ständig entfernt und so der Brechungsindexkontrast maximiert. Die Schichtdicken sind dabei entsprechend anzupassen, um weiterhin die Bragg-Bedingung zu erfüllen. Die Herstellung einer freitragenden Galliumarsenid/Luft-Mikrokavität konnte so erfolg-reich demonstriert werden. Die Photolumineszenz der Bauteile weist diskrete Reso-nanzen auf, deren Ursache in der begrenzten lateralen Größe der Strukturen liegt. In leistungsabhängigen Messungen kann durch ausgeprägtes Schwellenverhalten und auf-lösungsbegrenzte spektrale Linienbreiten Laseremission nachgewiesen werden. Wegen der Abhängigkeit der photonischen Resonanz vom genauen Brechungsindex in den freitragenden Schichten eignen sich die vorgestellten Strukturen auch zur Bestimmung von Brechungsindizes. Alternativ kann die photonische Resonanz durch Einbringen verschiedener Gase in die freitragenden Schichten abgestimmt werden. Beides konnte mit Erfolg nachgewiesen werden. Der Nachteil dieses Ansatzes liegt vor allem darin, dass ein elektrischer Betrieb der so gefertigten Strukturen nicht möglich ist. Hier bie-tet der zweite Ansatz eine bestmögliche Lösung. Das alternative Konzept für den oberen Bragg-Spiegel einer konventionellen Galli-umarsenid/Aluminiumgalliumarsenid Mikrokavität ist das der Tamm-Plasmonen. Der photonische Einschluss wird hier durch einen unteren Bragg-Spiegel und einem dün-nen oberen Metallspiegel erreicht. An der Grenzfläche vom Halbleiter zum Metall bil-den sich die optischen Tamm-Plasmonen aus. Dabei kann der Metallspiegel gleichzei-tig auch als elektrischer Kontakt genutzt werden. Die Kopplung von Quantenfilm-Exzitonen an optische Tamm-Plasmonen wird in dieser Arbeit erfolgreich demons-triert. Im Regime der starken Kopplung wird mittels Stark-Effekt eine vollständige elektro-optische Verstimmung, d.h. vom Bereich positiver bis hin zur negativen Ver-stimmung, des Quantenfilm-Exzitons gegenüber der Tamm-Plasmonen Mode nachge-wiesen. Die Messungen bestätigen entsprechend des reduzierten Modenvolumens (Faktor 2) eine erhöhte Rabi-Aufspaltung. Dabei sind die spektrale Verschiebung und die Oszillatorstärke des Quantenfilm-Exzitons konsistent mit der Theorie und mit Li-teraturwerten. Der wesentliche Nachteil des Ansatzes liegt in der maximalen Güte, die durch den großen Extinktionskoeffizienten des Metallspiegels limitiert ist. N2 - The goal of this thesis was to reduce the mode volume of microcavities. A reduced mode volume increases the strength of light matter coupling, which leads to lower lasing thresholds. The Purcell-factor, a measure for the spontaneous emission rate, is at maximum for a minimum mode volume. In the regime of strong coupling, a smaller mode volume leads to a larger Rabi splitting, which in turn increases the maximum operating temperature of a given device. Spectral features become more pronounced and the microcavity is more robust against disturbances caused by environmental fluctuations. The first approach to reduce the mode volume of a microcavity addresses the penetration depth of the optical field into the Bragg mirrors of a microcavity. It mainly depends on the refractive index contrast of the alternating layers of the Bragg mirror. The maximum contrast is realized by alternating layers consisting of semiconductor and air. Based on theoretical calculations, the mode volume can be decreased in the vertical direction by a factor of 6 compared to a conventional gallium arsenide/aluminum gallium arsenide microcavity. Therefore the aluminum containing layers of a conventional gallium arsenide/aluminum gallium arsenide microcavity are completely removed. The layer thicknesses have to be adjusted to still satisfy the Bragg condition. The successful fabrication of high quality gallium arsenide/air microcavities is demonstrated. Photoluminescence measurements reveal discrete resonances due to the finite dimensions of the structure. Power dependent measurements show a distinct threshold which indicates – combined with the resolution limited spectral linewidth – photon lasing. The dependence of the photonic resonance on the exact value of the refractive index of the Bragg mirror is used to determine the refractive index of gases channeled into the selfsupporting air layers. Alternatively, the photonic resonance of the structure can be tuned by injecting gas into the air layers. Both features could be demonstrated successfully. The structure not being suitable for electrical operation is the main disadvantage of this approach. In this case the second concept is the better solution. The alternative approach for the upper Bragg mirror of a conventional gallium arsenide/aluminum gallium arsenide microcavity exploits the Tamm-Plasmons. To achieve photonic confinement, the cavity is sandwiched between a lower Bragg mirror and a thin metal top mirror. At the semiconductor-metal interface, photonic Tamm-Plasmon states appear. Additionally, the metal mirror is used as electrical contact. The coupling of the quantum well exciton to the Tamm-Plasmon is presented. In the strong coupling regime, a complete electro-optical resonance tuning (i.e. from positive to negative tuning of the exciton resonance compared to the Tamm-Plasmon state) is demonstrated, exploiting the quantum confined Stark effect. The measurements confirm an increased Rabi splitting due to the reduced mode volume (factor of 2 reduced mode volume). Spectral shift and oscillator strength of the exciton in the electric field are consistent with theory and literature values. The most critical point of this approach lies within the limited Q-factor due to the large extinction coefficient of the top metal layer. KW - Galliumarsenidlaser KW - Optischer Resonator KW - Mikrooptik KW - Moden KW - Mikrokavität KW - Licht-Materie-Wechselwirkung KW - GaAs/Luft-Braggspiegel KW - Tamm-Plasmonen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144558 ER - TY - THES A1 - Seibel, Christoph T1 - Elektronische Struktur von Halbleiteroberflächen mit starker Spin-Bahn-Wechselwirkung: Topologie, Spinpolarisation und Robustheit T1 - Electronic structure of semiconductor surfaces with strong spin-orbit interactions: topology, spin polarisation and robustness N2 - Neue Erkenntnisse über elektronische Eigenschaften von Festkörpern legen den Grundstein für innovative Anwendungen der Zukunft. Von zentraler Bedeutung sind insbesondere die Eigenschaften der Elektronenspins. Um diese besser zu verstehen, befasst sich die vorliegende Arbeit mit der experimentellen Analyse der elektronischen Struktur von topologischen Isolatoren (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} und Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) und Kristallen mit starker Spin-Bahn-Wechselwirkung (BiTeI) mittels Photoelektronenspektroskopie. Zu Beginn werden die zum Verständnis dieser Arbeit benötigten Grundlagen erklärt sowie die unterschiedlichen zum Einsatz kommenden Techniken eingeführt. Der Hauptteil der Arbeit teilt sich in drei Forschungsschwerpunkte. Der erste Teil befasst sich mit den elektronischen Eigenschaften der Valenzbandstruktur von Sb2Te3 und den auftretenden Oberflächenzuständen. Durch gezielte Variation der Energie der anregenden Strahlung wird der Charakter der Wellenfunktion des topologischen Oberflächenzustands und dessen Wechselwirkung mit Valenzzuständen erforscht. Dabei spielt die Topologie der Volumenbandstruktur eine grundlegende Rolle. Der zusätzliche Vergleich zu Photoemissionsrechnungen ermöglicht detaillierte Einblicke in die Wechselwirkung zwischen Oberflächen- und Volumenzuständen und gibt Aufschluss darüber, wie diese vermittelt werden. Im zweiten Abschnitt wird durch die Analyse des gemessenen Photoelektronenspins das Zusammenspiel der Spintextur des Grundzustands und Endzuständen in Bi2Te3 untersucht. Dabei treten, im Gegensatz zu Grundzustandsrechnungen, Radialkomponenten des Polarisationsvektors in nichtsymmetrischer Messgeometrie auf. Sowohl deren Energieabhängigkeit als auch deren Auftreten in Photoemissionsrechnungen (1-Schritt-Modell) deutet darauf hin, dass diese ihren Ursprung in Übergangsmatrixelementen des Photoemissionsprozesses haben. Dieses Ergebnis wird mit Spinpolarisationsmessungen am Oberflächenzustand des nicht-topologischen Schichtsystems BiTeI verglichen. Im dritten Teil werden Auswirkungen unterschiedlicher Manipulationen der untersuchten Materialien auf deren elektronische Eigenschaften beschrieben. Die Adsorption von Bruchteilen einer monoatomaren Lage des Alkalimetalls Caesium auf die Oberfläche des topologischen Isolators Sb2Te3 wird systematisch untersucht. Dadurch kann dessen intrinsische p-Dotierung teilweise abgebaut werden, wobei die Valenzbandstruktur trotz der Reaktivität des Adsorbats intakt bleibt. Des Weiteren werden Auswirkungen von Änderungen der Kristallstöchiometrie durch Volumendotierung vergleichend diskutiert. Ausblickend befasst sich das Kapitel mit dem Verhalten geringer Mengen ferromagnetischer Materialen (Fe, Ni) auf den Oberflächen der topologischen Isolatoren. Für die verschiedenen Adsorbate werden Trends aufgezeigt, die von Temperatur und Zusammensetzung des Substratkristalls abhängen. N2 - New findings about electronic properties lay the foundation for future applications. The spin properties of systems with large spin-orbit coupling are particularly important. The content of this thesis therefore treats the experimental study of the surface electronic structure of topological insulators (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} and Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) and topologically trivial BiTeI crystals using photoelectron spectroscopy. At the beginning basic knowledge to understand this thesis, as well as exploited techniques are addressed. The main part of this thesis separates into three research topics. The first part focuses on the electronic properties of the valence band structure and the wave functions of the occuring surface states. Via variation of the energy of the exciting radiation the character of the wavefunction of the respective topologically non trivial surface state as well as its interaction with valence states is explored. The bulk boundary correspondence and the topology of the bulk electronic structure is of special importance for this interaction. Additionally, it is concluded from photoemission calculations, that the interaction between surface and bulk valence states is mediated by a surface resonance state. The second section presents an analysis of photoelectron spins to investigate the respective contributions of the spin texture of the initial state and final states. This thesis reports on non-vanishing radial components of the polarization vector which do not appear in groundstate calculations. The energy dependance in combination with one-step photoemission calculations indicates that these radial components find their origin in transition matrix elements of the photoemission process. The result is compared to spin resolved measurements of the surface state of the layered material BiTeI which is not a topological insulator. In the third part the consequences of various manipulations of the analyzed materials on their respective electronic structure are described. The systematic adsorption of submonolayer amounts of the alkalimetal Caesium on the surface of the topological insulator Sb2Te3(0001) reduces its intrinsic p-doping without altering its valence band structure despite the reactivity of the adsorbate. Furthermore the effects of stoichiometric changes of elemental composition and bulk doping are being discussed. Finally the behavior of small amounts of ferromagnetic materials (Fe, Ni) on the surface of the respective topological insulators are being addressed. For the different adsorbates trends are shown, which depend on temperature and chemical composition of the substrate. KW - Elektronenstruktur KW - Topologischer Isolator KW - Sb2Te3 KW - ARPES Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140418 ER - TY - THES A1 - Braun, Tristan T1 - Spektroskopie an positionierten III-V-Halbleiterquantenpunkten T1 - Spectroscopy of site-controlled III-V semiconductor quantum dots N2 - Viele Forschergruppen konzentrieren sich derzeit auf die Entwicklung von neuartigen Technologien, welche den Weg für die kommerzielle Nutzung einer Quantenkommunikation bereiten sollen. Erste Erfolge konnten dabei insbesondere auf dem Gebiet der Quantenschlüsselverteilung erzielt werden. In diesem Bereich nutzt man die Eigenschaft einzelner, ununterscheidbarer Photonen nicht kopiert werden zu können, um eine abhörsichere Übertragung sensibler Daten zu realisieren. Als Lichtquellen dafür eignen sich Halbleiter-Quantenpunkte. Diese Quantenpunkte lassen sich außerdem leicht in komplexe Halbleiter-Mikrostrukturen integrieren und sind somit besonders interessant für die Entwicklung solch fortschrittlicher Technologien, welche für eine abhörischere Kommunikation notwendig sind. Basierend auf diesem Hintergrund wurden in der vorliegenden Arbeit Halbleiter-Quantenpunkte spektroskopisch hinsichtlich ihres Potentials als Quanten-Lichtquelle für die Quantenkommunikation untersucht. Dabei wurden die Quantenpunkte aus InAs/GaAs und InP/GaInP unter anderem in einem speziellen Verfahren deterministisch positioniert und letztendlich in eine photonische Mikrostruktur integriert, welche aus einer Goldscheibe und einem dielektrischen Spiegel besteht. Als Grundcharakterisierungsmittel kam hauptsächlich die Mikrophotolumineszenzspektroskopie zur Bestimmung der Emissionseigenschaften zum Einsatz. Weiterführend wurden Photonen-Korrelationsmessungen zweiter Ordnung durchgeführt, um den Nachweis einer Quanten-Lichtquelle zu erbringen. Einfluss eines RTA-Prozesses auf die Emissionseigenschaften von InAs/GaAs-Quantenpunkten Zur Untersuchung des Einflusses eines Rapid-Thermal-Annealing-Prozesses auf die elektronischen Eigenschaften und die Oszillatorstärke selbstorganisierter InAs/GaAs-Quantenpunkte wurden Mikrophotolumineszenzmessungen an verschiedenen Proben im externen Magnetfeld von bis zu 5 T durchgeführt. Die Quantenpunkte wurden dabei in einem besonderen Verfahren gewachsen, bei dem die nominelle Quantenpunkthöhe durch eine bestimmte Bedeckungsschichtdicke vorgegeben wurde. Insgesamt wurden drei Proben mit Schichtdicken von 2 nm, 3 nm und 4 nm hergestellt, die jeweils nachträglich bei Temperaturen von 750° C bis 850° C für fünf Minuten ausgeheilt wurden. Anhand polarisationsaufgelöster Spektroskopie konnten aus den aufgenommenen Quantenpunktspektren die Zeemanaufspaltung und die diamagnetische Verschiebung extrahiert und damit der effektive Landé g-Faktor sowie der diamagnetische Koeffizient bestimmt werden. Die Auswertung der Zeemanaufspaltung zeigte, dass sowohl höhere Ausheiltemperaturen als auch dickere Bedeckungsschichten zu einer drastischen Abnahme der absoluten g-Faktoren sorgen. Dies lässt darauf schließen, dass eine dickere Bedeckungsschicht zu einer stärkeren Interdiffusion der Atome und einer steigenden Ausdehnung der Quantenpunkte für ex-situ Ausheilprozesse führt. Im Gegensatz dazu steigen die diamagnetischen Koeffizienten der Quantenpunkte mit zunehmender Ausheiltemperatur, was auf eine Ausdehnung der Exzitonwellenfunktion hindeutet. Außerdem wurden mittels zeitaufgelöster Mikrophotolumineszenzspektroskopie die Lebensdauern am Quantenpunktensemble bestimmt und eine Abnahme dieser mit steigender Temperatur festgestellt. Sowohl über die Untersuchungen des diamagnetischen Koeffizienten als auch über die Analyse der Lebensdauer konnte schließlich die Oszillatorstärke der Quantenpunkte ermittelt werden. Beide Messverfahren lieferten innerhalb der Fehlergrenzen ähnliche Ergebnisse. Die höchste Oszillatorstärke \(f_{\chi}=34,7\pm 5,2\) konnte für eine Schichtdicke von d = 3 nm und einer Ausheiltemperatur von 850° C über den diamagnetischen Koeffizienten berechnet werden. Im Falle der Bestimmung über die Lebensdauer ergab sich ein maximaler Wert von \(f_{\tau}=25,7\pm 5,7\). Dies entspricht einer deutlichen Steigerung der Oszillatorstärke im Vergleich zu den Referenzproben um einem Faktor größer als zwei. Des Weiteren konnte eine Ausdehnung der Schwerpunktswellenfunktion der Exzitonen um etwa 70% festgestellt werden. Insgesamt betrachtet, lässt sich durch ex-situ Rapid-Thermal-Annealing-Prozesse die Oszillatorstärke nachträglich deutlich erhöhen, wodurch InAs/GaAs-Quantenpunkte noch interessanter für Untersuchungen im Regime der starken Kopplung werden. Temperatur- und Leistungsabhängigkeit der Emissionseigenschaften positionierter InAs/GaAs Quantenpunkte Um einen Einblick in den Ablauf des Zerfallsprozesses eines Exzitons in positionierten Quantenpunkten zu bekommen, wurden temperatur- und leistungsabhängige Messungen durchgeführt. Diese Quantenpunkte wurden in einem speziellen Verfahren deterministisch an vorher definierten Stellen gewachsen. Anhand der Temperaturserien konnten dann Rückschlüsse auf die auftretenden Verlustkanäle in einem Quantenpunkt und dessen Emissionseigenschaften gezogen werden. Dabei wurden zwei dominante Prozesse als Ursache für den Intensitätsabfall bei höheren Temperaturen identifiziert. Die Anhebung der Elektronen im Grundzustand in die umgebende Barriere oder in delokalisierte Zustände in der Benetzungsschicht sorgt für die anfängliche Abnahme der Intensität bei niedrigeren Temperaturen. Der starke Abfall bei höheren Temperaturen ist dagegen dem Aufbruch der exzitonischen Bindung und der thermischen Aktivierung der Ladungsträger in das umgebende Substratmaterial geschuldet. Hierbei lassen sich exemplarisch für zwei verschiedene Quantenpunkte die Aktivierungsenergien \(E_{2A}=(102,2\pm 0,4)\) meV und \(E_{2B}=(163,2\pm 1,3)\) meV bestimmen, welche in etwa den Lokalisierungsenergien der Exzitonen in dem jeweiligen Quantenpunkt von 100 meV bzw. 144 meV entsprechen. Weiterhin deckte die Auswertung des Intensitätsprofils der Exzitonemission die Streuung der Exzitonen an akustischen und optischen Phononen als Hauptursache für die Zunahme der Linienbreite auf. Für hohe Temperaturen dominierte die Wechselwirkung mit longitudinalen optischen Phononen den Verlauf und es konnten für das InAs/GaAs Materialsystem typische Phononenenergien von \(E_{LOA}=(30,9\pm 4,8)\) meV und \(E_{LOB}=(32,2\pm 0,8)\) meV bestimmt werden. In abschließenden Messungen der Leistungsabhängigkeit der Linienbreite wurde festgestellt, dass spektrale Diffusion die inhärente Grenze für die Linienbreite bei niedrigen Temperaturen setzt. Optische Spektroskopie an positionierten InP/GaInP-Quantenpunkten Weiterhin wurden positionierte InP/GaInP-Quantenpunkte hinsichtlich der Nutzung als Quanten-Lichtquelle optisch spektroskopiert. Zunächst wurden die Emissionseigenschaften der Quantenpunkte in grundlegenden Experimenten analysiert. Leistungs- und polarisationsabhängige Messungen ließen dabei die Vermutung sowohl auf exzitonische als auch biexzitonische Zerfallsprozesse zu. Weiterhin brachten die Untersuchungen der Polarisation einen ungewöhnlich hohen Polarisationsgrad der Quantenpunktemission hervor. Aufgrund von lokalen Ordnungsphänomenen in der umgebenden GaInP-Matrix wurden im Mittel über 66 Quantenpunkte der Grad der Polarisation von Exziton und Biexziton zu \(p_{Mittel}=(93^{+7}_{-9})\)% bestimmt. Des Weiteren wiesen die Quantenpunkte eine sehr hohe Feinstrukturaufspaltung von \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV auf, welche sich nur durch eine stark anisotrope Quantenpunktform erklären lässt. Durch Auto- und Kreuzkorrelationsmessungen zweiter Ordnung wurden dann sowohl der nicht-klassische Einzelphotonencharakter von Exziton und Biexziton als auch erstmalig für diese Strukturen der kaskadierte Zerfall der Biexziton-Exziton-Kaskade demonstriert. Hierbei wurden \(g^{(2)}(0)\)-Werte von bis 0,08 erreicht. Diese Ergebnisse zeigen das Potential von positionierten InP/GaInP-Quantenpunkten als Grundbausteine für Quanten-Lichtquellen, insbesondere in Bezug auf den Einsatz in der Quantenkommunikation. Realisierung einer Einzelphotonenquelle auf Basis einer Tamm-Plasmonen-Struktur Nachdem die vorangegangen Untersuchungen die Eignung der positionierten InP/GaInP-Quantenpunkte als Emitter einzelner Photonen demonstrierten, befasst sich dieser Teil nun mit der Integration dieser Quantenpunkte in eine Tamm-Plasmonen-Struktur zur Realisierung einer effizienten Einzelphotonenquelle. Diese Strukturen bestehen aus einem dielektrischen Spiegel aus 30,5 AlGaAs/AlAs-Schichtpaaren und einer einigen Zehn Nanometer dicken Goldschicht, zwischen denen die Quantenpunkte eingebettet sind. Anhand von Messungen an einer planaren Tamm-Plasmonen-Struktur wurde das Bauteil charakterisiert und neben der Exziton- und Biexzitonemission der Zerfall eines Trions beobachtet, was durch Polarisations- und Korrelationsmessungen nachgewiesen wurde. Um eine Verstärkung der Einzelphotonenemission durch die Kopplung der Teilchen an eine lokalisierte Tamm-Plasmonen-Mode demonstrieren zu können, wurde ein Bereich der Probe mit mehreren Goldscheiben von Durchmessern von 3-6 µm abgerastert und die Lichtintensität aufgenommen. Unterhalb der untersuchten Goldscheiben konnte eine signifikante Erhöhung des Lumineszenzsignals festgestellt werden. Eine quantitative Analyse eines einzelnen Quantenpunktes mittels einer Temperaturserie lieferte dabei eine maximale Emissionsrate von \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz und damit eine Effizienz von \((6,95\pm 0,76)\)% solch einer Einzelphotonenquelle unter gepulster Anregung bei 82 MHz. Dies entspricht einer deutlichen Verbesserung der Effizienz im Vergleich zu Quantenpunkten im Volumenmaterial und sogar zu denen in einer planaren DBR-Resonatorstruktur. Positionierte InP/GaInP-Quantenpunkte in einer Tamm-Plasmonen-Struktur bilden somit eine vielversprechende Basis für die Realisierung hocheffizienter Einzelphotonenquellen. N2 - At the moment, many scientific groups focus on the development of new technologies which are supposed to lead the way to the commercial use of quantum communication. Particularly in the field of quantum key distribution first success has been achieved. These experiments make use of the fact that it is not possible to generate a perfect copy of a quantum state (Non-cloning theorem). One way to emit non-classical particles is to use semiconductor quantum dots. Furthermore such quantum dots can be easily integrated in complex semiconductor microstructures and are thus especially interesting for the development such advanced technologies, which are mandatory for a secure communication. Based on this background, the objective of the work presented in this thesis was a spectroscopic analysis of semiconductor quantum dots, regarding their potential as a quantum light source for quantum communication. In a dedicated process, amongst others, InAs/GaAs and InP/GaInP quantum dots were positioned deterministically and eventual integrated in a photonic microstructure, which consists of a gold disc and a dielectric mirror. Micro photoluminescence spectroscopy was used as a basic instrument for identifying the emission characteristics. In addition second order photon correlation measurements were performed to provide proof of a quantum light source. Impact of rapid thermal annealing on the emission characteristics of InAs/GaAs quantum dots Micro photoluminescence measurements of different samples in external magnetic fields up to 5 T have been performed in order to analyze the impact of rapid thermal annealing on the electronic properties and the oscillator strength of self-assembled InAs/GaAs quantum dots. The quantum dots were grown in a special procedure whereby the nominal quantum dot height was defined by the thickness of a capping layer. In total, three samples with capping layer thicknesses of 2 nm, 3 nm and 4 nm were processed and afterwards annealed at temperatures of 750° C up to 850° C for five minutes. The Zeeman splitting and the diamagnetic shift could be derived from the taken quantum dot spectra by means of polarization resolved spectroscopy. Hence, the effective Landé g-factors and the diamagnetic coefficient could be determined. The analysis of the Zeeman splitting demonstrated a drastic decrease of the absolute g-factors with increasing annealing temperature as well as thicker capping layers. This yield to the conclusion, that a thicker capping layer leads to a stronger interdifussion of the atoms and an increasing elongation of the quantum dots for ex-situ annealing procedures. The diamagnetic coefficients of the quantum dots rose with higher temperatures, which indicates an expansion of the excitonic wavefunction. Furthermore time resolved micro photoluminescence spectroscopy has been performed in order to assess the lifetime of the quantum dot ensemble. The lifetime decreases clearly with increasing temperatures. Both the investigations of the diamagnetic coefficient and the quantum dot lifetime finally lead to a determination of the oscillator strength and reveal values agreeing within the error bars. The highest oscillator strength \(f_{\chi}=34.7\pm 5.2\) (determined from the diamagnetic shift) could be determined for the sample with a capping layer of d = 3 nm anneald at a temperature of 850° C. In the case of the liftime measurements the oscillator strength exhibits a maximum value of \(f_{\tau}=25.7\pm 5.7\). This corresponds to a distinct enhancement of the oscillator strength of more than two compared to the reference samples. In addition an expansion of the center-of-mass wave function by about 70% has been ascertained. Taken as a whole the oscillator strength of InAs/GaAs quantum dots can be increased significantly by ex-situ rapid thermal annealing, which makes them even more interesting for investigations in the strong coupling regime. Temperature and power dependency of the emission characteristics of site-controlled InAs/GaAs quantum dots In order to investigate the decay process of an exciton in site-controlled quantum dots, temperature and power dependent measurements were performed. Those quantum dots were grown deterministically in a specific procedure on predefined positions. Existing photonic loss channels in the quantum dot were studied by performing temperature series. Hereby two dominant processes causing the decrease of the intensity at higher temperatures were identified. Initially the activation of the electron in the ground state into the surrounding barrier or into delocalized states of the wetting layer leads to a decrease of the intensity in the low temperature regime. However, the strong decrease for higher temperatures is attributed to ionization of the exciton and the subsequent activation of the carriers into the surrounding substrate. The fit yields two different activation energies \(E_{2A}=(102,2\pm 0,4)\) meV and \(E_{2B}=(163,2\pm 1,3)\) meV for two exemplary quantum dots A and B, respectively. Hence, both values correspond with the localization energies of the excitons in the respective quantum dot, which account for 100 meV and 144 meV respectively. Furthermore the analysis of the intensity profiles revealed that acoustical and optical phonons are the main reason for the broadening of the linewidth. The dependency of the linewidth for high temperatures is dominated by the interaction of the excitons with longitudinal optical phonons, where phonon energies of \(E_{LOA}=(30,9\pm 4,8)\) meV for quantum dot A and \(E_{LOB}=(32,2\pm 0,8)\) meV for quantum dot B were determined. Those values are typical for InAs/GaAs material system. In addition, the measurements indicate that the linewidth at low temperatures is caused by spectral diffusion. Optical spectroscopy of site-controlled InP/GaInP quantum dots In addtion site-controlled InP/GaInP quantum dots were investigated by means of optical spectroscopy regarding their use as a quantum light source. At first the emission features of the quantum dots were analyzed in basic experiments. Power and polarization dependent measurements were used to identify excitonic as well as biexcitonic decay processes. Furthermore the investigations of the polarization were exhibiting an unusual high degree of polarization of the quantum dot emission. The excitonic and biexcitonic emission shows a very high degree of linear polarization (\(p_{Mittel}=(93^{+7}_{-9})\)%), which is caused by local composition modulation phenomena in the surrounding GaInP matrix. For this calculation the average value was taken out of 66 quantum dots. In addition the quantum dots exhibited very large fine structure splittings of \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV, which can be explained only with a strong anisotropic quantum dot shape. Second order autocorrelation measurements revealed the non-classical emission character of the exciton and the biexciton. \(g^{(2)}(0)\) values down to 0.08 have been reached. In addition, by performing crosscorrelation measurements the cascaded emission of the biexiton-exciton cascade has been demonstrated for the first time for those structures. These results show the potential of site-controlled InP/GaInP quantum dots as a basic module for quantum light sources especially regarding their use in quantum communication. Realization of a single photon source based on a Tamm-plasmon structure After the previous analysis revealed the potential of the site-controlled InP/GaInP quantum dots acting as a single photon emitter, the following part considers the integration of those quantum dots into a Tamm-plasmon structure to realize an efficient single photon source. These structures consist of a distributed Bragg reflector (DBR) with 30.5 AlGaAs/AlAs mirror pairs and a gold disc with a thickness of only a few ten nanometers. The quantum dots are located between the DBR and the gold disc at an anti-node of the Tamm-plasmon mode. The device was characterized by photoluminescence investigations of a planar Tamm-plasmon structure. Besides excitonic and biexcitonic emission features, the experiments showed the decay of a trion state, which has been confirmed by polarization and correlation measurements. In order to demonstrate an enhancement of the single photon emission due to the coupling to a localized Tamm-plasmon mode, an array of gold discs with varying diameters from 3-6 µm was scanned and the light intensity recorded. At the positions of the gold discs a significant increase of the luminescence could be detected. Investigations in more detail on a single quantum dot tuned into the Tamm-plasmon resonance by adjusting the temperature revealed a maximum emission rate of \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz and with it an efficiency of \((6,95\pm 0,76)\)% of such a single photon source when taking the repetition rate of 82 MHz into account. This is a distinct enhancement of the efficiency compared to quantum dots in bulk material or even to those embedded in planar DBR-resonators. As a consequence of the experiments site-controlled InP/GaInP quantum dots embedded in a Tamm-plasmon structure can be considered as a promising base for the realization of highly efficient single photon sources. KW - Drei-Fünf-Halbleiter KW - Quantenpunkt KW - Photolumineszenzspektroskopie KW - III-V semiconductor quantum dot KW - site-controlled quantum dot KW - Optische Spektroskopie KW - Einzelphotonenemission Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146151 ER - TY - THES A1 - Vogel, Patrick T1 - Traveling Wave Magnetic Particle Imaging T1 - Traveling Wave Magnetic Particle Imaging N2 - Magnetic Particle Imaging (MPI) ist eine noch sehr junge Technologie unter den nicht-invasiven tomographischen Verfahren. Seit der ersten Veröffentlichung 2005 wurden einige Scannertypen und Konzepte vorgestellt, welche durch die Messung des Antwortsignals von superparamagnetischen Eisennanopartikeln (SPIOs) auf wechselnde Magnetfelder ein dreidi-mensionales Bild ihrer Verteilung berechnen können. Durch die direkte Messung des Tracers handelt es sich beim MPI um eine sehr sensitive und hochspezifische bildgebende Methode. Zu Beginn dieser Forschungsarbeit gab es nur wenige bekannte MPI-Scanner, die jedoch alle ein nur kleines Field-of-View (FOV) vorweisen konnten. Der Grund dafür liegt in der Ver-wendung von Permanentmagneten. Das Ziel war es nun, ein neues Konzept auszuarbeiten und einen 3D-MPI-Scanner zu entwer-fen, der in der Lage ist, ein mausgroßes Objekt zu messen. In dieser Arbeit wird ein alternatives Scannerkonzept für die dreidimensionale Bildge-bung superparamagnetischer Eisennanopartikel vorgestellt. Der Traveling Wave MPI-Scanner (TWMPI) basiert auf einem neu entwickelten Hauptspulensystem, welches aus mehreren Elektromagneten besteht. Dadurch ist die Hardware bereits in der Lage, eine Linie entlang der Symmetrieachse über einen großen Bereich dynamisch zu kodieren. Mit Hilfe weiterer Ab-lenkspulen kann schließlich ein FOV von 65 x 25 x 25 Millimetern dreidimensional abgetastet werden. Dazu stehen mehrere Scanverfahren zur Verfügung, welche das Probenvolumen li-nienweise oder ebenenweise abtasten und mit einer Auflösung von ca. 2 Millimetern die Ver-teilung der SPIOs in wenigen Millisekunden abbilden können. Mit diesem neuen Hardwareansatz konnte erstmals ein MPI-Scanner mit einem MR-Tomographen (MRT) kombiniert werden. Das MPI/MRT-Hybridsystem liefert tomographi-sche Bilder des Gewebes (MRT) und zeigt die Verteilung des eisenhaltigen Kontrastmittels (MPI), ohne die Probe bewegen zu müssen. In einer in-vivo Echtzeitmessung konnte der TWMPI-Scanner mit 20 Bildern pro Se-kunde die dynamische Verteilung eines eisenhaltigen Kontrastmittels im Körper und speziell im schlagenden Herzen eines Tieres darstellen. Diese Echtzeitfähigkeit eröffnet in der kardi-ovaskuläre Bildgebung neue Möglichkeiten. Erste Messungen mit funktionalisierten Eisenpartikeln zeigen die spezifische Bildge-bung verschiedener Zelltypen und stellen einen interessanten Aspekt für die molekulare Bild-gebung dar. Die Sensitivität des Scanners liegt dabei im Bereich von wenigen Mikrogramm Eisen pro Milliliter, was für den Nachweis von wenigen 10.000 mit Eisen markierten Zellen ausreicht. Neben Messungen an diversen Ferrofluiden und eisenhaltigen Kontrastmitteln konnte der Einfluss von massiven Materialen, wie Eisenstückchen oder Eisenspänen, auf die rekon-struierten Bilder untersucht werden. Erste Messungen an Gestein zeigen die Verteilung von Eiseneinschlüssen und bieten die Möglichkeit einer weiteren zerstörungsfreien Untersuchungsmethode für Materialwissen-schaftler und Geologen. Weiterführende Testmessungen mit einer unabhängigen μMPI-Anlage zeigen erste Ergebnisse mit Auflösungen im Mikrometerbereich und liefern Erkennt-nisse für den Umgang und Messung mit starken Gradientenfeldern. Eine Modifizierung der Messanlage erlaubt es, in gerade einmal 500 μs ein komplettes Bild aufzunehmen, womit die Bewegung eines Ferrofluidtropfens in Wasser sichtbar gemacht werden konnte. Damit ist diese TWMPI-Anlage das schnellste MPI-System und eröffnet die Möglichkeit grundlegende Erfahrungen in der Partikeldynamik zu erlangen. Der vorgestellte Traveling Wave MPI-Scanner ist ein alternativer Scannertyp, welcher sich von anderen MPI-Scannern abhebt. Mit neuen Ansätzen ist in der Lage ein mausgroßes Objekt auf dynamische Weise sehr schnell abzutasten. Dabei konnten in verschiedenen Mes-sungen die Funktionalität und Leistungsfähigkeit des TWMPI-Konzeptes demonstriert wer-den, welche die gesteckten Ziele deutlich übertreffen. N2 - Magnetic particle imaging (MPI) is still a very young technology among the non-invasive tomographic modalities. Since its first publication in 2005, several types of scanners and concepts were presented, which can reconstruct a three-dimensional image of the distri-bution of superparamagnetic iron-oxide nanoparticles (SPIOs) by measuring their magnetiza-tion response to varying magnetic fields. Due to the direct measurement of the tracer MPI is a very sensitive and highly specific imaging modality. At the beginning of this project only a few MPI-scanners were known, but all of them are limited to a small field-of-view (FOV). The reason for this is the use of permanent mag-nets. The aim of this work was to develop a new concept and design for a 3D-MPI-scanner, which is able to measure a mouse sized object. In this thesis an alternative scanner concept for three-dimensional imaging of super-paramagnetic iron nanoparticles is presented. The Traveling Wave-MPI-scanner (TWMPI) is based on a newly developed main coil system, which consists of a series of electromagnets. This coil array is by itself able to dynamically encode a line along the symmetry axis over an extended length. With additional offset coils the system is able to scan a FOV of 65 x 25 x 25 millimeters in three dimensions. For scanning the whole volume several tech-niques are available, which map the data line-by-line or slice-by-slice in a few milliseconds and yield the distribution of SPIOs with a resolution of about 2 millimeters. Using this new hardware approach a MPI-scanner was successfully combined with an MRI-scanner for the first time. The MPI/MRI-hybrid-system provides tomographic images of the tissue (MRI) and detects the distribution of iron-containing contrast agent (MPI), without the need to move the sample. In an in-vivo real-time measurement using the TWMPI-scanner the dynamic distribu-tion of an iron-containing contrast agent was visualized in the body and especially in the beat-ing heart of an animal with a temporal resolution of 20 frames per second. This real-time ca-pability opens up new possibilities in cardio-vascular imaging. First measurements using functionalized iron-oxide nanoparticles specifically detect different cell types and thereby provide an interesting aspect for molecular imaging. The sensi-tivity of the scanner is in the range of a few micrograms of iron per milliliter, which is suffi-cient to detect about 50,000 iron-labeled cells. In several studies the influence of various ferrofluids, iron-containing contrast agents and solid materials, such as pieces of iron or iron filings, were examined on the reconstructed images. First measurements on ferrous rock show the location of iron-inclusions and offer an-other non-destructive imaging technique for material scientists and geologists. Additional tests with an independent μMPI-system were performed to explore resolutions in the micrometer range and provide insights for handling and measuring with a high gradient strength. A modification of the setup allows to acquire a full slice in just 500 microseconds, which enable the visualization of the motion of a droplet of ferrofluid in water. With this TWMPI is the fastest MPI-system available and gives access to fundamental studies of particle dynamics. The presented Traveling Wave MPI-system is an alternative scanner concept, which sets itself apart from other MPI-scanners. Mouse-sized objects can be imaged in a dynamic way in very short times. The feasibility and performance of the TWMPI-concept were suc-cessfully demonstrated in various measurements considerably exceeding the original aims. KW - Magnetpartikelbildgebung KW - Traveling Wave Magnetic Particle Imaging KW - Traveling Wave Magnetic Particle Imaging KW - tomographic imaging method KW - molecular imaging KW - field free point (FFP) KW - Tomografie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132700 ER - TY - THES A1 - Storz, Oliver T1 - Aufbau eines Rastertunnelmikroskops für Landau Level - Spektroskopie auf topologischen Isolator - Oberflächen T1 - Development of a scanning tunneling microscope for Landau level spectroscopy of topological insulator sufaces N2 - Im Rahmen dieser Arbeit wurde ein Rastertunnelmikroskop (STM) für Messungen bei tiefen Temperaturen und hohen Magnetfeldern konzipiert und aufgebaut. Die Probentemperatur kann dabei auf bis zu 1.4\,Kelvin reduziert werden, was spektroskopische Messungen mit extrem hoher Energieauflösung ermöglicht. Die thermische Verbreiterung spektroskopischer Merkmale liegt somit im Bereich eines Milli-Elektronenvolts, wie durch den Fit der Bandlücke eines supraleitenden Materials demonstriert wird. Ein linearer Bewegungsmechanismus ermöglicht die Positionierung des STM-Körpers innerhalb einer supraleitenden Spule, in der Magnetfelder von bis zu 12.5\,Tesla senkrecht zur Probenoberfläche erzeugt werden können. Das System erlaubt des Weiteren den Wechsel von Spitzen und Proben innerhalb des Kryostaten sowie das Aufdampfen von Einzelatomen auf die kalte Probenoberfläche ohne die Probe aus dem STM zu entfernen. Um den Einfluss mechanischer Vibrationen zu minimieren wurde ein innovatives Feder-Dämpfungssystem entwickelt, dass eine Stabilität des Tunnelkontakts von bis zu einem Pikometer gewährleistet. \\ \noindent Der zweite Teil dieser Arbeit präsentiert die Ergebnisse von STM-Messungen auf Antimon-Tellurid (Sb_{2}Te_{3}). Sb_{2}Te_{3}\, gehört zur relativ neu entdeckten Materialklasse der Topologischen Isolatoren (TI). Diese Verbindungen besitzen auf ihren Oberflächen Zustände mit linearer Dispersion, die durch die Zeitumkehr-Invarianz geschützt werden. Fokus unserer Messungen ist dabei der Einfluss eines magnetischen Feldes auf die Eigenschaften eines derartigen unkonventionellen 2D-Elektronengases. Dazu wurde die Entstehung von Landau Level (LL) innerhalb eines Magnetfelds genau untersucht. Die zwei in dieser Arbeit untersuchten Hauptaspekte sind: \medskip \noindent(i) Die energetische Verbreiterung, die Rückschlüsse auf die Lebensdauer zulässt\\ (ii) Die örtliche Fluktuation. \medskip \noindent Erstaunlicherweise kann die gemessene Verbreiterung der Landau Resonanzen nicht mit gängigen Mechanismen der Lebenszeit-Verbreiterung erklärt werden. Aus diesem Grund wird eine alternative Interpretation basierend auf der Heissenbergschen Unschärferelation vorgestellt, die im guten Einklang mit den von uns gewonnenen Daten steht. Des Weiteren zeigen örtlich aufgelöste Messungen systematische Abweichungen in der Dirac-Geschwindigkeit positiver und negativer Landau Resonanzen. Diese Fluktuationen stehen dabei in direktem Zusammenhang mit Änderungen im lokalen chemischen Potential. Da die physikalischen Ursachen dieser Abweichung im Rahmen dieser Arbeit nicht zweifelsfrei geklärt werden konnten, werden im letzten Teil die zugrundeliegenden Messergebnisse vorgestellt und mögliche Erklärungen des Verhaltens präsentiert. N2 - The scope of this thesis is the design and construction of a scanning tunneling microscope (STM) operating at low temperatures and high magnetic fields. The sample temperature can be reduced to 1.4\,Kelvin which permits to perform spectroscopic measurements with extremely high energy resolution. As demonstrated by fitting the gap of a superconducting material the thermal broadening of spectroscopic features is routinely found to be of the order of one milli-electronvolt. A linear travel mechanism allows to position the STM head inside a superconducting solenoid where magnetic fields up to 12.5\,Tesla can be applied perpendicular to the sample surface. Tips and samples can be exchanged in-situ and single atoms can be directly evaporated onto the cold sample surface without extracting the sample from the STM. To minimize the impact of mechanical vibrations, an innovative spring-damping system has been developed giving the tunneling junction a stability as low as one pico-meter. \\ \noindent The second part of this thesis presents the results of STM measurements on antimony telluride (\Sb_{2}Te_{3}). \Sb_{2}Te_{3}\, belongs to the relatively new class of materials known as topological insulators (TI). These compounds host on their surfaces linearly dispersing states which are protected by time-reversal symmetry. The focus of our measurements is the influence of a magnetic field on the properties of this unconventional 2D electron gas. The evolution of Landau levels (LL) in magnetic fields has been carefully analysed. Two are the main aspects which have been tackled: \medskip \noindent(i) Their energetic broadening, which can be directly linked to the lifetime \\ (ii) Their spacial fluctuation. \medskip \noindent Surprisingly, the energetic broadening of the landau peaks cannot be explained by any of the mechanisms commonly limiting the lifetime. An alternative interpretation based on Heissenberg's uncertainty principle is presented, which is found to be in good agreement with our data. Furthermore spatially resolved experiments reveal systematic deviations of the Dirac velocities for positive and negative LL. These fluctuations are intimately linked to variations of the local chemical potential. As the physical origin of this deviation could not be unambiguously identified, the last part presents the experimental data and suggests possible explanations of this finding. KW - Rastertunnelmikroskopie KW - Topologischer Isolator KW - Landau-Niveau KW - Rastertunnelspektoskopie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139525 ER - TY - THES A1 - Breuer [geb. Hemberger], Kathrin R. F. T1 - Effiziente 3D Magnetresonanzbildgebung schnell abfallender Signale T1 - Efficient 3D Magnetic Resonance Imaging of fast decaying signals N2 - In der vorliegenden Arbeit wird die Rotated-Cone-UTE-Sequenz (RC-UTE), eine 3D k-Raum-Auslesetechnik mit homogener Verteilung der Abtastdichte, vorgestellt. Diese 3D MR-Messtechnik ermöglicht die für die Detektion von schnell abfallenden Signalen notwendigen kurzen Echozeiten und weist eine höhere SNR-Effizienz als konventionelle radiale Pulssequenzen auf. Die Abtastdichte ist dabei in radialer und azimutaler Richtung angepasst. Simulationen und Messungen in vivo zeigen, dass die radiale Anpassung das T2-Blurring reduziert und die SNR-Effizienz erhöht. Die Drehung der Trajektorie in azimutale Richtung ermöglicht die Reduzierung der Unterabtastung bei gleicher Messzeit bzw. eine Reduzierung der Messzeit ohne Auflösungsverlust. Die RC-UTE-Sequenz wurde erfolgreich für die Bildgebung des Signals des kortikalen Knochens und der Lunge in vivo angewendet. Im Vergleich mit der grundlegenden UTE-Sequenz wurden die Vorteile von RC-UTE in allen Anwendungsbeispielen aufgezeigt. Die transversalen Relaxationszeit T2* des kortikalen Knochen bei einer Feldstärke von 3.0T und der Lunge bei 1.5T und 3.0T wurde in 3D isotroper Auflösung gemessen. Außerdem wurde die Kombination von RC-UTE-Sequenz mit Methoden der Magnetisierungspräparation zur besseren Kontrasterzeugung gezeigt. Dabei wurden die Doppel-Echo-Methode, die Unterdrückung von Komponenten mit langer Relaxationszeit T2 durch Inversionspulse und der Magnetisierungstransfer-Kontrast angewendet. Die Verwendung der RC-UTE-Sequenz für die 3D funktionelle Lungenbildgebung wird ebenfalls vorgestellt. Mit dem Ziel der umfassenden Charakterisierung der Lungenfunktion in 3D wurde die simultane Messung T1-gewichteter Bilder und quantitativer T2*-Karten für verschiedene Atemzustände an sechs Probanden durchgeführt. Mit der hier vorgestellten Methode kann die Lungenfunktion in 3D über T1-Wichtung, quantitative T2*-Messung und Rekonstruktion verschiedener Atemzustände durch Darstellung von Ventilation, Sauerstofftransport und Volumenänderung beurteilt werden. N2 - In this thesis the Rotated-Cone-UTE-sequence (RC-UTE), a 3D k- space sampling scheme with uniform sampling density, is presented. 3D RC-UTE provides short echo times enabling the detection of fast decaying signals with higher SNR-efficiency than conventional UTE sequences. In RC-UTE the sampling density is adapted in radial and azimuthal direction. It is shown in simulations and measurements that the density adaption along the radial dimension reduces T2-blurring. By twisting the trajectory along the azimuthal direction fewer projections are needed to fulfill the Nyquist criterion. Thereby, undersampling artefacts or the measurement time is reduced without loss of resolution. RC-UTE has been successfully applied in vivo in cortical bone and the lung. It was shown that the RC-UTE sequence outperforms the standard UTE sequence in all presented applications. In addition, the transversal relaxation time T2* of cortical bone at field strength of 3.0T and the human lung at 1.5T und 3.0T was measured in 3D isotropic resolution. Moreover, the combination of RC-UTE with magnetization preparation techniques for improved image contrast was shown. To this end strategies such as double-echo readout, long T2 suppression by inversion pulses and magnetization transfer contrast imaging were employed. Furthermore, the application of RC-UTE for 3D functional lung imaging is presented. In order to provide broad information about pulmonary function T1-weighted images and quantitative T2*-maps in different breathing states were simultaneously measured in six healthy volunteers. The presented methodology enables the assessment of pulmonary function in 3D by indicating ventilation, oxygen transfer and lung volume changes during free breathing. KW - Kernspintomografie KW - Relaxationszeit KW - Dreidimensionale Bildverarbeitung KW - T2* KW - Ulrakurze Echozeit KW - T1-Wichtung KW - dichteangepasste k-Raum Abtastung KW - Lunge KW - Relaxation KW - Lungenfunktion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150750 ER - TY - THES A1 - Fischer, Julian T1 - Kohärenz- und Magnetfeldmessungen an Polariton-Kondensaten unterschiedlicher räumlicher Dimensionen T1 - Coherence and magnetic field measurements on polariton-condensates in different spatial dimensions N2 - Die Bose-Einstein-Kondensation (BEK) und die damit verbundenen Effekte wie Superfluidität und Supraleitung sind faszinierende Resultate der Quantennatur von Bosonen. Nachdem die Bose-Einstein-Kondensation für Atom-Systeme nur bei Temperaturen nahe dem absoluten Nullpunkt realisierbar ist, was einen enormen technologischen Aufwand benötigt, wurden Bosonen mit wesentlich kleineren Massen zur Untersuchung der BEK gesucht. Hierfür bieten sich Quasiteilchen in Festkörpern wie Magnonen oder Exzitonen an, da deren effektive Massen sehr klein sind und die Kondensationstemperatur dementsprechend höher ist als für ein atomares System. Ein weiteres Quasiteilchen ist das Exziton-Polariton als Resultat der starken Licht-Materie-Wechselwirkung in Halbleitermikrokavitäten, welches sowohl Materie- als auch Photoneigenschaften hat und dessen Masse theoretisch eine BEK bis Raumtemperatur erlaubt. Ein weiterer Vorteil dieses System ist die einfache Erzeugung des Bose-Einstein-Kondensats in diesen Systemen durch elektrisches oder optisches Injizieren von Exzitonen in die Halbleiter-Quantenfilme der Struktur. Außerdem kann die Impulsraumverteilung dieser Quasiteilchen leicht durch einfache experimentelle Methoden mittels eines Fourierraumspektroskopie-Aufbaus bestimmt werden. Durch die winkelabhängige Messung der Emission kann direkt auf die Impulsverteilung der Exziton-Polaritonen in der Quantenfilmebene zurückgerechnet werden, die zur Identifikation der BEK hilfreich ist. Deshalb wird das Exziton-Polariton als ein Modellsystem für die Untersuchung von Bose-Einstein-Kondensation in Festkörpern und den damit in Relation stehenden Effekten angesehen. In dieser Arbeit wird die Grundzustandskondensation von Exziton-Polaritonen in Halbleitermikrokavitäten verschiedener Dimensionen realisiert und deren Emissionseigenschaften untersucht. Dabei wird vor allem die Wechselwirkung des Polariton-Kondensats mit der der unkondensierten Polaritonen bzw. der Quantenfilm-Exzitonen im externen Magnetfeld verglichen und ein Nachweis zum Erhalt der starken Kopplung über die Polariton-Kondensationsschwelle hinaus entwickelt. Außerdem werden die Kohärenzeigenschaften von null- und eindimensionalen Polariton-Kondensaten durch Bestimmung der Korrelationsfunktion erster beziehungsweise zweiter Ordnung analysiert. Als Materialsystem werden hierbei die III/V-Halbleiter gewählt und die Quantenfilme bestehen bei allen Messungen aus GaAs, die von einer AlAs Kavität umgeben sind. Eindimensionale Polariton-Kondensation - räumliche Kohärenz der Polariton-Drähte Im ersten experimentellen Teil dieser Arbeit (Kapitel 1) wird die Kondensation der Polaritonen in eindimensionalen Drähten unter nicht-resonanter optischer Anregung untersucht. Dabei werden verschiedene Drahtlängen und -breiten verwendet, um den Einfluss des zusätzlichen Einschlusses auf die Polariton-Dispersion bestimmen zu können. Ziel dieser Arbeit ist es, ein eindimensionales Bose-Einstein-Kondensat mit einer konstanten räumlichen Kohärenz nach dem zentralen Abfall der g^(1)(r)-Funktion für große Abstände r in diesen Drähten zu realisieren (sogenannte langreichweitige Ordnung im System, ODLRO (Abkürzung aus dem Englischen off-diagonal long-range order). Durch Analyse der Fernfeldemissionseigenschaften können mehrere Polariton-Äste, der eindimensionale Charakter und die Polariton-Kondensation in 1D-Systemen nachgewiesen werden. Daraufhin wird die räumliche Kohärenzfunktion g^(1)(r) mithilfe eines hochpräzisen Michelson-Interferometer, das im Rahmen dieser Arbeit aufgebaut wurde, bestimmt. Die g^(1)(r)-Funktion nimmt hierbei über große Abstände im Vergleich zur thermischen De-Broglie-Wellenlänge einen konstanten Plateauwert an, der abhängig von der Anregungsleistung ist. Unterhalb der Polariton-Kondensationsschwelle (Schwellleistung P_S) ist kein Plateau sichtbar und die räumliche Kohärenz ist nur im zentralen Bereich von unter |r| < 1 µm vorhanden. Mit ansteigender Anregungsleistung nimmt das zentrale Maximum in der Weite zu und es bildet sich das Plateau der g^(1)(r)-Funktion aus, das nur außerhalb des Drahtes auf Null abfällt. Bei P=1,6P_S ist das Plateau maximal und beträgt circa 0,15. Außerdem kann nachgewiesen werden, dass mit steigender Temperatur die Plateauhöhe abnimmt und schließlich bei T=25K nicht mehr gemessen werden kann. Hierbei ist dann nur noch das zentrale Maximum der Kohärenzfunktion g^(1)(r) sichtbar. Weiterhin werden die Ergebnisse mit einer modernen mikroskopischen Theorie, die auf einem stochastischen Mastergleichungssystem basiert, verglichen, wodurch die experimentellen Daten reproduziert werden können. Im letzten Teil des Kapitels wird noch die Kohärenzfunktion g^(1)(r) im 1D-Fall mit der eines planaren Polariton-Kondensats verglichen (2D). Nulldimensionale Polariton-Kondensation - Kondensation und Magnetfeldwechselwirkung in einer Hybridkavität Im zweiten Teil der Arbeit wird die Polariton-Kondensation in einer neuartigen Hybridkavität untersucht. Der Aufbau des unteren Spiegels und der Kavität inklusive der 12 verwendeten Quantenfilme ist analog zu den gewöhnlichen Mikrokavitäten auf Halbleiterbasis. Der obere Spiegel jedoch besteht aus einer Kombination von einem DBR (Abkürzung aus dem Englischen distributed Bragg reflector) und einem Brechungsindexkontrast-Gitter mit einem Luft-Halbleiterübergang (größt möglichster Brechungsindexkontrast). Durch die quadratische Strukturgröße des Gitters (Seitenlänge 5µm) sind die Polaritonen zusätzlich zur Wachstumsrichtung noch in der Quantenfilmebene eingesperrt, so dass sie als nulldimensional angesehen werden können (Einschluss auf der ungefähren Größe der thermischen De-Broglie-Wellenlänge). Um den Erhalt der starken Kopplung über die Kondensationsschwelle hinaus nachweisen zu können, wird ein Magnetfeld in Wachstumsrichtung angelegt und die diamagnetische Verschiebung des Quantenfilms mit der des 0D-Polariton-Kondensats verglichen. Hierdurch kann das Polariton-Kondensat von dem konventionellen Photonlasing in solchen Strukturen unterschieden werden. Weiterhin wird als letztes Unterscheidungsmerkmal zwischen Photonlasing und Polariton-Kondensation eine Messung der Autokorrelationsfunktion zweiter Ordnung g^(2)(t) durchgeführt. Dabei kann ein Wiederanstieg des g^(2)(t = 0)-Werts mit ansteigender Anregungsleistung nachgewiesen werden, nachdem an der Kondensationsschwelle der g^(2)(t = 0)-Wert auf 1 abgefallen ist, was auf eine zeitliche Kohärenzzunahme im System hinweist. Oberhalb der Polariton-Kondensationsschwelle P_S steigt der g^(2)(t = 0)-Wert wieder aufgrund zunehmender Dekohärenzprozesse, verursacht durch die im System ansteigende Polariton-Polariton-Wechselwirkung, auf Werte größer als 1 an. Für einen gewöhnlichen Photon-Laser (VCSEL, Abkürzung aus dem Englischen vertical-cavity surface-emitting laser) im monomodigen Betrieb kann mit steigender Anregungsleistung kein Wiederanstieg des g^(2)(t = 0)-Werts gemessen werden. Somit stellt dies ein weiteres Unterscheidungsmerkmal zwischen Polariton-Kondensation und Photonlasing dar. Zweidimensionale Polariton-Kondensation - Wechselwirkung mit externem Magnetfeld Im letzten experimentellen Kapitel dieser Arbeit wird die Magnetfeldwechselwirkung der drei möglichen Regime der Mikrokavitätsemission einer planaren Struktur (zweidimensional) untersucht. Dazu werden zuerst durch eine Leistungsserie bei einer Verstimmung des Photons und des Quantenfilm-Exzitons von d =-6,5meV das lineare, polaritonische Regime, das Polariton-Kondensat und bei weiterer Erhöhung der Anregungsleistung das Photonlasing identifiziert. Diese drei unterschiedlichen Regime werden daraufhin im Magnetfeld von B=0T-5T auf ihre Zeeman-Aufspaltung und ihre diamagnetische Verschiebung untersucht und die Ergebnisse der Magnetfeldwechselwirkung werden anschließend miteinander verglichen. Im linearen Regime kann die Abhängigkeit der Zeeman-Aufspaltung und der diamagnetischen Verschiebung vom exzitonischen Anteils des Polaritons bestätigt werden. Oberhalb der Polariton-Kondensationsschwelle wird eine größere diamagnetische Verschiebung gemessen als für die gleiche Verstimmung im linearen Regime. Dieses Verhalten wird durch Abschirmungseffekte der Coulomb-Anziehung von Elektronen und Löchern erklärt, was in einer Erhöhung des Bohrradius der Exzitonen resultiert. Auch die Zeeman-Aufspaltung oberhalb der Polariton-Kondensationsschwelle zeigt ein vom unkondensierten Polariton abweichendes Verhalten, es kommt sogar zu einer Vorzeichenumkehr der Aufspaltung im Magnetfeld. Aufgrund der langen Spin-Relaxationszeiten von 300ps wird eine Theorie basierend auf der im thermischen Gleichgewichtsfall entwickelt, die nur ein partielles anstatt eines vollständigen thermischen Gleichgewicht annimmt. So befinden sich die einzelnen Spin-Komponenten im Gleichgewicht, während zwischen den beiden Spin-Komponenten kein Gleichgewicht vorhanden ist. Dadurch kann die Vorzeichenumkehr als ein Zusammenspiel einer dichteabhängigen Blauverschiebung jeder einzelner Spin-Komponente und der Orientierung der Spins im Magnetfeld angesehen werden. Für das Photonlasing kann keine Magnetfeldwechselwirkung festgestellt werden, wodurch verdeutlicht wird, dass die Messung der Zeeman-Aufspaltung beziehungsweise der diamagnetischen Verschiebung im Magnetfeld als ein eindeutiges Werkzeug zur Unterscheidung zwischen Polariton-Kondensation und Photonlasing verwendet werden kann. N2 - Bose-Einstein-Condensation (BEC) and the associated effects, for instance superfluidity and superconductivity, are fascinating results of the bosonic quantum nature. Since Bose-Einstein-Condensation for atomic systems can only be realized with enormous technical and experimental effort at sufficient low temperatures near absolute zero, people are looking for bosons with smaller masses. For this quasi-particles in solid state systems such as magnons and excitons are perfect candidates, due to their smaller effective masses and as a consequence thereof the higher Bose-Einstein-Condensation temperatures in comparison to atomic systems. Another quasi-particle is the exciton-polariton, originating from strong light-matter coupling in semiconductor microcavities. This particle has properties of the light as well as of the matter part and the mass is so small that in theory room temperature Bose-Einstein-Condensation is possible. A further benefit of this system is the relatively easy realization of the BEC by injecting excitons via optical or electrical excitation in the quantum wells of the structure. Additionally, the momentum space distribution of these quasi-particles can be measured via a straightforward Fourier-spectroscopy setup. By determination of the angular distribution of the emitted light of the microcavity, the momentum of the particle in the quantum-well plane can be defined. This information helps to identify the BEC-phase. On these grounds the exciton-polaritons are model systems for studying Bose-Einstein-Condensation and attributed phenomena in matter. In this work the ground-state condensation of exciton-polaritons is realized in microcavities of various dimensions and the emission properties of these are investigated. Thereby, especially the magnetic field interaction of the uncondensated and condensated polaritons will probed and resulting from this a proof concept for the persistence of the strong-coupling across the condensation threshold is developed. Additionally, the coherence properties of the polariton-condensates in different dimensions will be studied by determination of the first and second order correlation functions. For all experiments a III/V-semiconductor system consisting of GaAs quantum-wells and a surrounding AlAs cavity is used. One-dimensional polariton-condensation - spatial coherence of polariton-wires In the first experimental part (chapter 1), the polariton-condensation of one-dimensional wires under non-resonant, optical excitation is studied. For this, different length and width of wires are used to determine the influence on the polariton-dispersion of additional confinement. The aim of this investigation is to realize a one-dimensional Bose-Einstein-Condensate with a nearly constant plateau of the spatial coherence for high distances r after the central drop-down of the first order correlation g(1)(r)-function, which is a characteristic of the off-diagonal long-range order (ODLRO) of the system. By analysis of the farfield emission characteristics several polariton branches, the one-dimensionality and the polariton-condensation can be proved in this wires. After this, the spatial coherence function g^(1)(r) is measured with a high precision Michelson-interferometer, which is established during this work. The g^(1)(r)-function has, for distances essential greater than the thermal De-Broglie-wavelength of the polaritons, a plateau value which depends on the pumping power of the system. Below the polariton-condensation threshold (power P_S) no plateau is visible and coherence is only established within the central part for |r|<1µm of the interferograms. With increasing power, the width of the central coherence peak growth and the plateau of the g^(1)(r)-function appears, which is only absent away from the wire. At a power of P = 1.6P_S the plateau reaches its maximal value and it amounts to 0.15. Furthermore, it can be demonstrated, that as the temperature of the crystal lattice increases the plateau decreases and it vanishes at T = 25K indicating the loss of the off-diagonal long range coherence. This behavior can be explained by a modern microscopic theory based on the master-equation approach which fits the experimental data well. The last part of this chapter compares the characteristics of the first order correlation function g^(1)(r) in the 1D case with the spatial coherence function of the planar polariton-condensate of a similar structure (2D). Zero-dimensional polariton-condensation - condensation and magnetic field interaction in a hybrid cavity In the second part of this thesis, polariton-condensation in novel hybrid-cavities is investigated. The layout of the lower mirror and of the cavity with 12 embedded quantum wells is analog to normal semiconductor microcavities. However, the upper mirror consists of a combination of a DBR (distributed Bragg reflector) and a high refractive index contrast grating with a semiconductor air transition (highest possible refractive index contrast). Due to the fact that the grating has a quadratic structure (side length 5µm), the polaritons are additionally confined in the plane of the quantum wells perpendicular to the growth direction and can be treated as zero-dimensional particles. To prove the persistence of the strong coupling across the condensation threshold, a magnetic field is applied in the growth direction, in order that the diamagnetic shift of the polaritons below and above the condensation thresholds can be measured comparatively. With this the polariton-condensate can be distinguished from the conventional photonic lasing of the microcavity. As another way to distinguish between polariton- and photon-lasing the second order autocorrelation function g^(2)(t) of the system is determined. Here a re-increase of the g^(2)(t=0)-value can be shown with increasing excitation power, after the value dropped down to 1 at the condensation threshold of the system indicating the increase of temporal coherence. Far above the condensation-threshold P_S the g^(2)(t=0)-value increases to values higher than 1 due to the appearance of decoherence processes in the system caused by rising polariton-polariton-interaction. For a conventional single-mode photon-laser, as for instance VCSEL (vertical-cavity surface-emitting laser), this behavior is not expected and it is an additional criterion to distinguish between polariton-condensation and photon-lasing. Two-dimensional polariton-condensation - interaction with external magnetic fields In the last experimental chapter of this thesis, the magnetic field interaction of the three possible working regimes of the planar microcavity (2D) emission is analyzed. First power series at a exciton-photon detuning of d= -6.5meV are performed to identify the linear polaritonic regime, the polariton-condensate phase and the photonic lasing at sufficient high excitation powers. After that, the Zeeman splitting and the diamagnetic shift of these three regimes are investigated in an external magnetic field applied again in the growth direction and ranging from B= 0T to B=5T. The results are compared to each other. For the linear regime, the theoretic expected dependence of the Zeeman splitting and diamagnetic shift is confirmed. However, above the threshold in the polariton-condensate phase a higher diamagnetic shift compared to the linear regime is measured. This behavior can be explained by taking into account bleaching effects of the Coulomb interaction due to the high carrier density resulting in an increase of the Bohr radius of the excitons. Also for the Zeeman splitting a different behavior to the equilibrium theory is found. The sign of the magnetic field splitting is reversed in comparison to the linear regime. Due to long spin relaxation time in red detuned systems of about 300ps, a theory is developed based on a partial thermal equilibrium of the spin components of the condensate. Here the spin components are in equilibrium with themselves, but not with the other component. As a consequence, the sign reversal can be interpreted as an interplay of the density dependent blueshift of the single spin components and the orientation of the spins in the magnetic field. For the photonic lasing no magnetic field interaction is found, indicating that the measurement of the Zeeman splitting and the diamagnetic shift in an external magnetic field is a unique tool to distinguish between polariton-condensation and photon-lasing. KW - Exziton-Polariton KW - Bose-Einstein-Kondensation KW - Polariton KW - Magnetfeld-Wechselwirkung KW - Polariton-Kondensation KW - nicht-diagonale langreichweitige Ordnung KW - Optischer Resonator Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149488 ER - TY - THES A1 - Sturm, Volker Jörg Friedrich T1 - \(^{19}F\) Magnetresonanztomographie zur Bildgebung von Infektionen im Zeitverlauf T1 - \(^{19}F\) magnetic resonance imaging to monitor the timecourse of bacterial infections in vivo N2 - Im Rahmen dieser Arbeit sollten die Möglichkeiten der MR Tomographie erkundet werden bakterielle Infektionen im Zeitverlauf darzustellen. Genauer gesagt sollte das Potential der MR Tomographie anhand eines durch eine Infektion induzierten lokalisierten Abszesses unter Verwendung dreier unterschiedlicher MRT Methoden untersucht werden: Mittels nativem \(T_2\) Kontrast; der Verwendung von superparamagnetischen Eisenoxid Partieln (USPIO) als \(T_2^*\) Kontrastmittel; und dem Einsatz von Perfluorkarbonen (PFC) als \(^{19}F\) MRT Marker (siehe Kapitel 3). Wie erwartet führte die durch die Infektion hervorgerufene Entzündung zu veränderten \(T_2\)-Zeiten, welche auf \(T_2\)-gewichteten MR Bildern eine Lokalisierung des Abszessbereiches erlauben. Jedoch eigneten sich diese Daten aufgrund der graduellen Änderung der \(T_2\)-Zeiten nicht, um eine klare Grenze zwischen Abszess und umliegendem Gewebe zu ziehen. Superparamagnetische Eisenoxidpartikel andererseit haben als MRT Kontrastmittel bereits in den letzten Jahren ihre Fähigkeit unter Beweis gestellt Entzündungen [53, 58, 64] darzustellen. Die Anreicherung dieser Partikel am Rande des Abszesses [53], wie sie auch in unseren MR Daten zu beobachten war, erlaubte eine relativ scharfe Abgrenzung gegenüber dem umgebenden Gewebe in der chronischen Phase der Infektion (Tag 9 p.i.). Hingegen genügte die nur sehr spärlichen Anreicherung von USPIO Partikeln in der akuten Phase der Infektion (Tag 3 p.i.) nicht für eine entsprechende Abgrenzung [58]. Aufgrund der sehr geringen biologischen Häufigkeit und den sehr kurzen Relaxationszeiten von endogenem Fluor eignen sich Perfluorkarbone als Markersubstanz in der MR Tomographie von biologischen Systemen. Insbesondere da PFC Emulsionen durch phagozytierende Zellen aufgenommen werden und im Bereich von Entzündungen akkumulieren [30, 59]. In dieser Arbeit konnte anhand der erhaltenen MRT Daten eine Akkumulation von Perfluorkarbonen nicht nur in der chronischen Phase, sondern auch in der akuten Phase nachgewiesen werden. Diese Daten erlauben somit zu allen untersuchten Zeitpunkten eine Abgrenzung zwischen Infektion und umliegenden Gewebe. Aufgrund der besagten Vorteile wurden die Perfluorkarbone gewählt, um die Möglichkeiten der MR Tomographie zu testen, quantitative Informationen über die schwere der Infektion zu liefern. Als Referenz für die Bakterienbelastung wurden die Biolumineszenzbildgebung (BLI) [49, 50] und die Standardmethode zur Bestimmung der Bakterienbelastung cfu (koloniebildenden Einheiten) herangezogen. Eine Gegenüberstellung der zeitlichen Verläufe der durch die Biolumineszenzbildgebung und durch die cfu erhaltenen Daten liefert eine qualitative Übereinstimmung mit den durch die 19F MR Tomographie erhaltenen Daten. Dies trifft hierbei sowohl auf die über den gesamten Infektionsbereich hinweg summierten Signalamplituden, als auch auf das Volumen zu, in dem Fluor am Ort der Infektion akkumuliert wurde. Im Gegensatz zur Methode der cfu Bestimmung sind die MR Tomographie und die Biolumineszenzbildgebung nicht invasiv und erlauben die Verfolgung des Infektionsverlaufes an einem einzelnen Individuum. Hierzu benötigt, im Gegensatz zur MR Tomographie, die Methode der Biolumineszenzbildgebung jedoch einen speziellen Pathogenstamm. Darüber hinaus ist hervorzuheben, dass die MR Tomographie zudem die Möglichkeit bietet auch morphologische Informationen über den Infektionsbereich und seine Umgebung zu akquirieren. Gerade weil jede dieser Methoden die mit der Infektion einhergehenden Prozesse aus einer leicht anderen Blickrichtung betrachtet, erscheint es sinnvoll diese etablierte Untersuchungsplattform bestehend aus MRT, BLI und cfu über die in dieser Arbeit bearbeitete Fragestellung hinaus näher zu untersuchen. Insbesondere der Aspekt inwieweit die drei Methoden sich gegenseitig ergänzen, könnte einen tieferen Einblick in die Wechselwirkung zwischen Pathogen und Wirt erlauben. Auch wenn für die betrachtete Fragestellung bereits der hierdurchgeführte semiquanitative Ansatz zur Bestimmung der relativen Fluormengen am Ort der Infektion ausreichte, so ist doch im Allgemeinen wünschenswert probenbezogen die Sensitivität der Spule und damit die Güte der Spulenabstimmung zu bestimmen. Hierzu ist jedoch die Aufnahme von \(B_1\)-Karten unabdingbar und wird entsprechend im Kapitel 4 \(Bloch-Siegert B_1^+-Mapping\) näher addressiert. Der Schwerpunkt liegt hierbei, wie der Kapitelname bereits andeutet, auf der Bloch-Siegert Methode, die insbesondere in der präsentierten Implementierung in einer Turbo/ Multi Spin Echo Sequenz eine effiziente Nutzung der relativ langen \(T_\)2-Zeiten der Perfluorkarbone erlaubt. Da zudem die Bloch-Siegert-Methode eine rein phasenbasierte Methode ist, kann neben der aus den Daten erzeugten \(B_1\)-Karte zugleich ein unverfälschtes Magnitudenbild generiert werden, wodurch eine sehr effiziente Nutzung der vorhandenen Messzeit ermöglicht wird. Diese Eigenschaft ist insbesondere für \(^{19}F\) Bildgebung von besonderem Interesse, da hier für jede Messung, aufgrund der üblicherweise relativ geringen Konzentration an Fluoratomen, lange Messzeiten benötigt werden. Zusammenfassend konnte anhand des untersuchten Tiermodells sowohl die Fähigkeit der MR Tomographie nachgewiesen werden Infektionen im Zeitverlauf darzustellen, als auch die Fähigkeit der MR Tomographie quantitative Informationen über den Verlauf der Infektion zu liefern. Desweiteren konnte eine Möglichkeit aufgezeigt werden, welche das Potential hat in vertretbarem Zeitrahmen auch in vivo B1+-Karten auf dem Fluorkanal zu erstellen und so einen zentralen Unsicherheitsfaktor, für Relaxometry und absolute Quantifizierung von \(^{19}F\) Daten in vivo, zu beseitigen. N2 - The main focus of this work is to investigate the potential of magnetic resonance imaging (MRI) to monitor the timecourse of bacterial infections in vivo. More specifically, it focuses on the ability to localize and assess an infection-induced localized bulky abscess using three different MRI methods: the utilization of native \(T_2\) contrast; the usage of super paramagnetic iron oxide nanoparticles (USPIO) as MRI \(T_2^*\) contrast agents; and the application of perfluorcarbons (PFC) as \(^{19}F\) MRI marker (see chapter 3). Study results demonstrated that, as expected the altered \(T_2\) values present in the abscess area permit localization of the infection when using \(T_2\) weighted data. The precise boundary of the abscess, however, could not be determined due to the gradual change of the \(T_2\) values in the area of the infection. Conforming to other studies [53, 58], the MR-detected accumulation of USPIO particles along the abscess rim allowed definition of a fairly exact demarcation line between the abscess and surrounding tissue during the chronic phase of the infection (day 9 p.i.). During the acute phase of the infection (day 3 p.i.), however, the particle accumulation at the abscess rim was too sparse for precise boundary definition [58]. Because of their extremely low biological abundance and the very short relaxation times of endogenous fluorine, PFCs can be imaged background-free in a biological system. Moreover, as emulsified PFCs were taken up by phagocytosing cells and accumulated at the site of inflammation [30, 59], the acquired MRI data showed PFC accumulation during both the chronic and acute phases of infection. It was thus possible to differentiate between the abscess and surrounding tissue at each examined time point. Due to the described advantages, PFCs were chosen to evaluate with MRI the infection severity. As a bacterial burden reference, colony forming units (cfu) and bioluminescence imaging (BLI) [49, 50] were selected. Observation of BLI, cfu and \(^{19}F\) MRI data showed qualitative correlation during the investigated time course. This was true for the accumulated \(^{19}F\) MR signal in the area of infection and for the \(^{19}F\) MR signal volume. Additionally, unlike the cfu method MRI and BLI are non-invasive and thus data can be gathered at multiple time points. However, contrary to BLI, MRI does not require a special pathogen strain. Moreover, it can provide morphological data from an abscess and the surrounding tissue. Because the data delivered by each of these three methods (MRI, BLI and cfu), are based on alternative approaches, additional examinations of the established platform are suggested. For example, the extent to which the methods supplement each other may provide deeper insight into the interaction between pathogen and host. Even though the chosen semi quantitative approach was sufficient in the context of the evaluated issues to estimate the relative fluorine amount at the site of infection, it is in general desirable for each quantification to determine the sensitivity of the coil per sample. To address this issue the Bloch Siegert (BS) based \(B_1\) mapping method implemented in a turbo/ multi spin echo (TSE/MSE) sequence is presented in Chapter 4 Bloch-Siegert \(B_1^+\)-Mapping. Such a sequence allows effective use of the relatively long PFC \(T_2\) times and encodes BS information solely into the phase data. Thus, a \(B_1\) map can be created in addition to the unaltered TSE/MSE magnitude image. In the context of \(^{19}F\) imaging, this is of special interest due to the usually low amounts of fluorine resulting in long measurement times. In conclusion, it was shown that MRI not only enables visualization of the temporal behavior of infections on the investigated animal model, but it can also provide quantitative information about the progress of the infection. Additionally, a method potentially allowing in vivo B1+ mapping was introduced. This is an important step to improve the reliability of relaxometry and absolute quantification of in vivo \(^{19}F\) MRI. KW - Kernspintomografie KW - Bakterielle Infektion KW - 19F MR KW - Perfluorkarbon KW - Infektionsbildgebung KW - Bloch Siegert KW - B1 Mapping KW - Kontrastmittel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122851 ER - TY - THES A1 - Mauerer, Tobias T1 - Ladungsdichtemodulationen an unterschiedlichen Probensystemen: Chrom auf Wolfram(110), Iridiumditellurid und Eisen auf Rhodium(001) T1 - Charge Density Waves at different sample systems: Chromium on thungsten(110), iridium ditelluride, and iron on rhodium (001) N2 - Im Rahmen der vorliegenden Arbeit werden mit einem Rastertunnelmikroskop (RTM) Ladungsdichtemodulationen (LDM) auf Oberflächen von drei verschiedenen Probensystemen untersucht. Bei den Proben handelt es sich um Chrom auf Wolfram(110), Iridiumditellurid (IrTe2) als Volumenmaterial und Eisen auf Rhodium(001). Es werden sowohl die Temperaturabhängigkeit der Phasenübergänge als auch die Wechselwirkung zwischen magnetischen und elektronischen Eigenschaften analysiert. Chrom (Cr) ist ein einfaches Übergangsmetall, in dem sowohl eine klassische Ladungsdichtewelle (LDW) als auch eine Spindichtewelle (SDW) auftreten. Die im Experiment betrachteten Cr-Inseln auf Wolfram(110) schlagen eine Brücke zwischen dem Volumenmaterial und ultradünnen Schichten. Dabei zeigt sich der Zusammenhang zwischen elektronischen und magnetischen Eigenschaften in der Ausbildung einer LDW-Lücke und dem gleichzeitigen Verschwinden des magnetischen Kontrastes bei lokalen Schichtdicken von dCr =� 4nm. Dies kann durch eine Rotation des Spindichtewellenvektors Q erklärt werden. Für dCr <� 3nm verschwindet die LDW erneut. Zusätzlich zur LDW und SDW entsteht aufgrund der unterschiedlichen Gitterparameter von Chrom und Wolfram bei lokalen Schichtdicken von dCr � < 3nm eine Moiré-Überstruktur. IrTe2 ist Gegenstand zahlreicher aktueller Forschungsaktivitäten und weist eine LDM mit gleichzeitiger Transformation des atomaren Gitters auf. Ein Phasenübergang erster Ordnung erzeugt zunächst bei der Übergangstemperatur TC =� 275K eine Modulation mit dem Wellenvektor q = 1/5(1, 1, 0). Mithilfe temperaturabhängiger RTM-Messungen kann das Phasendiagramm um einen weiteren Übergang erster Ordnung bei TS � = 180K erweitert werden. Dabei bilden sich zunehmend Te-Dimere an der sichtbaren (001)-Oberfläche und IrTe2 wechselt in einen Grundzustand mit maximaler Dichte von Dimeren und dem Wellenvektor q = 1/6(1, 1, 0). Der Mechanismus beider Phasenübergänge wird durch die Probenqualität und die Oberflächenpräparation beeinflusst, sodass die Phasenübergänge erster Ordnung teilweise verlangsamt ablaufen. Durch eine Analyse der Oberflächendynamik am Phasenübergang kann der zugrundeliegende Mechanismus des Domänenwachstums im Realraum untersucht werden. Im letzten Teil der Arbeit werden ultradünne Eisenfilme auf Rhodium(001) betrachtet. Dabei treten auf der Doppellage Eisen (Fe) auf Rhodium (Rh) spannungsabhängige elektronische Modulationen mit senkrecht zueinander orientierten Wellenvektoren q1 = [(0, 30 ± 0, 03), 0, 0] und q2 = [0, (0, 30 ± 0, 03), 0] in Richtung [100] und [010] auf. Temperaturabhängige Messungen zeigen die stetige Verkleinerung der Modulation beim Erwärmen der Probe und somit einen Phasenübergang zweiter Ordnung. Die LDM tritt auch auf der dritten und vierten Lage Eisen mit gleichgerichteten aber kleineren Wellenvektoren q auf. Spinpolarisierte RTM-Daten zeigen einen c(2×2)-Antiferromagnetismus auf einer Monolage Eisen. Für Fe-Bedeckungen von 1ML � - 5ML tritt Ferromagnetismus perpendikular zur Oberfläche auf. Diese Messungen zeigen erstmals gleichzeitiges Auftreten einer elektronischen und magnetischen Phase in einem reinen 3d-Übergangsmetall im Realraum. N2 - In the scope of this thesis Charge Density Modulations (CDM) on surfaces of three different sample systems are examined with Scanning Tunneling Microscopy (STM). The sample systems include chromium on tungsten(110), bulk IrTe2, and iron on rhodium(001). The experimental results help to analyze the temperature dependence of phase transitions and the interaction between magnetic and electronic properties. Chromium (Cr) belongs to the basic transition metals and exhibits both a classical Charge Density Wave (CDW) and a Spin Density Wave (SDW). The data of Cr-islands on tungsten(110) presented in this work connects already known properties of the bulk material and ultrathin films. For local island thicknesses dCr =� 4nm the electronic properties show the onset of a CDW-gap, which is linked to the coexistent vanishing of magnetic contrast. The suppression of magnetic contrast can be explained by a rotation of the spinvector Q. This has been shown by spin-polarized STM (SP-STM). The CDW vanishes again for dCr <� 3nm. Additional to CDW and SDW a Moiré-pattern exists at thicknesses dCr � < 3nm caused by the lattice mismatch between chromium and tungsten. IrTe2 is currently a hot topic in physical science and shows a CDM with a coexisting transformation of the atomic lattice. A first-order phase transition occurs at the transition temperature TC =� 275K and results in a modulation with the wave-vector q = 1/5(1, 1, 0). The performance of temperature-dependent STM measurements helps to extend the phase diagram of IrTe2 with a second first-order phase transition at TS =� 180K. Within this phase transition the density of Te-dimers increases and the (001)-surface of IrTe2 develops into in a ground state with the wave vector q = 1/6(1, 1, 0). Both phase transitions are affected by the sample quality and the surface preparation and therefore proceed decelerated. It was possible to investigate the underlying mechanisms of the domain growth with the analysis of the surface dynamics in real space . The last part of this thesis deals with ultrathin iron layers on rhodium (001). On top of an iron (Fe) film with a thickness of two atomic layers some bias-dependent, electronic modulations perpendicular to each apper. The wavevectors q1 = [(0, 31 ± 0, 04), 0, 0] and q2 = [0, (0, 31 ± 0, 04), 0] are orientated along the [100]- and [010]-direction. Temperature dependent measurements show a continuous decrease of the electronic signal when warming up the sample. This behavior is characteristic for a second-order phase transition. The CDM is also visible on iron films with three and four atomic layers thickness. With increasing film thickness the wavevectors are still oriented in the same directions,but the periodicity decreases. SP-STM measurements show antiferromagnetic c(2×2)-ordering on the monolayer iron. The thin films develop ferromagnetism out-of-plane for coverages 1ML � - 5ML. These results present for the first time in real space the coeval appearance of an electronic and magnetic phase in a pure 3d-transition metal. KW - Ladungsdichtewelle KW - Rastertunnelmikroskop KW - Phasenumwandlung KW - Spinpolarisierte Rastertunnelmikroskopie, Temperaturabhängige Phasenübergänge KW - spinpolarized scanning tunneling microscopy, temperature dependent phase transitions Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120322 ER - TY - THES A1 - Hopfgartner, Andreas T1 - Magnetresonanztomographie in der Zahnheilkunde - hochauflösende zahnmedizinische Anwendungen in der MRT mit einer Entwicklung zur Bewegungskorrektur T1 - Magnetic Resonance Imaging in Dentistry – high-resolution dental applications in MRI with development of a method for motion correction N2 - Die zahnmedizinische Behandlung von Erkrankungen der Zähne oder im Bereich der Mundhöhle erfolgt bei Weitem nicht immer aus optischen Gründen. Diese Erkrankungen werden auch mit ernsthaften Erkrankungen in Zusammenhang gebracht. Studien haben gezeigt, dass einige Erkrankungen im Mund- und Zahnbereich zu Herz- und Lungenkrankheiten oder Diabetes führen können. Oftmals erstreckt sich die Pathologie oder Symptomatik von Mund- und Zahnerkrankungen über einen weiten Bereich. In der zahnmedizinischen Klinik kommen daher viele verschiedene diagnostische Apparate zum Einsatz. Allerdings zählt die Magnetresonanztomographie, die sich in anderen Bereichen bereits zum wichtigsten bildgebenden Diagnosetool entwickelt hat, dort noch nicht zu den Standardverfahren. Dabei liegen ihre Vorteile auf der Hand: sie ist bekannt für sehr gute Bildkontraste vor allem zwischen verschiedenen Weichgewebsarten und kommt ohne gefährliche ionisierende Strahlung aus. Wahrscheinlich ist ersteres der Grund, warum die MRT in der Zahnmedizin noch nicht sonderlich vertreten ist, kommt es dort oft auf die kontrastreiche Darstellung von Hartgeweben an. Neueste Entwicklungen und Studien belegen jedoch die vielseitigen Vorteile der MRT auch in diesem Bereich. Ziel dieser Arbeit von der applikativen Seite betrachtet, war es, das enorme Potential der MRT in den vielseitigen Bereichen der Zahnmedizin weiterhin aufzuzeigen. Viele dieser Anwendungen stellen jedoch sehr hohe Anforderungen an die Systeme. Meist sind die darzustellenden Strukturen sehr klein und erfordern eine hohe Auflösung. Während man beim Röntgenverfahren beispielsweise die Energie des Strahles (Dosis) steigern kann, bedeutet dies in der MRT (ohne das Gerät zu wechseln) eine Verlängerung der Messzeit. Gerade im Bereich des Kopfes kommt es oft zu ungewollten Bewegungen, die das Ergebnis und die Reproduzierbarkeit der gewonnenen diagnostischen Informationen verschlechtern oder gänzlich unbrauchbar machen. Die grösste Herausforderung dabei ist die dreidimensionale Abformung von Zahnoberflächen in der Prothetik. Dieses Verfahren kann eine aufwändige und unangenehme manuelle Abformung der Zähne und die Herstellung eines Zwischengipsmodells ersetzen und ein direktes dreidimensionales Modell der Zahnoberflächen produzieren. Durch die moderne CAD-/CAM-Technik kann daraus vom Zahntechniker direkt eine Zahnrestauration erstellt werden. Daher war ein wichtiger Bestandteil des Projekts dentale MRT die Entwicklung einer Methode zur Erkennung und gleichzeitiger Korrektur von Bewegungen. Verschiedenste Anforderungen waren an die Methode gestellt. Zum einen muss die Methode bereits Bewegungen im Bereich von ~100 µm erkennen, um die Anforderungen an die finale Bildauflösung zu unterschreiten. Bei der dentalen Abformung wird eine 1-Kanal-Empfängerspule verwendet und je nach Messung kann der Patient dabei auf dem Bauch oder Rücken liegen. Weiterhin muss die Bewegungserkennung ohne zusätzliche externe Geräte wie Kameras, deren Sicht z.B. durch den Patienten verdeckt ist, durchführbar sein. Die vorliegende Arbeit deckt also zwei größere Themenblöcke ab. Zum einen wurden in der Arbeit neue Applikationen entwickelt oder weiterentwickelt, um verschiedenen Bereichen der Zahnmedizin den Zugang zu MRTUntersuchungen zu eröffnen. Kapitel 4 beschreibt die Möglichkeit, die Bewegung des Kiefergelenks dynamisch zu erfassen. Es stellte sich in der Arbeit heraus, dass sowohl die Bewegung von Weichgewebeanteilen darstellbar waren, als auch der intraartikuläre Abstand im Kiefergelenk unter Kaubelastung in Echtzeit vermessen werden konnte. Dabei wurde die Bildgebungssequenz und der zugehörige Rekonstruktionsalgorithmus so entwickelt, dass die Daten flexibel und ohne Vorwissen akquiriert und aufbereitet werden können. Hierbei konnten verschiedenen Pathologien anhand der dynamischen Bilder sichtbar gemacht werden und die dynamische MRT konnte Erkrankungen erkennen, die mit anderen Mitteln nicht sichtbar waren. Die vielen diagnostischen Möglichkeiten, die dadurch entstehen sind bisher noch nicht untersucht und sollten durch großangelegte Studien untersucht und belegt werden. Kapitel 5 beschreibt die Ergebnisse einer großangelegten Studie im Bereich der dentomaxillären Bildgebung . Die diagnostischen Möglichkeiten der MRT für die kieferorthopädische Anwendung liegen klar auf der Hand. Die typischen Patienten in der Kieferorthopädie sind Kinder und Jugendliche. Die Abwesenheit von gewebsschädigender Strahlung ist hier ein besonderer Vorteil der MRT. Eine Messung dauert zudem nach diversen Weiterentwicklungen der Methode nur noch 2 (bzw. 4) Minuten. Die Auflösung in den gerenderten Bildern beträgt 0.25x0.25x0.5 mm. Mit der Methode konnte unter anderem die Geminisierung einer Zahnwurzel und der Abstand des Zahnmarks zur Zahnoberfläche (Zahnschmelz) dargestellt und vermessen werden. Kapitel 6 stellt Neuentwicklungen im Bereich der dentalen Abformung von Zahnoberflächen dar. Hier wurde eine neue Methode entwickelt um den Patientenkomfort bei der Messung zu steigern und so Bewegungen im Vorhinein zu unterbinden. Bei der alten Methode liegt der Patient auf dem Bauch und ein großer Teil der Mundhöhle ist mit Kontrastmittel befüllt. Durch die Verwendung einer präparierten Tiefziehschiene kann das Kontrastmittel nun lokal appliziert werden und eine Messung in Rückenlage das Patienten ist somit problemlos möglich. Die damit verbundene Reproduzierbarkeit der Abformungsergebnisse wäre durch eine großangelegte Studie zu zeigen. Die Hauptaufgabe der vorliegenden Dissertation war es, eine Methode zur Bewegungskorrektur zu entwickeln, die es ohne eine große Anzahl an Zusatzgeräten ermöglicht, die Bewegung eines Subjekts während der Messung zu erfassen und dementsprechend zu korrigieren. Diese neue Methode, gestützt auf einer Messung eines MRT-aktiven Markers der am Subjekt angebracht wird, beruht außer der Verwendung des Markers nur auf MRT-Hardware. Die Methode wird in Kapitel 8 vorgestellt. Da es sich bei der Methode um eine Neuentwicklung handelt, war es in erster Linie wichtig, die Einflüsse der verschiedenen Parameter, die sich auf die Positionierungsgenauigkeit auswirken, abzuschätzen und letzten Endes festzulegen. Dies wurde in mehreren Vorstudien, Experimenten und Computersimulationen abgehandelt. In der Arbeit konnte durch Validierungsexperimente gezeigt werden dass sich mit dem bildbasierten Navigator Bewegungen im Genauigkeitsbereich von ~50 µm (Translation) und ~0.13◦(Rotation) detektieren lassen. Mit den Positionsinformationen lassen sich MRT-Daten retrospektiv korrigieren oder idealerweise das Bildgebungsvolumen in Echtzeit anpassen um Inkonsistenzen in den Daten im Vorhinein vorzubeugen. Durch Bewegung beeinträchtigte in-vivo Daten konnten so mit der Methode korrigiert werden und anhand eines geeigneten Phantoms konnte die Verbesserung der Erkennung von Kanten, wie sie beispielsweise bei der dentalen Abformung angewandt wird, gezeigt werden. Die kontinuierlichen Entwicklungen in den Bereichen Hard-, Software und Algorithmik ermöglichen weitere hochauflösende Anwendungen. In Kapitel 9 sind die Ergebnisse einer Studie gezeigt, die sich mit der Analyse der Handbewegungen während einer Messung beschäftigt. Für eine hochauflösenden Darstellung der Handanatomie bei 7 T ist eine Unterbindung der Handbewegung sehr wichtig. Um ein geeignetes Design für eine Empfängerspule zu entwerfen, die Bewegungen der Hand unterbindet, wurde eine qualitative Bewegungsanalyse der Hand in mehreren verschiedenen Positionen durchgeführt. Durch Vergleich der Ergebnisse konnte so auf geeignete Designs zurückgeschlossen werden. N2 - The treatment of the teeth or diseased of the oral cavity is by far not only administered for aesthetic reasons. These diseases are sometimes also associated with other serious diseases. Studies have shown that some diseases of the mouth, the gingiva or the surrounding area can lead to heart and lung disease or diabetes. Oftentimes the pathology or symptomatology of dental or oral diseases extends to a wide area. In the dental clinic many different diagnostic devices are used. However, magnetic resonance imaging, which has developed in other areas as the most important diagnostic imaging tool, is not frequently used in dentistry to the present day, although their advantages are obvious: it is known for excellent image contrast, mainly between different soft tissues and comes without hazardous ionizing radiation. The former is probably the reason why the MRI is not yet a standard method in dentistry: here in most cases the contrast of hard tissues is of relevance. However, recent developments and studies demonstrated the versatile advantages of MRI in this area. The aim of this work as seen from the perspective of application, was to continuously show the enormous potential of MRI in the diverse areas of dentistry. However, many of these applications put very high requirements on the systems. Usually structures to display are very small and require very high resolution. To improve the resolution while using the X-ray method, e.g., one can increase the beam energy (dose). In MRI (without changing the MRT scanner) this results in an extension of measurement time. Especially in the area of the head this oftentimes leads to unwanted movements during the measurement time that worsen the outcome and reproducibility of the obtained diagnostic information or making it completely useless. The biggest challenge is the measurement of a three-dimensional impression of the tooth surfaces in prosthetics. This process can replace a complex and unpleasant manual impression of the teeth and avoid the production of an intermediate plaster model. Using MRT techniques, a direct three- dimensional model of the tooth surfaces can be produced. By modern CAD/CAM technology, a dental restoration can be directly manufactured by the dental technician using the digital 3D model. Therefore, an important task of the project was the development of a dental MRT method for the detection and correction of movements. Various requirements were imposed on the method. Firstly, the method must be able to detect movements in the range of ~100 µm to fall below the requirements of the final image resolution. For the acquisition of the contrast agent’s signal, a 1-channel receiver coil is used and depending on the measurement, the patient can lie prone or supine. Furthermore, the motion detection system must work without extensive external devices such as cameras, whose direct vision may be obscured by the patient, e.g. This thesis covers two major subject areas. Firstly, new applications and methods have been developed and further developed in order to provide the various fields of dentistry access to MRT techniques. Chapter 4 describes the possibility to image the motion of the temporomandibular joint dynamically in real-time. In this work it turned out that both, the movement of the soft tissue components were represented, as well as the intra-articular distance in the TMJ could be measured during mastication (under load) in real-time. Here, the imaging sequence and the corresponding reconstruction algorithm were designed such that the data can be acquired without a prioiri knowledge and processed flexibly. MRT showed different pathologies in the images and dynamic MRT could detect some diseases that could not be diagnosed by other means. The emerging diagnostic possibilities should be investigated and the results verified by large-scale studies. Chapter 5 describes the results of dento-maxillary MRT imaging, supported by a large-scale study. The diagnostic capabilities of MRI for orthodontic applications are obvious. The typical patient in orthodontics are children and adolescents. The absence of tissue-damaging radiation is a particular advantage of MRI here. After various developments, the acquisition time of a measurement lasted depending on the method only 2 (4) minutes. The resolution in the rendered images was 0.25x0.25x0.50 mm3. Using the proposed method, among other things a geminisation of a tooth root could be shown and the distance of the dental pulp to the tooth surface (enamel) measured. Chapter 6 presents new developments in the field of digital impressions of tooth surfaces. Here, a new method was developed in order to increase patient comfort during the measurement. This approach helps to prevent movements of the subject in advance. With the old method, the patient lies prone and a large part of the oral cavity is filled with contrast agent. By using a prepared dental cast, the contrast agent can be applied locally and hence the patient may lay supine during the measurement. The associated reproducibility of dental impressions should be shown through a large-scale study. The main task of this thesis was to develop a method for motion correction that allows to detect the movement of a subject during the measurement without a large number of additional devices and correct the acquired data accordingly. This new navigator method, based on the measurement of a MRT-active marker attached to the subject, makes use of MRT hardware only, except for the additional marker. The method is described in chapter 8. Since this is a new development, it was important to primarily estimate the effects of the various parameters and their impact on the positioning accuracy. This has been evaluated in several preliminary studies, experiments and computer simulations. By validation experiments it was shown in the studies that the image-based navigator detects movements with an accuracy of ~50 µm(translation) and ~0.13◦ (rotation). With the position information obtained from the navigator, the MRT data can be corrected retrospectively or the volume of interest can be adjusted in real-time during the imaging process to prevent inconsistencies in the data in advance. In-vivo MRT data impaired by motion of a subject during the measurement could be corrected using the MoCoLoCo method. By using an appropriate phantom and simulation a movement, it could be shown that using the proposed method, the quality of edge detection (as used in dental impressions, e.g.) could be restored. Various new high-resolution applications emerged due to the continuous development in hardware, software and algorithms. In chapter 9, the results of a study are presented, which deals with the analysis of shivering movements of the hand during a measurement. For a high-resolution depiction of hand anatomy at 7 T, a suppression of the hand movement is very important. In order to develop an optimal design for a hand receiver coil, a qualitative analysis of the hand movement in several different positions was performed. By comparison of the results, a suitable coil design could be developed. KW - Kernspintomografie KW - Kernspintomografie KW - Zahnmedizin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122557 ER - TY - THES A1 - Berner, Götz T1 - Funktionelle oxidische Heterostrukturen aus dem Blickwinkel der Spektroskopie T1 - Functional oxide heterostructures from a spectroscopic perspective N2 - In oxidischen Heterostrukturen rufen Neuordnung von Ladung und Spin eine Vielzahl von unerwarteten physikalischen Eigenschaften hervor. Die Möglichkeit, Leitfähigkeit, Magnetismus oder auch Hochtemperatur-Supraleitung zu kontrollieren, machen diese künstlich hergestellten Materialien vor allem in Hinblick auf eine zukünftige Anwendung in der Mikroelektronik äußerst interessant. Dies erfordert jedoch ein grundsätzliches Verständnis für die zugrunde liegenden Mechanismen. Die vorliegende Doktorarbeit befasst sich mit photonengestützter Spektroskopie, die einen direkten Zugang zur elektronischen Struktur dieser Heterostruktursysteme ermöglicht. Ein weiteres Ziel ist es, geeignete spektroskopische Methoden zur Charakterisierung der vergrabenen Schichten zu etablieren. Zwei prototypische oxidische Mehrschichtsysteme stehen im Zentrum der hier vorgestellten Untersuchungen. Das LaAlO3/SrTiO3-Heterostruktursystem weist ab einer kritischen LaAlO3-Filmdicke an der Grenzfläche ein zweidimensionales Elektronensystem mit hochmobilen Ladungsträgern auf. Als treibender Mechanismus wird die elektronische Rekonstruktion diskutiert. Im Rahmen dieser Arbeit wurde dieses zweidimensionale Elektronensystem mithilfe der Photoelektronenspektroskopie und der resonanten inelastischen Röntgenstreuung charakterisiert. Die daraus bestimmten Ladungsträgerdichten weisen im Vergleich mit Daten aus Transportmessungen auf eine Koexistenz von lokalisierten und mobilen Ladungsträgern an der Grenzfläche hin. Die Analyse von Rumpfniveau- und Valenzbandspektren zeigt, dass man zur Erklärung der experimentellen Resultate ein modifiziertes Bild der elektronischen Rekonstruktion benötigt, bei der Sauerstofffehlstellen an der LaAlO3-Oberfläche als Ladungsreservoir dienen könnten. Mithilfe der resonanten Photoelektronenspektroskopie war es möglich, die metallischen Zustände am chemischen Potential impulsaufgelöst zu spektroskopieren. So gelang es erstmals, die vergrabene Fermi-Fläche einer oxidischen Heterostruktur zu vermessen. Außerdem konnten Titan-artige Zustände identifiziert werden, die höchstwahrscheinlich durch Sauerstofffehlstellen im SrTiO3 lokalisiert sind. Diese werden als mögliche Quelle für den Ferromagnetismus interpretiert, der mit der supraleitenden Phase in der LaAlO3/SrTiO3-Heterostruktur koexistiert. Bei dem anderen hier untersuchten Mehrschichtsystem handelt es sich um die LaNiO3-LaAlO3-Übergitterstruktur. Der Einbau des metallischen LaNiO3 in eine Heterostruktur ist aufgrund seiner Nähe zu einer korrelationsinduzierten isolierenden Phase hinsichtlich einer kontrollierten Ausbildung von neuartigen Phasen besonders interessant. In der Tat beobachtet man unterhalb einer LaNiO3-Schichtdicke von vier Einheitszellen einen kontinuierlichen Metall-Isolator-Übergang, der sich in den Valenzbandspektren durch einen Verlust an Quasiteilchenkohärenz äußert. Auch wenn die impulsaufgelösten Daten am Fermi-Niveau durch Photoelektronenbeugung beeinflusst sind, so lässt sich dennoch eine Fermi-Fläche identifizieren. Ihre Topologie bietet die Möglichkeit eines Fermi-Flächen-Nestings mit der Ausbildung einer Spindichtewelle. Die Resultate unterstützen die Hinweise auf eine magnetische Ordnung im zweidimensionalen Grundzustand. N2 - Oxide heterostructures exhibit a manifold of unexpected physical properties due to charge and spin rearrangement. Because of the possibility to control the conductivity, magnetism or high-temperature superconductivity, these artificial materials are prospective candidates for future application in microelectronics. However, this needs a fundamental understanding of the mechanism leading to such effects. This thesis addresses the investigations of such systems by photoassisted spectroscopy providing a direct access to the electronic structure. The further aim of this study is to establish applicable spectroscopic methods for characterizing the buried layers in heterostructures. The study presented here deals with two prototypical oxide heterostructures. In the prominent LaAlO3/SrTiO3 heterostructure the formation of a two-dimensional electron system at the interface is observed, if the LaAlO3 layer exceeds a critical thickness. The electronic reconstruction is discussed as the driving mechanism. In this study the two-dimensional electron system is characterized by photoelectron spectroscopy and resonant inelastic x-ray scattering. The comparison of the charge carrier densities determined from spectroscopy with data from transport measurements indicates the coexistence of localized and mobile charge carriers at the interface. The analysis of core-level spectra as well as valence band spectra show that a modified electronic reconstruction picture is needed to explain the experimental observations. In such a scenario oxygen vacancies in the LaAlO3 surface layer might provide the extra charge. By using resonant photoelectron spectroscopy momentum-resolved measurements were performed to observe the metallic states at the chemical potential. For the first time a mapping of the buried Fermi surface of an oxide heterostructure has been accomplished. Additionally, some Titanium-derived states were identified in the spectra which are probably localized by surrounding oxygen vacancies in the SrTiO3. They are interpreted as a possible source of the ferromagnetism, which coexists with the superconducting phase in the LaAlO3/SrTiO3 heterostructure. The other multilayer system studied here is the LaNiO3-LaAlO3 superlattice structure. Due to its closeness to the correlation-induced insulating phase the integration of the metallic LaNiO3 in a heterostructure possibly opens the way to novel phases. Actually, a continuous metal-insulator transition is observed below a LaNiO3 layer thickness of four unit cells, which is manifested in a loss of quasiparticle coherence in the valence band spectra. Even though the momentum-resolved data is affected by photoelectron diffraction, a Fermi surface can be identified. Its topology provides the possibility of Fermi surface nesting and the formation of a spin density wave. Thus, the results support the indication for a magnetic ordering in the two-dimensional ground state. KW - Heterostruktur KW - Photoelektronenspektroskopie KW - RIXS KW - Übergitter KW - ARPES Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121721 ER - TY - THES A1 - Wolf, Nadine T1 - Synthese, Charakterisierung und Modellierung von klassischen Sol-Gel- und Nanopartikel-Funktionsschichten auf der Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid T1 - Synthesis, characterization and modeling of classical sol gel and nanoparticle functional layers on the basis of indium tin oxide and alumnium zinc oxide N2 - Das Ziel dieser Arbeit ist neben der Synthese von Sol-Gel-Funktionsschichten auf der Basis von transparent leitfähigen Oxiden (transparent conducting oxides, TCOs) die umfassende infrarotoptische und elektrische Charakterisierung sowie Modellierung dieser Schichten. Es wurden sowohl über klassische Sol-Gel-Prozesse als auch über redispergierte Nanopartikel-Sole spektralselektive Funktionsschichten auf Glas- und Polycarbonat-Substraten appliziert, die einen möglichst hohen Reflexionsgrad im infraroten Spektralbereich und damit einhergehend einen möglichst geringen Gesamtemissionsgrad sowie einen niedrigen elektrischen Flächenwiderstand aufweisen. Zu diesem Zweck wurden dotierte Metalloxide, nämlich einerseits Zinn-dotiertes Indiumoxid (tin doped indium oxide, ITO) und andererseits Aluminium-dotiertes Zinkoxid (aluminum doped zinc oxide, AZO)verwendet. Im Rahmen dieser Arbeit wurden vertieft verschiedene Parameter untersucht, die bei der Präparation von niedrigemittierenden ITO- und AZO-Funktionsschichten im Hinblick auf die Optimierung ihrer infrarot-optischen und elektrischen Eigenschaften sowie ihrer Transmission im sichtbaren Spektralbereich von Bedeutung sind. Neben der Sol-Zusammensetzung von klassischen Sol-Gel-ITO-Beschichtungslösungen wurden auch die Beschichtungs- und Ausheizparameter bei der Herstellung von klassischen Sol-Gel-ITO- sowie -AZO-Funktionsschichten charakterisiert und optimiert. Bei den klassischen Sol-Gel- ITO-Funktionsschichten konnte als ein wesentliches Ergebnis der Arbeit der Gesamtemissionsgrad um 0.18 auf 0.17, bei in etwa gleichbleibenden visuellen Transmissionsgraden und elektrischen Flächenwiderständen, reduziert werden, wenn anstelle von (optimierten) Mehrfach-Beschichtungen Einfach-Beschichtungen mit einer schnelleren Ziehgeschwindigkeit anhand des Dip-Coating-Verfahrens hergestellt wurden. Mit einer klassischen Sol-Gel-ITO-Einfach-Beschichtung, die mit einer deutlich erhöhten Ziehgeschwindigkeit von 600 mm/min gedippt wurde, konnte mit einem Wert von 0.17 der kleinste Gesamtemissionsgrad dieser Arbeit erzielt werden. Die Gesamtemissionsgrade und elektrischen Flächenwiderstände von klassischen Sol-Gel-AZOFunktionsschichten konnten mit dem in dieser Arbeit optimierten Endheizprozess deutlich gesenkt werden. Bei Neunfach-AZO-Beschichtungen konnten der Gesamtemissionsgrad um 0.34 auf 0.50 und der elektrische Flächenwiderstand um knapp 89 % auf 65 Ω/sq verringert werden. Anhand von Hall-Messungen konnte darüber hinaus nachgewiesen werden, dass mit dem optimierten Endheizprozess, der eine erhöhte Temperatur während der Reduzierung der Schichten aufweist, mit N = 4.3·1019 cm-3 eine etwa doppelt so hohe Ladungsträgerdichte und mit µ = 18.7 cm2/Vs eine etwa drei Mal so große Beweglichkeit in den Schichten generiert wurden, im Vergleich zu jenen Schichten, die nach dem alten Endheizprozess ausgehärtet wurden. Das deutet darauf hin, dass bei dem optimierten Heizschema sowohl mehr Sauerstofffehlstellen und damit eine höhere Ladungsträgerdichte als auch Funktionsschichten mit einem höheren Kristallisationsgrad und damit einhergehend einer höheren Beweglichkeit ausgebildet werden. Ein Großteil der vorliegenden Arbeit behandelt die Optimierung und Charakterisierung von ITO-Nanopartikel-Solen bzw. -Funktionsschichten. Neben den verwendeten Nanopartikeln, dem Dispergierungsprozess, der Beschichtungsart sowie der jeweiligen Beschichtungsparameter und der Nachbehandlung der Funktionsschichten, wurde erstmals in einer ausführlichen Parameterstudie die Sol-Zusammensetzung im Hinblick auf die Optimierung der infrarot-optischen und elektrischen Eigenschaften der applizierten Funktionsschichten untersucht. Dabei wurde insbesondere der Einfluss der verwendeten Stabilisatoren sowie der verwendeten Lösungsmittel auf die Schichteigenschaften charakterisiert. Im Rahmen dieser Arbeit wird dargelegt, dass die exakte Zusammensetzung der Nanopartikel-Sole einen große Rolle spielt und die Wahl des verwendeten Lösungsmittels im Sol einen größeren Einfluss auf den Gesamtemissionsgrad und die elektrischen Flächenwiderstände der applizierten Schichten hat als die Wahl des verwendeten Stabilisators. Allerdings wird auch gezeigt, dass keine pauschalen Aussagen darüber getroffen werden können, welcher Stabilisator oder welches Lösungsmittel in den Nanopartikel-Solen zu Funktionsschichten mit kleinen Gesamtemissionsgraden und elektrischen Flächenwiderständen führt. Stattdessen muss jede einzelne Kombination von verwendetem Stabilisator und Lösungsmittel empirisch getestet werden, da jede Kombination zu Funktionsschichten mit anderen Eigenschaften führt. Zudem konnte im Rahmen dieser Arbeit erstmals stabile AZO-Nanopartikel-Sole über verschiedene Rezepte hergestellt werden. Neben der Optimierung und Charakterisierung von ITO- und AZO- klassischen Sol-Gel- sowie Nanopartikel-Solen und -Funktionsschichten wurden auch die infrarot-optischen Eigenschaften dieser Schichten modelliert, um die optischen Konstanten sowie die Schichtdicken zu bestimmen. Darüber hinaus wurden auch kommerziell erhältliche, gesputterte ITO- und AZO-Funktionsschichten modelliert. Die Reflexionsgrade dieser drei Funktionsschicht-Typen wurden einerseits ausschließlich mit dem Drude-Modell anhand eines selbstgeschriebenen Programmes in Sage modelliert, und andererseits mit einem komplexeren Fit-Modell, welches in der kommerziellen Software SCOUT aus dem erweiterten Drude-Modell, einem Kim-Oszillator sowie dem OJL-Modell aufgebaut wurde. In diesem Fit-Modell werden auch die Einflüsse der Glas-Substrate auf die Reflexionsgrade der applizierten Funktionsschichten berücksichtigt und es können die optischen Konstanten sowie die Dicken der Schichten ermittelt werden. Darüber hinaus wurde im Rahmen dieser Arbeit ein Ellipsometer installiert und geeignete Fit-Modelle entwickelt, anhand derer die Ellipsometer-Messungen ausgewertet und die optischen Konstanten sowie Schichtdicken der präparierten Schichten bestimmt werden können. N2 - The aim of this thesis is on the one hand the synthesis of sol-gel functional layers on the basis of transparent conducting oxides (TCOs) and on the other hand a comprehensive infrared-optical and electrical characterization as well as modeling of these layers. Spectrally selective coatings have been prepared with the classical sol-gel route as well as with redispersed nanoparticle sols on glass and polycarbonate substrates and these coatings should have a reflectance in the infrared spectral range which is as high as possible and therefore a total emittance and an electrical sheet resistance which are as small as possible. For this purpose tin doped indium oxide (ITO) and aluminum doped zinc oxide (AZO) have been used as doped metal oxides. Within this thesis several parameters have been investigated in-depth which play a decisive role in the preparation of ITO and AZO low emissivity coatings, in order to prepare such coatings with optimized infrared-optical and electrical properties as well as visual transmittances. Besides the composition of the classical sol-gel ITO coating solutions, also the parameters of the coating as well as the heating processes have been characterized and optimized in the manufacture of classical sol-gel ITO and AZO functional layers. As a significant result the total emittance of classical sol-gel ITO functional layers could be reduced by 0.18 to 0.17 while the visual transmittance and electrical sheet resistances stay approximately the same, if just one-layered coatings are applied with a higher withdrawal speed with the dip coating technique instead of (optimized) multi-layered coatings. With a classical sol-gel ITO single coating, which has been produced with a withdrawal speed of 600 mm/min, the smallest total emittance of this work could be realized with 0.17. The total emittances and electrical sheet resistances of classical sol-gel AZO functional layers were reduced drastically in this work by using the optimized final heating process. The total emittance could be reduced by 0.34 to 0.50 and the electrical sheet resistance by 89 % to 65Ω/sq with a coating which consists of nine single layers. On the basis of Hall measurements it has been shown that coatings which were treated with the optimized heating process (which exhibits a higher temperature during the reducing treatment of the coatings) show a higher charge carrier density as well as a higher mobility than those coatings treated with the old heating process. With the optimized heating process the ninelayered coatings exhibit a charge carrier density of N = 4.3·1019 cm-3 which is approximately twice as high and a mobility of µ = 18.7 cm2/Vs which is about three times higher than the values of coatings which have been heated with the old process. This indicates that with the optimized heating process more oxygen vacancies and, associated therewith a higher charge carrier density as well as a higher crystallinity of the layer and thus a higher mobility are generated. One focus of the presented work lies on the optimization and characterization of ITO redispersed nanoparticle sols and functional layers respectively. In addition to the used nanoparticles, the dispersion process, the coating type with the respective coating parameters and post-treatments of the functional layers also a detailed parameter study has been done. This parameter study examined the composition of the nanoparticle sols with a view to the optimization of the infrared-optical and electrical properties of the applied coatings. The coating properties have been studied in particularly with regard to the influence of the used stabilizers and solvents respectively. In this work it will be shown, that the accurate composition of the nanoparticle sols plays a decisive role and the choice of the used solvents has a bigger impact on the coating properties than the choice of the used stabilizers. However, it will also be shown, that no general statements can be made which stabilizers or which solvents within the sols lead to coatings which have small total emittances and small electrical sheet resistances. Instead each combination of used stabilizer and used solvent has to be empirically tested since each combination leads to coatings with different properties. Furthermore stable AZO nanoparticle sols based on several formulas have been developed for the first time. Besides the optimization and characterization of ITO and AZO classical sol-gel as well as nanoparticle sols and functional layers, also the infrared-optical properties of these coatings have been modeled in order to determine the optical constants as well as the coating thicknesses. Furthermore also commercially available sputtered ITO and AZO coatings have been modeled. The reflectances of these three types of coatings have been modeled on the one hand by using only the Drude model within a self-written program in the software Sage. On the other hand these coatings have been modeled with more complex fitting models within the commercially available software called SCOUT. These more complex fitting models consist of the extended Drude model, a Kim oscillator and an OJL model and they also take the influence of the glass substrates on the reflectances of the applied coatings into account. By using these fitting models, the optical constants of the applied coatings and the coating thicknesses can be obtained. In addition an Ellipsometer has been installed as part of this work and suitable fitting models have been developed. These models can be used for analyzing the Ellipsometer measurements in order to determine the optical constants and the coating thicknesses of the coatings applied. KW - Transparent-leitendes Oxid KW - Sol-Gel-Verfahren KW - Beschichtung KW - Funktionswerkstoff KW - Sol-Gel-Synthese KW - ITO KW - AZO KW - redispergierte Nanopartikel-Sole KW - Drude-Modell KW - sol gel KW - redispersed nanoparticle sol KW - Drude model KW - Charakterisierung KW - Modellierung KW - Physikalische Schicht KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112416 ER - TY - THES A1 - Kügel, Jens T1 - 3d-Übergangsmetallphthalocyanin-Moleküle auf Metalloberflächen: Der Einfluss der d-Orbitalbesetzung T1 - 3d transition metal phthalocyanine molecules on metal surfaces - influence of the d-level-occupation N2 - Im Rahmen dieser Dissertation wird die Untersuchung von 3d-Übergangsmetallphthalocyanin- Molekülen (ÜMPc) – quadratisch-planaren organischen Molekülen, welche im Zentrum ein 3d-Übergangsmetallion besitzen – auf metallischen Oberflächen vorgestellt. Der Fokus dieser Arbeit liegt dabei auf dem Einfluss der d-Orbitalbesetzung auf die magnetischen, elektronischen und strukturellen Eigenschaften der adsorbierten Moleküle, die mit Hilfe der Rastertunnelmikroskopie und -spektroskopie charakterisiert wurden. Die gewonnen Ergebnisse werden zum Teil mit theoretischen Berechnungen analysiert und interpretiert. Die erste Hälfte der experimentellen Auswertung behandelt die Untersuchung dieser Moleküle auf Ag(001) in Hinblick auf die Existenz einer magnetischen Wechselwirkung, bei der ein unkompensiertes magnetisches Moment des Moleküls durch die Substratelektronen abgeschirmt wird. Dieser Effekt wird als Kondo-Abschirmung bezeichnet und erzeugt in der Zustandsdichte des Moleküls eine Resonanz am Fermi-Niveau. Die Messungen zeigen, dass diese Resonanz ausschließlich am Zentralion von MnPc vorgefunden wird, wohingegen sie bei allen anderen 3d-Übergangsmetallphthalocyanin-Molekülen, die eine höhere d-Orbitalbesetzung besitzen, nicht vorhanden ist. Anhand theoretischer Berechnungen kann die Ursache für dieses Verhalten darauf zurückgeführt werden, dass von allen d-Orbitalen einzig das dz2-Orbital mit dem Substrat geeignet hybridisiert, um eine Kondo-Abschirmung zu erzeugen. Da ausschließlich MnPc einen unkompensierten Spin in diesem Orbital besitzt, kann die An- bzw. Abwesenheit des Kondo-Effekts auf die unterschiedliche Besetzung des dz2-Orbitals zurückgeführt werden. Neben der eben erwähnten Kondo-Resonanz ist bei MnPc ein weiteres Merkmal am Fermi- Niveau überlagert. Durch die Analyse der räumlichen Verteilung, den Vergleich mit anderen Molekülen und der Manipulation des MnPc-Moleküls kann gezeigt werden, dass es sich bei diesem Merkmal um einen d-Orbitalzustand handelt. Die Manipulation des Moleküls durch gezieltes Entfernen von Wasserstoffatomen ermöglicht darüber hinaus die Stärke der Kondo-Abschirmung zu beeinflussen. In der zweiten Hälfte der experimentellen Auswertung werden Moleküle auf bismutinduzierten Oberflächenlegierungen der Edelmetalle Cu(111) und Ag(111) untersucht. Diese Legierungen zeichnen sich durch einen ausgeprägten Rashba-Effekt aus, der durch eine Aufspaltung der Parabeldispersion und Aufhebung der Spin-Entartung im zweidimensionalen Elektronengas der Oberflächenlegierung charakterisiert ist. Das Wachstumsverhalten von CuPc und MnPc auf diesen Oberflächen zeigt ein sehr gegensätzliches Verhalten. Während bei MnPc die Substrat-Molekül-Wechselwirkung dominant ist, wodurch diese Moleküle immer einen festen Adsorptionsplatz auf der Oberfläche besitzen, ist diese Wechselwirkung bei CuPc schwach ausgeprägt. Aus diesem Grund wandern die CuPc-Moleküle zu den Stufenkanten und bilden Cluster. Das unterschiedliche Wachstumsverhalten der Moleküle lässt sich auf die partiell-gefüllten d-Orbitale von MnPc zurückführen, die aus der Molekülebene ragen, mit dem Substrat hybridisieren und damit das Molekül an das Substrat binden. Bei CuPc hingegen sind diese d-Orbitale gefüllt und die Hybridisierung kann nicht stattfinden. Im letzten Abschnitt werden die elektronischen und magnetischen Eigenschaften von MnPc auf diesen Substraten behandelt, die einige Besonderheiten aufweisen. So bildet sich durch die Adsorption des Moleküls auf den Oberflächen eine Grenzschichtresonanz aus, die eine partielle Füllung erkennen lässt. Spektroskopiedaten, aufgenommen am Ort der Grenzschichtresonanz, weisen eine symmetrisch um das Fermi-Niveau aufgespaltene Resonanz auf. Die Intensität der unter- und oberhalb der Fermi-Energie befindlichen Resonanz zeigen dabei ein komplementäres Verhalten bzgl. der jeweiligen Lage auf der Grenzschichtresonanz: An den Orten, an denen die Resonanz unterhalb des Fermi-Niveaus ihre maximale Intensität besitzt, ist die Resonanz oberhalb des Fermi-Niveaus nicht vorhanden und umgekehrt. Diese experimentellen Beobachtungen werden mit einem Modellansatz erklärt, welcher die Wirkung eines effektiven Magnetfeldes und eine Spin-Filterung postuliert. N2 - In the framework of this thesis, the investigation of 3d-transition metal phthalocyanine molecules (TM Pc) on metallic surfaces is presented. These molecules possess a square planar structure with a 3d transition metal ion in their center. The main focus of this work concentrates on the influence of the d-level-occupation on the magnetic, electronic and structural properties of the molecules, which are characterized by scanning tunneling microscopy and spectroscopy. The achieved results are partly analyzed and interpreted by theoretical calculations. The first half of this thesis deals with the investigation of TMPc molecules on Ag(001) and the existence of the so-called Kondo effect. This magnetic interaction, which is caused by the screening of an uncompensated magnetic moment of the molecule by the conduction electrons of the substrate, creates a resonance in the density of states close to the Fermi level. The results show, that this resonance is only present at the central metal ion of MnPc, whereas it is absent in the case of all the other 3d transition metal phthalocyanine molecules with a higher d-level occupation. Theoretical calculations indicate that the origin of this behavior can be explained by the fact that out of five d-orbitals only the dz2-orbital can sufficiently hybridize with the substrate to form a Kondo screening channel. As MnPc is the only molecule with an uncompensated spin in this orbital, the presence and absence of a Kondo resonance can be explained by the different occupation of the dz2-orbital. Besides the aforementioned Kondo resonance, another superimposed feature close to the Fermi energy was observed for MnPc. By analyzing the spatial distribution of the features, by comparing the spectroscopy curves of different molecules and by manipulating the MnPc molecule, this feature can be assigned to a d-orbital state. With the manipulation of the MnPc, which was achieved by removing hydrogen atoms of the molecule, the strength of the Kondo screening can be tuned. The second half of the experimental analysis deals with the molecular investigation on bismuth–induced surface alloys of the noble metal crystals Cu(111) and Ag(111). These surface alloys exhibit a pronounced Rashba effect, which splits the parabolic dispersion and lifts the spin degeneracy of the two-dimensional electron gas. On these surfaces, the growth behavior of CuPc and MnPc is very different. While the substrate-molecule–interaction dominates in the case of MnPc, leading to a specific and robust adsorption site of the molecule, this interaction is only weakly present in the case of CuPc. As a result, the CuPc molecules are able to move to the step edges and form clusters. This difference can be attributed to the partial filling of the d-orbitals in the case of MnPc, which protrude out of the molecular plane, hybridize with the substrate and bind the molecule to the substrate. Contrary, in the case of CuPc these orbitals are completely filled, which prevents the hybridization between the d-orbital and the substrate. In the last section, the electronic and magnetic properties of MnPc will be presented, which show some peculiar features. Due to adsorption of the molecule to the surface, an interface resonance with a partial occupancy is created. The spectroscopic data taken at the interface resonance indicate the existence of a split resonance arranged symmetrically with respect to the Fermi energy. The intensity of the occupied and unoccupied resonance show a complementary behavior regarding different positions of the interface resonance. At the positions, where the resonance in the occupied energy regime shows a maximum in intensity, the resonance in the unoccupied states is absent and vice versa. These experimental findings will be explained by a model approach, which postulates the influence of an effective magnetic field and a spin-filtering component. KW - Phthalocyanin KW - Rastertunnelmikroskop KW - Rastertunnelmikroskopie KW - Kondo-Effekt KW - Rashba-Effekt KW - Tieftemperatur-Rastertunnelmikroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121059 ER - TY - THES A1 - Münzhuber, Franz T1 - Magnetometrie mit Diamant T1 - Magnetometry with Diamond N2 - Gegenstand der Arbeit ist die Magnetometrie mit Stickstoff-Fehlstellen-Zentren im Diamantgitter und die Entwicklung eines Rastersondenmagnetometers auf Basis eines Ensembles dieser Defektzentren. Ein solches Instrument verspricht eine bislang nicht erreichte Kombination von Feldsensitivität und räumlicher Auflösung während einer Magnetfeldmessung, und kann damit einen wichtigen Beitrag für das Verständnis von magnetischen Systemen und Phänomenen liefern. Die Arbeit widmet sich zunächst dem Verständnis der elektronischen Zustände des Defekts, und wie diese optisch untersucht werden können. Gleichzeitige Anregung der Zentren durch sichtbares Licht und elektromagnetischer Strahlung im Bereich von Mikrowellenfrequenzen machen es möglich, die elektronische Spinstruktur des Defekts zu messen und zu manipulieren. Dadurch kann direkt der Einfluss von externen Magnetfeldern auf die Energie der Spinzustände ausgelesen werden. Die quantenmechanischen Auswahlregeln der verschiedenen Anregungen können für eine selektive Anregung der Zentren entlang einer bestimmten kristallographischen Achse verwendet werden. Damit kann eine Ensemble von Defekten zur Vektormagnetometrie, ohne auf ein zusätzliches äußeres Magnetfeld angewiesen zu sein, welches die untersuchte Probe nachhaltig beeinflussen kann. Anschließend wird die Entwicklung einer geeigneten Mikrowellenantenne dargestellt, die in einem späteren Rastersondenexperiment mit den Defekten auf geringem Raum eingesetzt werden kann. Außerdem werden die einzelnen Schritte präsentiert, wie die Farbzentren im Diamantgitter erzeugt werden und aus großen Diamantplättchen Nanostrukturen erzeugt werden, die als Rasterkraftsonden eingesetzt werden können. Die fertigen Sonden können in einem modularen Rasterkraftaufbau verwendet werden, der über einen zusätzlichen optischen Zugang verfügt, sodass die Information des Spinsensors ausgelesen werden kann. In verschiedenen Testexperimenten wird die Funktionsweise des gesamten Apparats demonstriert. N2 - The present thesis demonstrates the basic principles of magnetometry with color centers in the diamond lattice called nitrogen-vacancy (NV) centers, and how these can be applied in a scanning probe magnetometer by using nanostructured diamond samples. The combination of high sensitivity magnetic field sensors, small detection volumes and a spatial precision in the nanometer range will lead to an unprecedented tool to investigate magnetic systems and phenomenons. The thesis explores the electronic structure of the defects by means of optical spectroscopy. The interaction between the electron spin and external electromagnetic fields with microwave frequencies allows for manipulation of the spin states, whose energies are also sensitive to the magnetic field. Combined optical and microwave excitation thus offers a way to measure the local magnetic field by using the crystal defect as a probe. The thesis presents further a method to distinguish between spin signals of the NV centers along the four crystallographic equivalent axes. This enables vector magnetometry with an ensemble of NV centers which is otherwise only achievable with help of an additional external bias magnetic field, but which can undesirably influence the investigated samples. The development of an appropriate microwave antenna is demonstrated, which can be used for manipulating the electron spin of the NV center in a multi-dimensional scanning probe experiment. The thesis illustrates further how NV centers are created in diamond samples and how diamond structures in the nanometer range can be fabricated in a top-down process. In a final step, a nanostructured diamond cantilever is introduced into a self-designed, pre-characterized atomic force microscope setup with optical access for electron spin initialization and read-out. Its functionality is demonstrated in several experiments. KW - Diamant KW - Gitterbaufehler KW - Magnetfeldsensor KW - Magnetometrie KW - Quantensensor KW - Defektspektroskopie KW - Hochauflösendes Verfahren KW - Feldstärkemessung KW - ODMR-Spektroskopie KW - Quantenspinsystem Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127601 ER - TY - THES A1 - Steindamm, Andreas T1 - Exzitonische Verlustmechanismen in organischen Bilagen-Solarzellen T1 - Excitonic loss mechanisms in organic bilayer solar cells N2 - Um die Wirkungsgrade organischer Solarzellen weiter zu steigern, ist ein Verständnis der auftretenden Verlustmechanismen entscheidend. Im Vergleich zu anorganischen photovoltaischen Zellen sind in den organischen Halbleitern die durch Absorption erzeugten Elektron-Loch-Paare, die als Exzitonen bezeichnet werden, sehr viel stärker gebunden. Daher müssen sie an einer Heterogrenzfläche, gebildet durch ein Donator- und ein Akzeptormaterial, in freie Ladungsträger getrennt werden. Mit dem erforderlichen Transportweg an die Heterogrenzschicht sind Rekombinationsverluste der exzitonischen Anregungen verbunden, die aus einer Vielzahl unterschiedlicher Prozesse resultieren und einen der Hauptverlustkanäle in organischen Solarzellen darstellen. Aus diesem Grund wird der Fokus dieser Arbeit auf die Charakterisierung und mögliche Reduzierung solcher exzitonischen Verlustmechanismen gelegt. Als Modellsystem wird dazu eine planare Bilagen-Struktur auf Basis des Donatormaterials Diindenoperylen (DIP) und des Akzeptors Fulleren C60 verwendet. Durch die Kombination von elektrischen und spektroskopischen Messmethoden werden unterschiedliche exzitonische Verlustmechanismen in den aktiven Schichten charakterisiert und die zugrunde liegenden mikroskopischen Ursachen diskutiert. Dazu wird zuerst auf die strukturellen, optischen und elektrischen Eigenschaften von DIP/C60-Solarzellen eingegangen. In einem zweiten Abschnitt werden die mikroskopischen Einflüsse einer Exzitonen blockierenden Lage (EBL, exciton blocking layer) aus Bathophenanthrolin (BPhen) durch eine komplementäre Charakterisierung von Photolumineszenz und elektrischen Parametern der Solarzellen untersucht, wobei auch die Notwendigkeit der EBL zur Unterbindung von Metalleinlagerungen in den aktiven organischen Schichten analysiert wird. Die anschließende Studie der Intensitäts- und Temperaturabhängigkeit der j(U)-Kennlinien gibt Aufschluss über die intrinsischen Zellparameter sowie die Rekombinationsmechanismen von Ladungsträgern in den aktiven Schichten. Ferner werden durch temperaturabhängige spektroskopische Untersuchungen der Photo- und Elektrolumineszenz der Solarzellen Informationen über die elektronischen Zustände der DIP-Schicht erlangt, die für Rekombinationsverluste der generierten Exzitonen verantwortlich sind. Zusätzlich werden Raman-Messungen an den Solarzellen und Einzelschichten diskutiert. In einer abschließenden Studie werden exzitonische Verluste unter Arbeitsbedingungen der Solarzelle durch Ladungsträgerwechselwirkungen in der Donator-Schicht quantifiziert. In dieser Arbeit konnten verschiedene relevante Verlustprozesse in organischen Solarzellen reduziert werden. Durch die Identifizierung der mikroskopischen Ursachen dieser Verluste wurde eine wichtige Voraussetzung für eine weitere Steigerung der Leistungseffizienz geschaffen. N2 - To increase the efficiencies of organic solar cells, understanding of the occurring loss mechanisms is crucial. In comparison to inorganic photovoltaic cells the electron hole pairs, referred to as excitons, are bound much stronger in organic semiconductors. Therefore dissociation into free charge carriers takes place at a hetero interface of a donor and an acceptor material. The necessary diffusion path to this interface entails recombination loss mechanisms resulting from diverse processes which represent one of the main loss channels in organic solar cells. Thus the focus of this work is set on the characterization and potential reduction of such excitonic loss mechanisms. As a model system planar heterojunction solar cells consisting of diindenoperylene (DIP) as donor and fullerene C60 as acceptor material were used. By combining electrical with spectroscopic measurement techniques diverse excitonic loss mechanisms in the active layers are characterized and the underlying microscopic processes are discussed. Firstly the structural, optical and electrical properties of the DIP/C60 solar cells are observed. In a second section the microscopic effects of an exciton blocking layer (EBL) consisting of bathophenanthroline (BPhen) are investigated by a complementary analysis of photoluminescence and electrical parameters of the solar cells. In doing so also metal penetration into the active organic layers is analyzed and effectively suppressed. The following study of intensity and temperature dependent j(V) characteristics reveals intrinsic cell parameters as well as recombination mechanisms of charge carriers in the active layers. Moreover information about the electronic states of the DIP layer responsible for recombination losses is obtained by temperature dependent spectroscopic analyses of photo- and electroluminescence of the solar cells. Additionally Raman spectra of solar cells and the individual organic thin films are discussed. Finally excitonic losses in solar cells at working conditions due to charge carrier interaction are quantified for the donor layer. During this work diverse relevant loss mechanisms in organic solar cells could be reduced. By identifying the microscopic origins of such losses an important prerequisite was set for further power efficiency enhancement of organic photovoltaic cells. KW - Organische Solarzelle KW - Exziton KW - Diindenoperylen KW - diindenoperylene KW - C60 KW - Bathophenanthrolin KW - bathophenanthroline KW - Bilagen-Solarzelle KW - exciton blocking layer KW - Rekombination KW - Photolumineszenz KW - Elektrolumineszenz KW - Raman-Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124002 ER - TY - THES A1 - Weick, Stefan T1 - Retrospektive Bewegungskorrektur zur hochaufgelösten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie T1 - Retrospective Motion Correction for High Resolution Magnetic Resonance Imaging of the Human Lung N2 - Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Auflösung ausreichend Signal für eine verlässliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten nötig. Um die Untersuchung für den Patienten angenehmer zu gestalten oder auf Grund der eingeschränkten Fähigkeit eines Atemstopps überhaupt erst zu ermöglichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuführen. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeinträchtigen und daher möglichst vermieden werden müssen. Für eine Bewegungskompensation der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion kann durch externe Messgeräte (Atemgurt oder Spirometer) oder durch eine zusätzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile dieser Methoden bestehen darin, dass die Bewegung während der Atmung nicht direkt verfolgt wird, dass elektronische Messgeräte in die Nähe des Tomographen gebracht werden und das die Patienten zusätzlich vorbereitet und eingeschränkt werden. Des Weiteren erfordert eine zusätzliche Anregung extra Messzeit und kann unter Umständen die Magnetisierung auf unterwünschte Weise beeinflussen. Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen, wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal). Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten Spulenelement detektiert werden können. Bewegt sich beispielsweise die Leber bedingt durch die Atmung in den Sensitivitätsbereich eines Spulenelementes, wird ein stärkeres DC Signal detektiert werden. Je nach Positionierung auf dem Körper kann so die Atembewegung mit einzelnen räumlich lokalisierten Spulenelementen nachverfolgt werden. Am DC Signalverlauf des für die Bewegungskorrektur ausgewählten Spulenelementes sind dann periodische Signalschwankungen zu erkennen. Zusätzlich können aus dem Verlauf Expirations- von Inspirationszuständen unterschieden werden, da sich Endexpirationszustände im Regelfall durch eine längere Verweildauer auszeichnen. Grundsätzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit T∗2 des Lungengewebes fällt das Signal nach der RF Anregung sehr schnell ab. Um möglichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen werden. Dieser Ansatz führt zu einer Verkürzung der Echozeit TE um 0.3 ms und damit zu einem SNR Gewinn von etwa 20 %. Gleichzeitig ist das verbleibende Signal nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur der Daten (Navigation) zu ermöglichen. Um eine retrospektive Bewegungskorrektur durchführen zu können, müssen Akzeptanzbedingungen (Schwellenwerte) für die Datenauswahl festgelegt werden. Bei der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die Rekonstruktionen durch einen scharfen Übergang zwischen Lunge und Diaphragma aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig erhöht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies führt zu Einfaltungsartefakten, die in Form von gestörten Bildintensitäten in den Rekonstruktionen zu sehen sind und die diagnostische Aussagekraft einschränken. Um Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gewählt werden, dass nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung lässt sich ein maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen sich die Rekonstruktionen durch erhöhtes Signal und das vermehrte Auftreten von Bewegungsartefakten aus. In diesem Fall müsste der Arzt entscheiden, ob Bewegungsartefakte die Diagnostik zu stark beeinflussen. Wählt man den Schwellenwert so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erhält man Rekonstruktionen die sich durch einen scharfen Diaphragmaübergang auszeichnen und in denen noch kleinste Gefäße auch in der Nähe des Diaphragmas deutlich zu erkennen sind. Hierfür haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 % führen als günstig erwiesen. Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern, muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird gewährleistet, dass für die letztendliche Rekonstruktion ausreichend Daten zur Verfügung stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion hochaufgelöster Lungendatensätze. Weiterhin führt das Mitteln von mehrfach akzeptierten Daten zu einer Unterdrückung der sogenannten Ghost Artefakte, was am Beispiel der Herzbewegung in der Arbeit gezeigt wird. Da die Messungen unter freier Atmung durchgeführt werden und keine zusätzlichen externen Messgeräte angeschlossen werden müssen, stellte die Untersuchung für die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen lässt. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben Probanden auch an Patienten demonstriert. Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden muss, wiederholt sich auch die Abfolge der für die Bildgebung verantwortlichen Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt, kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen kommen. Dies führt dazu, dass auch nach vielen wiederholten Messungen immer noch größere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in den Rekonstruktionen führt. Dies konnte im Falle der konventionellen Bewegungskorrektur in den Gatingmasken, die die Verteilung und Häufigkeit der einzelnen akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden. Da eine vorsätzliche Unterbrechung der Atemperiodizität (der Patient wird dazu angehalten, seine Atemfrequenz während der Messung absichtlich zu variieren) zur Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die Periodizität in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde dies durch eine quasizufällige Auswahl von Phasen- und Partitionskodiergradienten erreicht, da Quasizufallszahlen so generiert werden, dass sie unabhängig von ihrer Anzahl einen Raum möglichst gleichförmig ausfüllen. Die quasizufällige Datenaufnahme führt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der Bewegungskorrektur homogen im k-Raum verteilt auftreten. Vergleicht man das auftreten von Ghosting zeichnen sich die quasizufälligen Rekonstruktionen im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach akzeptierter Linien im k-Raum zurückzuführen. Die homogenere Verteilung von fehlenden Linien im k-Raum führt weiterhin zu einer wesentlich stabileren Rekonstruktion fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa). Dies wird umso deutlicher je höher der Anteil fehlender Linien im k-Raum wird. Im Falle der konventionellen Datenaufnahme werden die zusammenhängenden Bereiche fehlender Linien immer größer, was eine erfolgreiche Rekonstruktion mit iterativem Grappa unmöglich macht. Im Falle der quasizufälligen Datenaufnahme dagegen können auch Datensätze in denen 40% der Linien fehlen einfaltungsartefaktfrei rekonstruiert werden. Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilität der iterativen Grappa Rekonstruktion im Falle der quasizufälligen Datenaufnahme für eine erhebliche Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen Datensatzes der menschlichen Lunge mit einer Auflösung von 2 x 2 x 5 mm3 möglich. Des Weiteren erlaubt die quasizufällige Datenaufnahme in Kombination mit iterativem Grappa die Rekonstruktion von Datensätzen unterschiedlicher Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit von 15min. wurden 19 unterschiedliche Atemzustände rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 % lag. Im Falle der konventionellen Datenaufnahme wäre eine wesentlich längere Messzeit nötig gewesen, um ähnliche Ergebnisse zu erhalten. Zum Schluss soll noch ein Ausblick über mögliche Weiterentwicklungen und Anwendungsmöglichkeiten, die sich aus den Erkenntnissen dieser Arbeit ergeben haben, gegeben werden. So könnte das quasizufällige Aufnahmeschema um eine Dichtegewichtung erweitert werden. Hierbei würde der zentrale k-Raum Bereich etwas häufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden, um größere Lücken im k-Raum zu vermeiden. Darüber hinaus könnte die vorgestellte Methode der Bewegungskompensation auch für die Untersuchung anderer Organe oder Körperteile verwendet werden. Voraussetzung wäre lediglich das Vorhandensein dezidierter Spulenanordnungen, mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische Bildgebung des frei und aktiv bewegten Knies möglich, wobei zwischen Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales unterschieden werden kann. Dies kann zusätzliche Diagnoseinformationen liefern oder für Verlaufskontrollen nach Operationen benutzt werden [15]. Eine Weiterentwicklung mit hohem klinischen Potential könnte die Kombination der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi- Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert werden. Dies ermöglicht eine bewegungskorrigierte voxelweise Bestimmung der transversalen Relaxationszeit T∗2 in hoher räumlicher Auflösung. Unter zusätzlicher Sauerstoffgabe kann es zu einer Veränderung von T∗2 kommen, die auf den sogenannten BOLD Effekt (Blood Oxygen Level Dependent) zurückzuführen ist. Aus dieser Änderung könnten Rückschlüsse auf hypoxische Tumorareale gezogen werden. Da diese eine erhöhte Strahlenresistenz aufweisen, könnte auf diese Bereiche innerhalb des Tumors eine erhöhte Strahlendosis appliziert und so möglicherweise Behandlungsmisserfolge reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine mögliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls in der Bestrahlungsplanung benutzt werden. Die Lungen MRT könnte somit um eine hochaufgelöste dreidimensionale funktionelle Bildgebung erweitert werden. N2 - The goal of this work was to depict the whole lung volume by MRI in high spatial resolution. To obtain sufficient signal for a reliable diagnosis despite the inherently low proton density of the lung and the requested high spatial resolution, total acquisition times of a few minutes are mandatory. Simultaneously, the measurements should be performed under free breathing conditions making patient examinations more comfortable or possible for patients with limited breath holding capabilities. However, free breathing leads to motion artifacts which can severely influence the diagnostic value of the images and hence have to be avoided. To compensate for motion the prevalent breathing pattern has to be detected. This can be achieved by external measurement devices such as a respiration belt or a spirometer or by conventional navigator echoes using an additional excitation pulse. Drawbacks of these methods are that the respiratory motion is detected only indirectly, that electronic devices have to be used near the MRI machine and the patients have to be prepared and are strongly restricted. Furthermore, additional excitation pulses will prolong the total acquisition time and may affect the magnetization adversely. To overcome these limitations of motion detection in the present work, the image as well as the navigator data was acquired within one excitation of a FLASH sequence. The resulting central k-space signal (DC signal) after rephasing of all imaging gradients was used as a navigator signal. The DC signal represents the sum of all signals that can be detected with a single receiver coil element. If the liver is for example moving in the sensitivity area of one coil element due to breathing, an increased DC signal will be detected. Depending on their local position on the body the locally confined coil elements are able to track respiratory motion. The time course of the DC signal of the selected coil element for respiratory motion compensation will depict periodic signal variations accordingly. Additionally, respiratory phases of expiration can be distinguished from inspiratory phases because the resting times in end-expiratory phases are usually longer compared to end-inspiratory phases. The DC signal can be acquired either before or after the actual image data acquisition within one excitation. The short T2* of the human lung tissue leads to a rapid signal decay after the excitation. As shown in this thesis, the DC signal should be acquired after the image data within one excitation. This approach allows for echo time (TE) reduction of 0.3 ms leading to a signal benefit of approximately 20 %. Simultaneously, the remaining signal after image data acquisition and rephasing of all imaging gradients is still sufficient to track respiratory motion and can therefore be used for motion compensation of the acquired data. In order to compensate for motion retrospectively, threshold values for data acceptance have to be defined. Setting the threshold value, neither too less nor too much data should be accepted. Accepting very few data leads to sharp transition between the lung and the diaphragm because not much motion is allowed in the reconstruction process. On the other hand, disturbed signal intensity can be observed because of under-sampling artifacts due to missing lines after gating. These artifacts can restrict the diagnostic value of the reconstructions. Therefore, the selected threshold value should lead to a fully sampled k-space after gating. This requirement can be used to define the maximum threshold value for data acceptance. On the contrary, accepting very much data leads to higher signal intensity but also to more distinctive motion artifacts. In this case, the physician has to decide whether the motion artifacts affect his diagnosis too much. A moderate threshold value leads to a fully sampled k-space as well as good motion artifact compensation. This results in reconstructions that are characterized by a sharp depiction of small vessels even near the diaphragm. For this, threshold values leading to a data acceptance of about 40 % turned out to be beneficial. To avoid under-sampling artifacts because of retrospective gating, the imaging volume has to be acquired several times. This ensures that enough data is available for the final reconstruction whereas multiple accepted data is averaged. Averaging is essential for the reconstruction of high resolution data sets because of the inherently low proton density of the lung. Furthermore it leads to the reduction of ghost artifacts as is shown using the example of heart motion in this work. As no external measurement devices were used and the data was acquired under free breathing conditions the examinations posed no problem for the patients within this work. It was shown so far that the DC signal in combination with retrospective gating can be used to reconstruct high resolution 3d lung data sets with a resolution of 1.6 x 1.6 x 4 mm3 within 13 min., for instance. The applicability of the presented method for motion compensation was shown for volunteers as well as patients. Since as already described the imaging volume must be acquired several times, the series of gradients for spatial encoding are repeated periodically. As the respiratory cycle is periodically as well, correlations between the repeated measurements and the breathing cycle can occur. Therefore, even after many repeated measurements large areas of missing k-space lines can remain, leading to artifacts in the reconstructions. This can be observed in the gating masks, showing the distribution of accepted and missing lines in k-space, in case of conventional motion compensation used in this work so far. To avoid the aforementioned correlations, the periodicity in the repeated acquisitions has to be interrupted because of suspending the periodic breathing pattern of patients deliberately would be a serious intervention and is therefore ineligible. This was accomplished by a quasi-random selection of the phase and partition encoding gradients as quasi-random numbers are generated to fill the space as uniformly as possible regardless of their number. Therefore, accepted lines as well as missing lines are uniformly distributed in k-space after retrospective gating. A more uniform distribution of multiple accepted k-space lines in case of quasirandom sampling leads to an improved reduction of Ghost-Artifacts compared to conventional sampling. Furthermore, the more uniform distribution of missing kspace lines leads a considerably more stable reconstruction of missing lines using parallel imaging techniques (as iterative Grappa for example). This is getting more distinct the higher the proportion of missing k-space lines is. The contiguous areas of missing k-space lines are becoming increasingly large in case of conventional sampling, making a successful reconstruction using iterative Grappa impossible. In contrast, quasi-random sampling enables for the successful reconstruction of artifact free images even when 40 % of the acquired lines were missing after retrospective gating. In addition, the stability of the iterative GRAPPA reconstructions in case of quasirandom sampling allows for a substantial reduction of the total acquisition time. Thus, an artifact free motion compensated data set of 2 x 2 x 5 mm3 resolution could be reconstructed for a measurement time of only 74s. Furthermore, quasi-random sampling in combination with iterative Grappa enables for the reconstruction of data sets of different respiratory phases from inspiration to expiration (4d imaging). Accordingly, 19 different respiratory phases could be reconstructed after 15min of data acquisition. The percentage of missing lines was between 0 and 20 %. Hence, in case of conventional sampling a considerably longer measurement time would have been required to achieve similar results. KW - Kernspintomografie KW - Retrospektive Bewegungskorrektur KW - Magnetresonanztomographie KW - Lungenbildbgebung KW - freie Atmung KW - Retrospective Motion Compensation KW - DC-Gating KW - Lung Imaging KW - free breathing KW - Lunge Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124084 ER - TY - THES A1 - Weigold, Lena T1 - Ermittlung des Zusammenhangs zwischen mechanischer Steifigkeit und Wärmetransport über das Festkörpergerüst bei hochporösen Materialien T1 - Correlation between elasticity and heat transport along the solid framework in the case of highly porous materials N2 - Ziel dieser Arbeit ist es, ein verbessertes Verständnis für den Zusammenhang zwischen mechanischer Steifigkeit und Wärmetransport über das Festkörpergerüst bei hochporösen Materialien zu erlangen. Im Fokus dieser Arbeit steht die Fragestellung, wie mechanische Steifigkeit und Wärmeleitfähigkeit bei hochporösen Materialien miteinander zusammenhängen und ob es möglich ist, diese beiden Eigenschaften durch geometrische Modifikationen der Mikrostruktur unabhängig voneinander zu verändern. Die durchgeführten Untersuchungen haben gezeigt, dass ein Großteil der mikrostrukturellen Modifikationen beide Materialeigenschaften beeinflussen und die mechanische Steifigkeit in der Regel eng mit dem Wärmetransport über das Festkörpergerüst verknüpft ist. Es konnte jedoch auch nachgewiesen werden, dass die mechanische Steifigkeit bei hochporösen Materialien nicht eindeutig mit dem Wärmetransport über das Festkörpergerüst zusammenhängt und spezifische mikrostrukturelle Modifikationen einen stärkeren Einfluss auf die mechanische Steifigkeit besitzen, als auf den Wärmetransport über das Festkörpergerüst. Umgekehrt ist diese Aussage nicht ganz so eindeutig. Die theoretische Betrachtung des Zusammenhangs zeigt, dass in die Berechnung der mechanischen Steifigkeit teils andere geometrische Strukturgrößen einfließen, als in die Berechnung des Wärmetransports über das Festkörpergerüst, so dass die mechanische Steifigkeit unabhängig von der Wärmeleitfähigkeit verändert werden kann. Es zeigt sich jedoch auch, dass die meisten strukturellen Veränderungen beide Eigenschaften beeinflussen und die mechanische Steifigkeit aufgrund der Biegedeformation der Netzwerkelemente systematisch stärker auf strukturelle Veränderungen reagiert als die Wärmeleitfähigkeit der Struktur, so dass die mechanische Steifigkeit in der Regel quadratisch mit der Wärmeleitfähigkeit des Festkörpergerüstes skaliert. Mit den Methoden der effective-media-theory lassen sich Grenzen ermitteln, innerhalb derer sich mechanische Steifigkeit und Wärmeleitfähigkeit unabhängig voneinander variieren lassen. Im experimentellen Teil der Arbeit wurden Probenserien von Polyurethan-Schäumen, Polyurea Aerogelen und organisch / anorganischen Hybrid Aerogelen herangezogen, so dass poröse Materialien mit geordneten, voll vernetzten Mikrostrukturen, mit statistisch isotropen, teilvernetzen Mikrostrukturen, sowie Mikrostrukturen mit anisotropen Charakter in die Untersuchung einbezogen werden konnten. Als Struktureigenschaften, die die mechanische Steifigkeit ungewöhnlich stark beeinflussen, konnten die Regelmäßigkeit der Struktur und der Krümmungsradius der Netzwerkelemente sicher identifiziert werden. Alle weiteren strukturellen Veränderungen führen zu dem annähernd quadratischen Zusammenhang. In einem dritten Abschnitt dieser Arbeit wird das vereinfachte Phononendiffusionsmodell herangezogen, um den Zusammenhang zwischen mechanischer Steifigkeit und Wärmetransport über das Festkörpergerüst bei Aerogelen grundlagenphysikalisch zu modellieren. Zur Diskussion werden die experimentell ermittelten Eigenschaften der isotropen Polyurea Aerogele herangezogen und eine qualitative Modellierung ihrer Schwingungszustandsdichten durchgeführt. Es konnte gezeigt werden, dass die Kombination aus Probendichte und Schallgeschwindigkeit, mit der sich die mechanische Steifigkeit berechnen lässt, unter bestimmten Randbedingungen auch die Energie und Transporteigenschaften der Phononen beschreibt, die den Wärmetransport über das Festkörpergerüst bei Aerogelen bestimmen. Die Ergebnisse dieser Arbeit lassen sich zum Beispiel heranziehen, um die Eigenschaften hochporöser Materialien für eine gegebene Anwendung durch mikrostrukturelle Modifikationen optimal zu gestalten. N2 - The objective of this thesis is to gain a fundamental understanding for the correlation between mechanical stiffness and heat transport along the solid framework in highly porous materials. This study focuses on the question, whether the elastic modulus of the structure or the solid phase thermal conductivity can be changed without affecting the other property. The performed investigation has shown that micro-structural modifications usually have an effect on both, the elastic modulus and the solid phase thermal conductivity, respectively and that these properties are strongly correlated in highly porous materials. However, at the physical level, the elastic modulus is not explicitly correlated to the heat transport along the solid framework. It was possible to identify some individual geometrical aspects that have a superior impact on the elastic modulus but only influence the thermal conductivity in a certain degree. Vice versa, geometrical aspects that only affect the heat transport along the solid phase could not be clearly identified. Structural modeling of highly ordered and of statistically isotropic porous materials is considered for a theoretical correlation between mechanical stiffness and heat transport along the solid framework in highly porous materials. Correlation is furthermore derived without taking into account any structural information. Structural modeling shows that different structural parameters are required to calculate the mechanical stiffness and the heat transport along the solid framework of a porous material, which allows for a structural decoupling of these two properties. However, most of the time, a quadratic correlation between elastic modulus and solid phase thermal conductivity is found within the models, because mechanical stiffness systematically reacts more sensitive to structural changes as the network elements are bended under mechanical load. With the help of the effective-media-theory a lower and upper bound can be derived for possible pair-combinations between material stiffness and solid phase thermal conductivity. For the experimental study of this topic polyurethane foams, polyurea aerogels and organic-anorganic hybrid aerogels are chosen as sample systems. Herewith, the study includes materials of regular, fully connected microstructures, isotropic, partly connected microstructures and anisotropic microstructures. Despite substantial structural changes, elastic modulus scales approximately quadratic with the solid phase thermal conductivity in most of the samples series investigated. Merely the overall modification of the structural regularity and the bending of the network elements up to high curvatures verifiably cause a deviation from the quadratic dependency. In a third section it is discussed, if a simplified model of phonon diffusion process can be used to derive a correlation between mechanical stiffness and heat transport in aerogels. For this study, experimentally derived results of polyurea aerogels and the qualitatively derived vibrational density of states of these materials are taken into account. Results show that the sound velocity and the density of the aerogel can be used to calculate both, mechanical stiffness and, meeting certain boundary conditions, also the energy and transport properties of the phonons that are responsible for the heat transport along the solid framework. Results may be used to design a porous material with optimal properties which are required for specific technical applications. KW - Poröser Stoff KW - Wärmeleitfähigkeit KW - Phonon KW - mechanische Steifigkeit KW - Mikrostruktur KW - porös KW - thermal conductivity KW - mechanical stiffness KW - microstructure KW - porous KW - Mikroporosität KW - Steifigkeit KW - Wärmeübertragung KW - Festkörperphysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124806 ER - TY - THES A1 - Kartäusch, Ralf T1 - Spektroskopische Flussmessung an Pflanzen mittels mobilem Magnetresonanztomographen T1 - Spectroscopic flow measurements in plants using a mobile magnetic resonance system N2 - The main objective of this dissertation was the development of a flow sensor which is specialized on flow measurements of plants. Hence, an accessible mobile magnet and the receiver/transfer hardware have been developed. Additionally, software to control the MR-console has been written. The AC-method was advanced to acquire slow flow profiles. This enables acquiring flow in plants. Additionally, in cooperation with the working group “Lipid Motobolism” of the IPK-Gatersleben studies have been carried out to measure the influence of the ear of wheat on the water transport mechanism. Furthermore, a new technique based on the Bloch-Siegert-effect has been developed which reduces the influence of eddy currents. This simplifies flow measurements that suffer heavily from eddy currents. Hardware development An accessible mobile magnet with a field strength of 0.42 T has been build. The field homogeneity is 0.5 ppm in 1 cm³. In comparison to the existing closed magnet system at the chair EP5 this is an improvement of a factor 40. Those enhancements have been achieved by an adjusted design of the magnet which has been optimized by computer simulations. The implementation of ferrite pole shoes reduced the eddy currents by a factor 7 in comparison to the usually used iron pole shoes. Therefore, phase sensitive flow measurements using fast switching magnet field gradients could be carried out. A foldable coil has been refined to achieve an accessible receiver system. This coil has been used as a transmit/receiver unit. Furthermore, the SNR of measurements in thin plant stalks was enhanced by a constructed system that could be directly wrapped around the stalk. Additionally, two systems to reduce noise in plant measurements have been developed. Those systems can reduce the noise by a factor 92. This was necessary because the longish plant stems guides electric noise from outside of the case into the receiver coil. Both noise reduction systems, the electromagnetic shielding and the common mode rejection, removed the noise to the same level. Flow measurement In the present work a refinement of the AC-method [36] enabled for the first time acquiring quantitative flow profiles. Hence, it was possible to measure slow velocity in the range of 200 µm/s. The precondition was the replacement of the sinusoidal gradient profile by a trapezoid gradient shape. Those allowed increasing the slew rate of the gradients and therefore shorten the total duration of the ramp which finally allows higher encoding strengths. Additionally, due to intervals without applied gradients, more efficient RF-pulses can be used and more data points can be acquired in an echo. The measured flow profiles correlated to the simulation results. The accurate flow profiles have been achieved by a new evaluation technique and a phase correction mechanism. The newly developed extension to imaging enabled spatially encoded spectral flow measurements. Therefore, the location of xylem and phloem can be spatially separated. In the measurement of the black alder this becomes apparent. Here the shape of dicotyledonous plants, which is described in chapter 5.1, is visible. Additionally, due to the spatial separation of the flow directions (up/down) qualitative flow measurements are possible. In pixels where opposite flow directions can spatially be resolved the difference between the left and the right side of the flow spectra yields the total flow without static water. Due to the phase corrections technique in combination with the automatically frequency calibration, long term flow measurements were possible. Therefore, the response of plants on influences like changes in the illumination have been observed in measurements over a duration of nine days. Here flow changes below 200 µm/s can be detected. Bloch-Siegert phase encoding In this work a new spatial phase encoding technique (BS-SET) using a B1-gradient in combination with far off-resonant radio frequency pulses has been demonstrated. Based on the Bloch-Siegert Shift an eddy current free B1-gradient was used to encode images and apply flow encoding. The BS-gradient induces a phase shift which depends on B1² using a constant gradient. Therefore, adapted reconstructions have been developed that provide undistorted images using this nonlinear encoding. Alternatively, a B1-gradient has been developed where the profile of the B1-field follows a square root shape. This supplies a linear phase encoding removing the need for an adapted reconstruction and enables using this technique for flow encoding. N2 - Das Ziel der Promotion war die Entwicklung eines Flusssensors mit dem Fokus auf Flussmessungen an Pflanzen. Dazu musste zunächst die Hardware in Form eines räumlich zugänglichen Magneten und einer Sende- und Empfangseinheit entworfen werden. Um die MR-Konsole ansteuern zu können, musste eine Software entwickelt werden. Die AC-Methode wurde für Flussmessungen mit niedrigen Geschwindigkeiten angepasst und die entsprechende Theorie dazu erweitert. Mit dieser weiterentwickelten AC-Methode wurde die Flussmessung an Pflanzen demonstriert. Dafür wurden im Rahmen einer Kooperation mit der Arbeitsgruppe „Lipid Motobolism“ der IPK-Gatersleben Flussstudien an Weizenpflanzen durchgeführt. Darüber hinaus wurde in dieser Arbeit eine neue Technik zur Wirbelstromvermeidung bei Permanentmagneten entwickelt, um Problemen mit diesen bei Flussmessungen entgegenzuwirken. Sensorbau Es wurde ein zugänglicher, mobiler Magnet mit einer Feldstärke von 0,42 T gebaut. Die Feldhomogenität beträgt 0,5 ppm in 1 cm³. Im Vergleich zu dem am Lehrstuhl der EP5 bestehenden, geschlossenen, mobilen Magnetsystem erreicht das in dieser Arbeit gebaute System ein 40fach homogeneres Magnetfeld. Erzielt wurden diese Verbesserungen durch ein spezielles Design, welches durch Computersimulationen sukzessiv optimiert wurde. Durch angepasste Polschuhe konnte darüber hinaus die Induktion von Wirbelströmen im Mittel um einen Faktor 7 reduziert werden, wodurch phasensensitive Flussmessungen ermöglicht wurden. Um die Zugänglichkeit zu dem Innenraum der HF-Spulen zu gewährleisten, wurde eine Klappspule weiterentwickelt und als Sende- und Empfangseinheit für den Tomographen gebaut. Ferner wurde ein System gebaut, dass direkt um die Pflanze gewickelt werden kann und sich somit für besonders dünne Pflanzenstängel eignet. Weiterhin wurden zwei Systeme zur Rauschunterdrückung für die Messungen an Pflanzen entwickelt. Dadurch konnte das Rauschen um einen Faktor 92 gesenkt werden. Dies war notwendig, weil die länglichen Pflanzen durch ihre Ausdehnung über das Gehäuse hinweg ein Rauschen in die Empfangsspule induziert haben. Die beiden Rauschunterdrückungssysteme, die elektrische Schirmung und die Gleichtaktunterdrückung, entfernten das Rauschen dabei gleichermaßen. Flussmessung Die im Rahmen der Arbeit erfolgte Weiterentwicklung der AC-Methode [102] erlaubte es erstmals mit der Methode quantitative Flussprofile aufzunehmen. In Folge dessen war es außerdem möglich Geschwindigkeiten unter 200 µm/s zu messen. Die Vorrausetzung dafür war die Implementierung von trapezförmigen Gradienten, welche kürzere Rampzeiten und eine stärkere Kodierung zulassen. Dadurch sind außerdem Intervalle ohne Gradienten realisierbar, die effizientere Refokussierungspulse und die Aufnahme mehrerer Datenpunkte ermöglichen. Die zu erwartenden und simulierten Flussprofile entsprachen den gemessenen Profilen durch die Verwendung einer neuen Auswertungstechnik. Die neu entwickelte Erweiterung zur Bildgebung ermöglicht die ortsaufgelöste, spektroskopische Flussmessung und so können die Bereiche von Xylem und Phloem voneinander getrennt werden. Dies wurde durch Messungen einer Schwarzerle gezeigt, bei der die im Abschnitt 5.1 beschriebene Struktur dikotyler Pflanzen aufgelöst werden konnte. Zusätzlich können qualitativ genauere Aussagen über die Flussgeschwindigkeit getroffen werden. Bei Messungen an Pflanzen konnte mit der optimierten AC-Methode die Flussänderungen aufgrund äußerer Einflüsse, wie der Beleuchtung, beobachtet werden. Langzeitmessungen über 9 Tage zeigten einen der Beleuchtung folgenden Flussverlauf - auch bei sehr geringen mittleren Flussänderungen von unter 200 µm/s. Bloch-Siegert Phasenkodierung Um eine Phasenkodierung ohne die Induktion von Wirbelströmen zu erhalten, wurde im Rahmen der Arbeit die ortsabhängige Phasenkodierung mittels B1-Gradienten entwickelt. Diese Technik basiert auf HF-Wechselfeldern und benutzt den sogenannten BS-Shift um einen B1-feldabhängigen Frequenzshift zu induzieren. Zwei Rekonstruktionstechniken wurden entwickelt, um die Rekonstruktion von entzerrten Bildern zu ermöglichen. Dies war notwendig, da die Kodierung mittels BS-Shift von B1² abhängt. Infolgedessen wird bei der Verwendung von konstanten HF-Gradienten eine vom Quadrat des Ortes abhängige Phasenkodierung induziert. Als Alternative zu diesem Verfahren wurde ein Gradient entwickelt, der einen wurzelförmigen Feldverlauf hat und somit die lineare Kodierung ohne angepasste Rekonstruktionstechniken ermöglicht. KW - Kernspintomografie KW - Wassertransport KW - Spektroskopische Flussmessung KW - AC Gradients KW - Pflanzen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125820 ER - TY - THES A1 - Triphan, Simon T1 - T1 und T2*-Quantifizierung in der menschlichen Lunge T1 - T1 and T2* quantification in the human lung N2 - In dieser Arbeit werden für die Anwendung in der menschlichen Lunge optimierte Methoden zur Bestimmung von T1- und T2*-Karten diskutiert: Dc-Gating ermöglicht die Quantifizierung in freier Atmung, wobei für die T1-Quantifizierung mittels Inversion Recovery eine Korrektur des dc-Signals entwickelt wurde. Dies hat den Vorteil, dass Parameterkarten aus mehreren Messungen anhand ihrer dc-Signale passend überlagert werden können. Da T1 und T2* auf unterschiedliche Art und Weise von der Sauerstoffkonzentration abhängen, verbessert dies die Möglichkeit, ΔT1- und ΔT2*- Differenzkarten aus Messungen mit unterschiedlichen O2-Konzentrationen im Atemgas zu erstellen. Die Parameterquantifizierung ist in erster Linie für die Beobachtung von Krankheitsverläufen interessant, da T1 und T2* absolute, vergleichbare Zahlen sind. Da T2* deutlich vom Atemzustand abhängt, ist es auch hierfür sinnvoll, durch Gating identische Atemzustände abzubilden. Um die unterschiedlichen Einflüsse des Sauerstoffs auf T1 und T2* besser vergleichbar zu machen, wurde in dieser Arbeit weiterhin eine kombinierte Messung für beide Parameter implementiert: Da auch diese in freier Atmung stattfindet, profitieren nicht nur die Differenzkarten von der Überlagerung der Bilder, sondern auch der Vergleich der ΔT1- und ΔT2*-Karten untereinander. Messungen mit einer konventionellen kartesischen Methode an COPD-Patienten unter Raumluft- und 100% Sauerstoffatmung ergaben bei Verwendung identischer Atemmasken ein deutlich geringeres ΔT1 als in gesunden Probanden. Dass T1 in der Lunge nicht nur von der Sauerstoffkonzentration sondern auch von der Gewebezusammensetzung und insbesondere auch dem Blutvolumenanteil abhängt, zeigte sich hierbei aber auch an den bei COPD im Mittel sehr viel kürzeren T1-Zeiten bei Raumluft. Die aufgrund emphysematischer Veränderung noch zusätzlich reduzierte Protonendichte im Parenchym kranker Lungen macht diese Messungen allerdings besonders schwierig. Die oben erwähnten Optimierungen der T1-Quantifizierung zielen daher auch darauf ab, das Signal aus der Lunge zu maximieren, um Patientenmessungen einfacher zu machen: Messungen in freier Atmung sind für Patienten nicht nur einfacher, sondern erlauben effektiv auch längere Messzeiten. Insbesondere wurde aber durch die Entwicklung einer radialen Methode die Echozeit zur Messung reduziert, um die kurze T2*-Zeit in der Lunge auszugleichen. Schließlich wurde durch Implementation einer 2D UTE Sequenz die Messung bei der kürzesten vom Scanner erlaubten Echozeit ermöglicht. Die Messungen bei ultrakurzen Echozeiten in Probanden zeigten allerdings deutlich kürzere T1-Zeiten als die zuvor gefundenen oder in der Literatur dokumentierten. In weiteren Experimenten wurde das sichtbare T1 zu mehreren Echozeiten mit Hilfe der zur kombinierten Quantifizierung entwickelten Methode bestimmt. Dabei ergab sich eine Zunahme des gemessenen T1 mit der Echozeit. Aus diesem Verhalten sowie den gefundenen kürzesten und längsten T1 lässt sich schließen, dass das intra- und extravaskuläre Lungenwasser, also Blut bzw. das umgebende Gewebe, mit unterschiedlichen T1- und T2*-Zeiten zum Signal und damit auch dem effektiven T1 beitragen. Dass das TE der Messung die Gewichtung dieser Kompartimente bestimmt, hat dabei mehrere Auswirkungen: Einerseits bedeutet dies, dass beim Vergleich von T1-Messungen in der Lunge stets auch das TE mitbetrachtet werden muss, bei dem diese durchgeführt wurden. Andererseits lässt sich die Möglichkeit, die Messung auf die unterschiedlichen Kompartimente abzustimmen, potentiell ausnutzen, um zusätzliche diagnostische Informationen zu gewinnen: Da T1 vom Blutvolumenanteil und der Gewebezusammensetzung abhängt, könnte dieser Effekt helfen, diese beiden Einflüsse zu differenzieren. Während die in dieser Arbeit beschriebenen Experimente die TE-Abhängigkeit des sichtbaren T1 in Probanden aufzeigen, liefern sie allerdings noch keine genaue Erklärung für die möglichen Ursprünge dieses Effekts. Um diese weiter zu untersuchen, könnten allerdings gezielte Phantom- und in vivo-Experimente Aufschluss geben: Ein Aufbau, der die Feldverzerrung durch luftgefüllte Alveolen in Lösungen mit entsprechenden verschiedenen Suszeptibilitäten nachbildet, reduziert den Unterschied zwischen den Kompartimenten auf T1 und χ. Eine in vivo-Messung mit möglichst großer Differenz zwischen Ex- und Inspiration hingegen könnte den Einfluss der Abstände der Kompartimente vom Gasraum aufzeigen, da die Alveolarwände in tiefer Inspiration am weitesten gedehnt und daher am dünnsten sind. N2 - In this work, methods for the local measurement of T1 and T2* maps optimized for the application in the human lungs are discussed: Quantification during free breathing was enabled by applying dc-gating, where a correction for the dc-signal acquired during T1-quantification using a inversion recovery was introduced. This is especially useful to achieve parameter maps in identical breathing states from multiple measurements using their dc-signals. Since T1 and T2* depend on the oxygen concentration through different mechanisms, this is especially interesting to produce ΔT1- and ΔT2*-difference maps at varying O2-concentrations in the breathing gas. Parameter quantification is primarily interesting for the monitoring of the courses of disease or therapy since T1 and T2* are absolute, comparable numbers. As T2* depends significantly on the respiratory state, ensuring identical states via gating is relevant there as well. To further improve the comparison of oxygen influence on T1 and T2* a method for the combined measurement of both parameters was implemented: Since this is also employs gating, not only the difference maps benefit from image coregistration, but the comparison of the ΔT1 and ΔT2* maps to each other as well. Measurements using the conventional cartesian method on COPD patients under room air and pure oxygen conditions resulted in much lower ΔT1 than in healthy volunteers when using identical oxygen masks. The much lower average T1 times at room air found there demonstrate that T1 in the lungs not only depends on the oxygen concentration but also on tissue composition and especially the blood volume fraction. Proton densities that were reduced even further due to emphysematous destruction made these measurements additionally difficult. Accordingly, the optimizations for T1 quantification mentioned above are intended to maximize signal from the lung parenchyma to improve patient measurements: Measurements during free breathing are not only easier for patients but effectively also allow for longer acquisition times. In particular the developement of a radial method provides a shorter echo time to help compensate for the short T2* in the lungs. Finally, the implementation of a 2D UTE sequence enables the measurement at the shortest echo time available on the scanner hardware. However, the measurements at ultra short echo times in volunteers showed significantly shorter T1 times than those found previously and those reported in the literature. In further experiments, the observable T1 was determined at multiple echo times using the method developed for simultaneous quantification. This revealed a gradual increase of the measured T1 with the echo time. From this behaviour as well as the shortest and longest times found, it can be concluded that the intra- and extravascular compartments of lung water, essentially blood and the surrounding tissue, contribute with different T1 and T2* times to the MR signal and thus also the effective T1. That the echo time of the measurement determines the weighting of these compartments has multiple consequences: Firstly, this means that when comparing T1 measurements in the lungs, the echo time that was used to acquire them also has to be considered. Secondly, the possiblity to focus the measurement on these different compartments might be used to gain additional diagnostic information: Since T1 depends on blood volume content and tissue composition, this effect might help to differentiate these two influences. While the experiments described in this work demonstrate the echo time dependence of the observed T1 in volunteers, they do not yet provide an explanation for the exact origins of this effect. To examine these further, appropriate phantom and in vivo experiments could be insightful: A phantom design that simulates the field distortion caused by air-filled alveoli in solutions with suitable susceptibilites would reduce the difference between the compartments to T1 and χ. A in vivo measurement with an especially large difference between ex- and inspiration could help to show the influence of the distance of the compartments from the gas space, since the alveolar walls are most dilated and thus thinnest during deep inspiration. KW - Kernspintomografie KW - Lunge KW - T2*-Relaxation KW - T1-Relaxtion KW - funktionelle Lungenbildgebung KW - MRT der Lunge KW - Spin-Gitter-Relaxation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139621 ER - TY - THES A1 - Topczak, Anna Katharina T1 - Mechanismen des exzitonischen Transports und deren Dynamik in molekularen Dünnschichten für die organische Photovoltaik T1 - Mechanisms of the exciton transport and its dynamics in molecular thin films for organic photovoltaic applications N2 - Der Fokus dieser Arbeit liegt in der Untersuchung des exzitonischen Transports, sowie der Dynamik exzitonischer Zustände in organischen Halbleitern. Als fundamentale Fragestellung werden die inhärenten, materialspezifischen Parameter untersucht, welche Einfluss auf die Exzitonen-Diffusionslänge besitzen. Sowohl der Einfluss der strukturellen Ordnung als auch die fundamentalen exzitonischen Transporteigenschaften in molekularen Schichten werden anhand der archetypischen, morphologisch unterschiedlichen organischen Halbleiter Diindenoperylen (DIP), sowie dessen Derivaten, α-6T und C60 studiert. Die resultierende Filmbeschaffenheit wird mittels Röntgendiffraktometrie (XRD) und Rasterkraftmikroskopie (AFM) analysiert, welche Informationen über die Morphologie, die strukturelle Ordnung und die Mikrostruktur der jeweiligen molekularen Schichten auf verschiedenen Längenskalen liefern. Um Informationen über die Exzitonen-Diffusion und die damit einhergehende Exzitonen- Diffusionslänge LD zu erhalten, wurde die Methode des Photolumineszenz (PL)-Quenchings gewählt. Um umfassende Informationen zur Exzitonen-Bewegung in molekularen Dünnschichten zu erhalten, wurde mit Hilfe der Femtosekunden-Transienten-Absorptionsspektroskopie (TAS) und der zeitkorrelierten Einzelphotonenzählung (TCSPC) die Dynamik angeregter Energiezustände und deren jeweiliger Lebensdauer untersucht. Beide Messverfahren gewähren Einblicke in den zeitabhängigen Exzitonen-Transport und ermöglichen eine Bestimmung des Ursprungs möglicher Zerfallskanäle. Die zentralen Ergebnisse dieser Arbeit zeigen zum einen eine Korrelation zwischen LD und der strukturellen Ordnung der Schichtmorphologie, zum anderen weist die temperaturunabhängige Exzitonen-Bewegung in hochgeordneten polykristallinen DIP-Filmen auf die Möglichkeit der Existenz eines kohärenten Exzitonen-Transports bei tiefen Temperaturen unterhalb von 80 K hin. Zeitaufgelöste spektroskopische Untersuchungen lassen zudem auf ein breites Absorptionsband höherer angeregter Zustände schließen und weisen eine höhere Exzitonen- Zustandsdichte in polykristallinen DIP-Schichten im Vergleich zu ungeordneten Filmen auf. N2 - The objective of this work is the examination of the excitonic transport and its dynamics in organic semiconductors. A fundamental question dealt with in this thesis was related to inherent transport mechanisms, which govern the exciton diffusion length LD. To pursue this question, the excitonic transport in organic semiconductor thin films was examined in particular with regard to the influence of the structural coherence on LD as well as to the fundamental excitonic transport mechanisms. The resulting film structure of the samples is analyzed by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), which yield to information on the morphology, the structural order and the microstructure of the molecular films on various length scales. PL-quenching investigations were performed to determine the exciton transport properties in different archetypical organic semiconductors represented by thin films of Diindenoperylene (DIP) and its derivatives, C60 and α-6T. To receive a comprehensive picture of exciton motion in molecular thin films, the exciton dynamics were investigated by femtosecond transient absorption spectroscopy (TAS) and time correlated single photon spectroscopy (TCSPC). Both measurement techniques gain insights into the time dependent exciton transport as well as help to assign the origin of the occurring decay-channels. The main results of this work reveal a correlation of LD with the structural order of the film morphology. In addition, a temperature independent excitonic motion in polycrystalline films of DIP at low temperatures < 80 K hints at the existence of a coherent exciton transport. Furthermore, time dependent spectroscopic investigations indicate a broad absorption band formed by higher excited states which exhibits a higher excitonic density of states in crystalline DIP-layers compared to films with a lower degree of structural order or amorphous texture. KW - Organische Solarzelle KW - Exzitonen Transport KW - Exzitonenbeweglichkeit KW - Exzitonen Diffusionslänge KW - Exzitonen Dynamik KW - Photolumineszenz Quenching KW - Diindenoperylen KW - C60 KW - Transiente Absorptionsspektroskopie KW - Exziton KW - Organische Halbleiter KW - Photolumineszenz Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132280 ER - TY - THES A1 - Ott, Martin T1 - Lautstärkereduzierte Magnetresonanztomographie T1 - Acoustic noise reduced MRI N2 - Messungen mit Magnetresonanztomographen sind seit jeher mit hohen Lautstärken verbunden. Deshalb wird das Gerät im Volksmund auch als „laute Röhre“ bezeichnet. Bisher wurde das Problem mit Kopfhörern, Ohrenstöpseln und akustischer Dämmung des MRT-Scanners angegangen. Auch in der Fachliteratur wird das Problem als gegeben angesehen und es werden kaum wissenschaftliche Lösungsansätze zur Lautstärkereduktion beschrieben. Das Ziel der vorliegenden Arbeit war es, Bildgebungs-Sequenzen für schwer‑optimierbare Bildkontraste und sogenannte Standard-Kontraste aus dem klinischen Umfeld hinsichtlich der Lautstärke zu optimieren. Viele dieser Kontraste können bereits mit einfachen Algorithmen wie dem Gradientenglättungsalgorithmus erfolgreich in Hinblick auf die Lautstärke optimiert werden. Allerdings existieren auch Sequenzen beziehungsweise Kontraste, die aufgrund ihrer Eigenschaften nicht von einem solchen Algorithmus profitieren können. Die Optimierungen und Änderungen sollten software-seitig erfolgen, das heißt durch Änderung der Gradientenformen und Datenakquisition. In der Arbeit wurden die grundlegenden Zusammenhänge zwischen den verwendeten Geräteparametern und der Lautstärke untersucht und zudem die physikalischen Ursachen der Lautstärkeentwicklung hergeleitet. Diese konnten anhand der Lorentz-Kräfte quantitativ beschrieben werden. Somit konnten die Hauptursachen der Lautstärkeentwicklung identifiziert werden. Diese sind abhängig von der Gradienten-Steig-Rate, aber auch von der Amplitude der Gradienten. Es konnte gezeigt werden, dass eine Minimierung dieser Gradientenparameter zu einer geringeren Lautstärkeentwicklung führt. Allerdings führt diese Minimierung in den meisten Fällen auch zu einer systematischen Verlangsamung des Sequenzablaufs, was das Erreichen bestimmter Echozeiten und Bildkontraste unmöglich macht. Zu den problematischen Kontrasten bezüglich der Lautstärkereduktion zählten der T1- und PD‑Kontrast einer Turbo-Spin-Echo-Sequenz. Durch die Kombination von mehreren Maßnahmen, wie der Adaption der k-Raum-Akquisition, der HF-Pulse-Parameter und den Gradientenformen, war es möglich, die Lautstärke in Beispielmessungen um bis zu 16,8 dB(A) zu reduzieren. Wie bei der kürzlich veröffentlichten Methode zur Reduktion für die T2‑gewichteten Kontraste, wurde dies zulasten einer Messzeitverlängerung von bis zu 50% erreicht. Die Endlautstärke betrug dabei circa 81 dB(A). Mit der Lautstärkeoptimierung der klinisch bedeutsamen T1- und PD‑Kontraste wurde die Palette an leisen, mit der Turbo-Spin-Echo‑Sequenz erzielbaren, Standard-Kontrasten (T1, T2 und PD) nun vervollständigt. In einem anderen Ansatz wurde die Anwendbarkeit des CAT-Konzepts auf die Lautstärkereduktion untersucht. Beim CAT-Konzept wird die Messung in Einzelmessungen mit verschiedenen Parametern unterteilt. Bisher wurde dieser Ansatz zur SAR-Reduktion verwendet. Das Zentrum des k-Raums wird mit einer SAR-intensiven, kontrastgebenden Messung aufgenommen. Der verbleibende Teil des k-Raums wird mit einer SAR-reduzierten, bildstrukturrelevanten Messung aufgenommen. In dieser Arbeit wurde die Übertragung des CAT-Konzepts auf die Lautstärkereduktion untersucht. Anstelle von SAR-intensiven und SAR‑reduzierten Messungen, wurde hier die Unterteilung in „laute“ und „leise“ Messungen untersucht. Dabei wurden Überlegungen angestellt, die es für eine Vielzahl an Messungen ermöglichen, einen großen Teil der Messung leise zu gestalten ohne die Bildqualität oder den Bildkontrast zu verändern. In einem weiteren Schritt wurden Überlegungen für die Lautstärkereduktion der lauten Messungen vorgestellt. Anschließend wurden für eine GRE- und TSE-Sequenz Optimierungsschritte evaluiert und die Lautstärke gemessen. Der hinsichtlich der Lautstärkeoptimierung herausforderndste Bildkontrast ist die diffusionsgewichtete Bildgebung. Diese besitzt eine Diffusions-Präparation zur Sichtbarmachung der Diffusivität, bei der die maximal mögliche Gradienten-Amplitude verwendet wird. Ebenso werden nach der Präparation die Daten mit einem EPI‑Akquisitionsmodul mit Blip-Gradienten akquiriert, das mit einem charakteristischem „Pfeifton“ einhergeht. Zum einen wurden die Gradientenformen konsequent angepasst. Zum anderen wurde eine Segmentierung der k-Raum-Akquisition in Auslese-Richtung verwendet, um die Gradienten‑Steig-Raten zu reduzieren. Auch hier konnte eine deutliche Lautstärkereduktion von bis zu 20,0 dB(A) erzielt werden. Dies wurde zulasten einer Messzeitverlängerung von 27% ‑ 34% im Vergleich zur Standard-Sequenz erreicht. Durch eine weitere Messzeitverlängerung um bis zu 23% kann die Lautstärke um weitere 0,9 dB(A) reduziert werden. Dabei hängt die genaue Messzeitverlängerung vom verwendeten GRAPPA-Faktor und der Anzahl der Auslese-Segmente ab. Die entstandene Sequenz wurde in mehreren Kliniken erfolgreich erprobt. Bisher mussten bei MRT-Messungen stets Kompromisse zwischen „hoher Auflösung“, „hohem SNR“ und „geringer Messzeit“ getroffen werden. Als Anschauung dafür wurde das „Bermuda‑Dreieck der MRT“ eingeführt. Da alle drei Größen sich gegenseitig ausschließen, muss stets ein Mittelweg gefunden werden. Einige der in dieser Arbeit erzielten Erfolge bei der Lautstärkereduktion wurden auf Kosten einer verlängerten Messzeit erreicht. Daher ist es naheliegend, das „Bermuda-Dreieck der MRT“ um die Dimension der „geringen Lautstärke“ zu einer „Bermuda-Pyramide der MRT“ zu erweitern. Damit muss die Lautstärkeentwicklung in die Mittelweg‑Findung miteinbezogen werden. Die in dieser Arbeit erzielten Lautstärken liegen in der Größenordnung zwischen 80 ‑ 85 dB(A). Somit können Messungen bei Verwendung von Gehörschutz angenehm für den Patienten durchgeführt werden. Durch neue Techniken der Zukunft wird es wahrscheinlich sein, höhere Auflösungen, höheres SNR oder kürzere Aufnahmedauern zu erzielen, beziehungsweise stattdessen diese in eine geringe Lautstärke „umzuwandeln“. Ebenso werden möglicherweise auf der hardware-technischen Seite Fortschritte erzielt werden, so dass in neueren MRT-Scannergenerationen mehr Wert auf die Lärmdämmung gelegt wird und somit der softwarebasierten Lautstärkereduktion einen Schritt entgegen gekommen wird. Damit könnten zukünftige Patienten-Messungen gänzlich ohne störenden Gehörschutz durchgeführt werden. N2 - Magnetic resonance imaging (MRI) measurements have always been related to high acoustic noise. Therefore, in common parlance MRI is referred to as the “loud tube”. Until now, the acoustic noise was mitigated by the use of headphones and ear plugs as well as acoustic dampening of the MR system. In literature, the problem is more or less acknowledged and solutions to the acoustic noise are rarely provided. The aim of this work was to optimize MR sequences, which generate so-called standard clinical MRI contrasts, for acoustic noise. Many of these contrasts could be optimized for acoustic noise by a gradient smoothing algorithm. Nevertheless, there are sequences and contrasts which cannot benefit from such algorithms and therefore need manual optimization. Software-based optimizations are performed by adapting the gradient waveforms and data acquisition. In this work, the main relationships between parameter settings of the MRI machine and acoustic noise were explored. The physical origin of acoustic noise in the form of Lorentz forces was derived from fundamental equations. The main acoustic noise sources are gradient slew rate and gradient amplitude. It was shown that minimization of these quantities leads to reduced acoustic noise. However, this is mostly accompanied by slowing down the sequence and thus certain echo times and contrasts cannot be reached. T1- and PD-weighted contrasts, acquired with a turbo spin-echo sequence, are problematic contrasts regarding acoustic noise reduction. This problem was tackled by a combination of several approaches such as an adaption of the k-space acquisition, changes to the RF-pulse parameters, and modifications of the gradient waveform. An acoustic noise reduction of up to 16.8 dB(A) was achieved. As for the previously published method for acoustic noise reduction in T2-weighted contrasts, this success came at the cost of an increase of measurement time by 50%. The target acoustic noise level was around 81 dB(A). With this optimization, the palette of quiet standard clinical contrasts, consisting of T1-, T2- and PD-weighted contrasts, can be realized with the turbo spin-echo sequence. In a different approach, the Combined-Acquisition (CAT) concept was applied to acoustic noise reduction. In implementing the CAT concept, each measurement is divided into two measurements with different parameters. This approach was previously used for SAR reduction. The center of k space is acquired using a high-SAR measurement in which contrast is relevant. The remaining k-space area is acquired using a low SAR, contrast-irrelevant measurement. In this work, the CAT concept was applied to acoustic noise reduction. Each measurement was divided into ‘quiet’ and ‘loud’ segments instead of dividing into high-SAR and low-SAR measurements. Considerations allowed for acoustic noise reduction without disrupting the image quality or contrast. In successive steps, the approach was applied to the remaining loud segment of the measurement. This process was executed for a GRE and a TSE sequence. Corresponding acoustic noise measurements were performed. One of the most challenging contrasts in terms of acoustic noise reduction is diffusion weighted imaging. It employs maximum gradient amplitudes in the preparation pulses which sensitize the MR signal to diffusivity. Data acquisition is performed by an EPI readout including blipped gradients. This readout is known for its whistling sound. Therefore, the gradient waveforms were consequently adapted. A k-space segmentation in the readout direction was employed to reduce the gradient slew rates. In this work, an acoustic noise reduction of up to 20.0 dB(A) could be achieved using an adapted readout segmented EPI sequence. This reduction in acoustic noise came at the cost of an increase of measurement time by 27% to 34% compared to the standard sequence. Spending additional 23% of acquisition time can further reduce the acoustic noise by 0.9 dB(A). The exact increase in measurement time depends on the employed GRAPPA factor and the number of readout segments. The optimized sequence was successfully validated in various clinical sites. Until now, compromises had to be made between high resolution, high SNR, and short acquisition time. This compromise can be described as the “Bermuda triangle of MRI”. Trade-offs exist between all three quantities. A compromise has to be chosen in all cases. In this work, some of the achieved acoustic noise reductions came at the cost of increased measurement time. Therefore, the dimensionality of the Bermuda triangle is extended with the addition of low acoustic noise. This yields the “Bermuda triangular pyramid of MRI”. Thus, acoustic noise has to be included in achieving a balance of desired properties in MR image acquisition. In this work, the obtained acoustic noise levels were on the order of 80–85 dB(A). Upon the use of ear protection, measurements became comfortable for the patients. As further advancements in imaging technology are made, it may be likely to achieve higher resolution, higher SNR, or shorter acquisition times, which could instead be traded for lower acoustic noise levels. In addition, it is possible that MRI machine manufacturers will put more effort into hardware based acoustic noise dampening of the devices in order to meet software-based acoustic noise reduction. Therefore, patient measurements could be possible without the need for additional acoustic noise protection in the future. KW - Kernspintomografie KW - Biophysik KW - Magnetische Kernresonanz KW - Lautstärkereduktion KW - Lärm KW - Krach KW - Patientenkomfort KW - Lärmbelastung KW - Geräuschminderung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133921 ER - TY - THES A1 - Benkert, Thomas T1 - Neue Steady-State-Techniken in der Magnetresonanztomographie T1 - Novel Steady-State Techniques for Magnetic Resonance Imaging N2 - Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verhältnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgründe hierfür sind Signalauslöschungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur Lösung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP für die MR-Diagnostik zu ermöglichen. Magnetfeldinhomogenitäten, die im Wesentlichen durch Suszeptibilitätsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, äußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalauslöschungen effizient zu entfernen. Während für bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden müssen, ist für die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizufälligem Abtastschema ermöglicht. Die notwendigen Bestandteile können mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes ermöglicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bezüglich ihrer Robustheit als auch bezüglich der notwendigen Messzeit übertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gewöhnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgelöste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitivät der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgeführt werden, ohne dass nennenswerte Beeinträchtigungen der Bildqualität auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gewöhnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten benötigt werden. Dies führt zu einer entsprechenden Verlängerung der zugehörigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, ermöglicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenitäten. Dennoch ist es möglich, dass Signalauslöschungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt primär bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierfür wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erhöhten Messzeit ermöglichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkohärente Bildartefakte, die sich jedoch durch eine Erhöhung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu wählen, bei denen bereits intrinsisch eine verhältnismäßig hohe Anzahl von Projektionen benötigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgelösten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gewöhnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdrückungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten für die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. Während die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente Lösungen für das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die Möglichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einfügen von Inversionspulsen in ungleichmäßigen Abständen aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gewöhnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit können bei gleichbleibender oder sogar verbesserter Bildqualität aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gewöhnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingefügten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen möglich ist, zusätzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgelöscht sind. Diese Substanzen können am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine ähnlich hohe klinische Relevanz aus. Die mögliche Bedeutung der vorgestellten Methode für die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend lässt sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur Lösung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software für die Rekonstruktion von RA-TOSSI-Datensätzen wurde für Siemens Scanner implementiert. Folglich sind beide Methoden für klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt. N2 - The bSSFP sequence combines short acquisition times with a high signal-to-noise ratio, and is therefore a promising imaging technique. However, aside from a few applications, this method is hardly established in the clinical routine. The main reasons for this are signal voids that arise as banding artifacts and the obtained T2/T1-weighted mixed contrast. The goal of this dissertation was to develop strategies to overcome these limitations and allow for a more widespread use of bSSFP for MR diagnostics. In bSSFP imaging, magnetic field inhomogeneities, which are mainly caused by susceptibility differences and imperfections of the scanner hardware, manifest as banding artifacts. In order to efficiently remove these artifacts from the image, DYnamically Phase-cycled Radial bSSFP (DYPR-SSFP) was proposed. While existing methods rely on the acquisition and subsequent combination of several separate bSSFP images, banding removal with DYPR-SSFP requires the acquisition of only a single data set. This is achieved by combining a dynamic phase-cycle with a radial trajectory and a quasi-random acquisition scheme. The individual components of this method can be implemented with little effort. Furthermore, no specific reconstruction scheme is necessary, guaranteeing the broad applicability of the developed approach. DYPR-SSFP outperformed conventional methods for banding removal both in robustness and scan time. In order to demonstrate the applicability of DYPR-SSFP beyond conventional imaging, the method was also applied to fat-water separation. Based on the Dixon technique, fat and water images were generated with high resolution. Due to the motion robustness of the underlying radial trajectory, measurements could be performed during free-breathing, without notable degradation of image quality. Abdominal images showed neither regional fat-water flipping nor residual banding artifacts. A drawback of standard Dixon-based fat-water separation is the fact that several separate images with different echo times have to be acquired, therefore prolonging the respective scan time. This can be overcome by using a multiecho sequence. It was demonstrated that the combination of such multiecho sequence and Dixon DYPR-SSFP allows for robust, banding-free fat-water separation in clinically acceptable scan times. DYPR-SSFP guarantees removal of banding artifacts even for strong magnetic field inhomogeneities. However, signal voids may remain due to intravoxel dephasing. This problem primarily arises when imaging metallic implants or when moving to ultra-high field strengths. To address this issue, the combination of DYPR-SSFP with the so-called z-shim technique was investigated, allowing the removal of these artifacts at the expense of an increased measurement time. Due to the applied dynamic phase-increment, radial projections which are acquired with DYPR-SSFP exhibit slightly different signal levels and phases. This results in incoherent artifacts, that can be effectively reduced by increasing the number of acquired projections. Therefore, DYPR-SSFP should be preferably applied when many projections are intrinsically necessary. It has been demonstrated that, besides high resolution imaging, the choice of a 3D radial trajectory is a promising combination. The proposed 3D DYPR-SSFP technique allowed isotropic banding-free bSSFP imaging without any expense of additional scan time compared to a conventional bSSFP acquisition. Residual artifacts caused by the dynamic phase-cycle could be effectively mitigated by applying a denoising algorithm. Volunteer measurements showed that 3D DYPR-SSFP is a promising candidate for imaging of the cranial nerves and the musculoskeletal system. While DYPR-SSFP and all presented resulting methods constitute an efficient solution for banding artifacts in bSSFP imaging, the proposed RAdial T-One sensitive and insensitive Steady-State Imaging (RA-TOSSI) method addresses the problem of the mixed contrast in bSSFP imaging. The possibility to generate T2-contrast with bSSFP has been shown before. The previous approach is based on the fact that T1-relaxation during the transient phase of a bSSFP acquisition can be suppressed by inserting unequally spaced inversion pulses. Thus, the resulting image shows a clinically relevant T2-contrast. The method which was presented as part of this dissertation relies on the same principle. However, instead of the originally proposed Cartesian trajectory, a radial trajectory in combination with a KWIC-filter reconstruction was applied. This allows the generation of several T2-weighted images as well as T2/T1-weighted images from a single RA-TOSSI dataset, while image quality remains comparable or even improves compared with existing methods. It could further be shown that varying the number of inversion pulses allows the generation of additional contrasts, where different tissue types are attenuated in the image. In the case of brain imaging for instance, these tissues comprise fat, gray matter, white matter, and CSF and offer high clinical relevance similar to T2-weighted images. Measurements of a patient with a brain tumor demonstrate the possible impact of the proposed method. In conclusion, the techniques developed as part of this dissertation present a valuable contribution to the solution of various problems which are associated with bSSFP imaging. Images acquired with DYPR-SSFP can be reconstructed directly at the scanner using existing, commercial reconstruction software. The software for the reconstruction of RA-TOSSI data was implemented for Siemens scanners. Therefore, both methods can be directly employed for clinical studies which remain as future work. KW - Kernspintomografie KW - Radiale Bildgebung KW - Steady-State-Sequenzen KW - balanced SSFP KW - Nicht-kartesische Bildgebung KW - Radial Imaging KW - Steady-State Sequences KW - balanced SSFP KW - Non-Cartesian Imaging KW - Magnetische Kernresonanz KW - Biophysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115381 ER - TY - THES A1 - Gold, Peter T1 - Quantenpunkt-Mikroresonatoren als Bausteine für die Quantenkommunikation T1 - Quantum Dot Microresonators as Building Blocks for Quantum Communication N2 - Technologien, die im wesentlichen auf quantenmechanischen Gesetzen beruhen, wie die Quanteninformationsverarbeitung und die Quantenkommunikation, sind weltweit Gegenstand enormer Forschungsanstrengungen. Sie nutzen die einzigartigen Eigenschaften einzelner Quantenteilchen, wie zum Beispiel die Verschränkung und die Superposition, um ultra-schnelle Rechner und eine absolut abhörsichere Datenübertragung mithilfe von photonischen Qubits zu realisieren. Dabei ergeben sich Herausforderungen bei der Quantenkommunikation über große Distanzen: Die Reichweite der Übertragung von Quantenzuständen ist aufgrund von Photonenverlusten in den Übertragungskanälen limitiert und wegen des No-Cloning-Theorems ist eine klassische Aufbereitung der Information nicht möglich. Dieses Problem könnte über den Einsatz von Quantenrepeatern, die in den Quantenkanal zwischen Sender und Empfäger eingebaut werden, gelöst werden. Bei der Auswahl einer geeigneten Technologieplattform für die Realisierung eines Quantenrepeaters sollten die Kriterien der Kompaktheit und Skalierbarkeit berücksichtigt werden. In diesem Zusammenhang spielen Halbleiterquantenpunkte eine wichtige Rolle, da sie sich nicht nur als Zwei-Niveau-Systeme ideal für die Konversion und Speicherung von Quantenzuständen sowie für die Erzeugung von fliegenden Qubits eignen, sondern auch mit den gängigen Mitteln der Halbleitertechnologie und entsprechender Skalierbarkeit realisierbar sind. Ein Schlüssel zur erfolgreichen Implementierung dieser Technologie liegt in der Zusammenführung des Quantenpunktes als Quantenspeicher mit einem Bauteil, welches einzelne Photonen einfangen und aussenden kann: ein Mikroresonator. Aufgrund der Lokalisierung von Elektron und Photon über einen längeren Zeitraum auf den gleichen Ort kann die Effizienz des Informationstransfers zwischen fliegenden und stationären Qubits deutlich gesteigert werden. Des Weiteren können Effekte der Licht-Materie-Wechselwirkung in Resonatoren genutzt werden, um hocheffiziente Lichtquellen zur Erzeugung nichtklassischen Lichts für Anwendungen in der Quantenkommunikation zu realisieren. Vor diesem Hintergrund werden in der vorliegenden Arbeit Halbleiterquantenpunkte mithilfe von spektroskopischen Methoden hinsichtlich ihres Anwendungspotentials in der Quantenkommunikation untersucht. Die verwendeten Quantenpunkte bestehen aus In(Ga)As eingebettet in eine GaAs-Matrix und sind als aktive Schicht in vertikal emittierende Mikroresonatoren auf Basis von dielektrischen Spiegeln integriert. Dabei werden entweder planare Strukturen verwendet, bei denen die Spiegel zur Erhöhung der Auskoppeleffizienz von Photonen dienen, oder aber Mikrosäulenresonatoren, die es ermöglichen, Effekte der Licht-Materie-Wechselwirkung in Resonatoren zu beobachten. Zur Untersuchung der Strukturen wurden Messplätze zur Photolumineszenz-, Resonanzfluoreszenz-,Reflexions- und Photostromspektroskopie sowie zu Photonenkorrelationsmessungen erster und zweiter Ordnung aufgebaut oder erweitert und eingesetzt. Reflexions- und Photolumineszenzspektroskopie an Mikrosäulenresonatoren mit sehr hohen Güten: Eine der wichtigsten Eigenschaften eines Mikrosäulenresonators ist seine Güte, auch Q-Faktor genannt. Er beeinflusst nicht nur das Regime der Licht-Materie-Wechselwirkung, sondern auch die Höhe der Auskoppeleffizienz eines Quantenpunkt-Mikrosäulenresonator-Systems. Vor diesem Hintergrund wird eine Analyse der Verlustmechanismen, die eine Abnahme des Q-Faktors bewirken, durchgeführt. Dazu wird die Güte von Mikrosäulenresonatoren mit Durchmessern im Bereich von 2 − 8 µm mithilfe von Reflexions- und Photolumineszenzspektroskopie gemessen. Aufgrund der erhöhten Absorption an nichtresonanten Quantenpunkten und freien Ladungsträgern sind die Verluste bei den Messungen in Photolumineszenzspektroskopie höher als in Reflexionsspektroskopie, wodurch die in Reflexionsspektroskopie ermittelten Q-Faktoren für alle Durchmesser größer sind. Für einen Quantenpunkt-Mikrosäulenresonator mit einem Durchmesser von 8 µm konnten Rekordgüten von 184.000 ± 8000 in Photolumineszenzspektroskopie und 268.000 ± 13.000 in Reflexionsspektroskopie ermittelt werden. Photostromspektroskopie an Quantenpunkt-Mikrosäulenresonatoren: Durch einen verbesserten Messaufbau und die Verwendung von Mikrosäulenresonatoren mit geringen Dunkelströmen konnte erstmals der Photostrom von einzelnen Quantenpunktexzitonlinien in elektrisch kontaktierten Mikroresonatoren detektiert werden. Dies war Voraussetzung, um Effekte der Licht-Materie-Wechselwirkung zwischen einem einzelnen Quantenpunktexziton und der Grundmode eines Mikrosäulenresonators elektrisch auszulesen. Hierzu wurden Photostromspektren in Abhängigkeit der Verstimmung zwischen Exziton und Kavitätsmode unter Anregung auf die Säulenseitenwand sowie in axialer Richtung durchgeführt. Unter seitlicher Anregung konnte der Purcell-Effekt, als Zeichen der schwachen Kopplung, über eine Abnahme der Photostromintensität des Quantenpunktes im Resonanzfall nachgewiesen werden und der entsprechende Purcell-Faktor zu Fp = 5,2 ± 0,5 bestimmt werden. Da die Transmission des Resonators bei der Anregung auf die Säulenoberseite von der Wellenlänge abhängt, ist die effektive Anregungsintensität eines exzitonischen Übergangs von der spektralen Verstimmung zwischen Exziton und Resonatormode bestimmt. Dadurch ergab sich im Gegensatz zur Anregung auf die Seitenwand des Resonators eine Zunahme des Photostroms in Resonanz. Auch in diesem Fall konnte ein Purcell-Faktor über eine Anpassung ermittelt werden, die einen Wert von Fp = 4,3 ± 1,3 ergab. Des Weiteren wird die kohärente optische Manipulation eines exzitonischen Qubits in einem Quantenpunkt-Mikrosäulenresonator gezeigt. Die kohärente Wechselwirkung des Zwei-Niveau-Systems mit den Lichtpulsen des Anregungslasers führt zu Rabi-Oszillationen in der Besetzungswahrscheinlichkeit des Quantenpunktgrundzustandes, die über dessen Photostrom ausgelesen werden können. Über eine Änderung der Polarisation des Anregungslasers wurde hier eine Variation der Kopplung zwischen dem Quantenemitter und dem elektromagnetischen Feld demonstriert. Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten: Für die meisten technologischen Anwendungen in der Quantenkommunikation und speziell in einem Quantenrepeater sollten die verwendeten Quellen nicht nur einzelne sondern auch ununterscheidbare Photonen aussenden. Vor diesem Hintergrund wurden Experimente zur Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten in planaren Resonatorstrukturen durchgeführt. Dazu wurde zunächst die Interferenz von Photonen aus einer Quelle demonstriert. Im Fokus der Untersuchungen stand hier der Einfluss der Anregungsbedingungen auf die Visibilität der Zwei-Photonen-Interferenz. So konnte in nichtresonanter Dauerstrichanregung ein nachselektierter Wert der Visibilität von V = 0,39 gemessen werden. Um den nicht nachselektierten Wert der Visibilität der Zwei-Photonen-Interferenz zu bestimmen, wurde die Einzelphotonenquelle gepulst angeregt. Während die Visibilität für nichtresonante Anregung in die Benetzungsschicht über ein Wiederbefüllen und zusätzliche Dephasierungsprozesse durch Ladungsträger auf einen Wert von 12% reduziert ist, konnte unter p-Schalen-Anregung in einem Hong-Ou-Mandel-Messaufbau eine hohe Visibilität von v = (69 ± 1) % erzielt werden. Außerdem wurde die Interferenz von zwei Photonen aus zwei räumlich getrennten Quantenpunkten demonstriert. Hierbei konnte eine maximale Visibilität von v = (39 ± 2)% für gleiche Emissionsenergien der beiden Einzelphotonenquellen erzielt werden. Durch die Änderung der Photonenenergie über eine Temperaturvariation eines der beiden Quantenpunkte konnten die Photonen der beiden Quellen zunehmend unterscheidbar gemacht werden. Dies äußerte sich in einer Abnahme der Interferenz-Visibilität. Um noch größere Visibilitäten der Zwei-Photonen-Interferenz zu erreichen, ist die resonante Anregung des Quantenpunktexzitons vielversprechend. Deswegen wurde ein konfokales Dunkelfeldmikroskop für Experimente zur Resonanzfluoreszenz aufgebaut und bereits Einzelphotonenemission sowie das Mollowtriplet im Resonanzfluoreszenzspektrum eines Quantenpunktexzitons nachgewiesen. N2 - Technologies relying on the basic laws of quantum mechanics are subject to huge research interest all over the world. They use the unique properties of single quantum particles, like quantum entanglement and superposition, to allow for ultra-fast computers and absolutely secure data transfer with photonic qubits. However, there are some challenges with quantum communication over long distances. The transfer range is limited due to unavoidable photon losses in transfer channels and classic signal amplification is not possible because of the ’no-cloning-theorem’. This issue could be solved by integrating quantum repeaters into the quantum channel between the transmitter and the receiver. An appropriate technology platform for the implementation of a quantum repeater should satisfy the criteria of compactness and scalability. In this context, semiconductor quantum dots become important. As two-level-systems, quantum dots are not only suited for the conversion and storage of quantum states and the generation of flying qubits, but also offer the advantage to be realized with standard semiconductor technology and the corresponding scalability. The key to successfully implement this technology is to combine quantum dots with a device that can trap and emit photons: a microcavity. This device allows for increasing the interaction between the two-level-system and a photon by localizing both at the same place for an extended period of time. In addition, cavity quantum electrodynamics effects can be used to create highly efficient sources of non-classical light for applications in quantum communications. In this context, semiconductor quantum dots are studied in this thesis by means of spectroscopic methods with regard to their potential for applications in quantum communication. The quantum dots consist of In(Ga)As embedded in a GaAs matrix and are integrated into microcavities with distributed bragg reflectors. Here, either planar structures are used to increase the out-coupling efficiency of photons by an asymmetric cavity design or micropillars are applied to facilitate the observation of light-matter coupling in the cavity quantum electrodynamics regime. Furthermore, different experimental setups were extended or built to investigate these structures, including photoluminescence, resonance fluorescence, reflection and photocurrent spectroscopy and setups for measuring the first and second order correlation function. Reflection- and Photoluminescence Spectroscopy of Micropillar Cavities with Very Large Quality Factors One of the most important characteristics of a microresonator is its quality factor. It influences not only the regime of the light-matter interaction but also the out-coupling efficiency of a quantum dot-micropillar cavity system. In this context, an analysis of the loss channels that lead to a reduction of the quality factor is performed. For this purpose, the quality factor of micropillar cavities with different diameters in the range 2 − 8 µm are measured by reflection- and photoluminescence spectroscopy. Because of the increased absorption due to nonresonant quantum dots and free carriers, the photon losses in photoluminescence are larger than in reflection spectroscopy. Therefore, the quality factors measured in reflection spectroscopy are larger for each diameter. Record quality factors of 184,000 ± 8,000 in photoluminescence and 268,000 ± 13,000 were obtained for a quantum dot-micropillar cavity with a diameter of 8 µm. Photocurrent Spectroscopy on Quantum Dot-Micropillar Cavities: An improved experimental setup and the exploitation of micropillar cavities with reduced dark currents made it possible to observe single quantum dot exciton lines in the photocurrent signal of an electrically contacted microresonator. This was the precondition for the electrical readout of light-matter coupling effects between a single quantum emitter and the fundamental mode of a micropillar cavity. For this purpose, photocurrent spectra were taken as a function of the detuning between the exciton and the cavity mode under excitation either on the pillar sidewall or on top of the pillar. In sidewall excitation, the Purcell effect, as a clear sign of the weak coupling regime, could be observed through a reduced photocurrent signal of the quantum dot in resonance with the cavity mode and a corresponding Purcell factor of Fp = 5,2 ± 0,5. In top excitation, the transmission of the resonator is a function of the wavelength, i.e. the maximum transfer of light into the resonator occurs when the laser wavelength coincides with an optical resonance of the micropillar cavity. Therefore, the effective excitation power of the excitonic transition depends on the spectral detuning between the exciton and the cavity mode. Due to this detuning dependent excitation intensity, the photocurrent signal shows an increase at resonance, which is in contrast to the sidewall excitation scheme. Also, in this case a Purcell factor of Fp = 4,3 ± 1,3 was extracted by a fit to the experimental data. In addition, the coherent optical control of an excitonic qubit in a quantum dot micropillar cavity is demonstrated. The coherent interaction of the two-level system with the light pulses of the excitation laser leads to Rabi oscillations in the occupation probability of the quantum dot ground state, which were monitored via the photocurrent originating from the quantum dot. By changing the polarization angle of the exciting laser, a variation of the coupling between the quantum emitter and the electromagnetic field was observed. Interference of Indistinguishable Photons Emitted from Semiconductor Quantum Dots: Most technological applications in the field of quantum communication, and especially quantum repeaters, require photon sources of not only single but also indistinguishable photons. In this context, experiments on the interference of indistinguishable photons emitted from semiconductor quantum dots in planar resonator structures were performed. First, the interference of consecutively emitted photons from the same quantum dot is studied. The investigation focuses on the influence of the excitation condition on the two-photon interference visibility. In nonresonant continuous wave excitation, a postselected value of the two-photon interference visibility of V = 0,39 is measured. To obtain the non-postselected value, the excitation of the single photon source has to be pulsed. Recapturing and dephasing processes of additional charge carriers reduce the nonpostselected visibility for nonresonant excitation into the wetting layer states to a value of 12%, while for p-shell excitation, a larger visibility of v = (69 ± 1) % was achieved in a Hong-Ou-Mandel setup.Furthermore, the interference of two photons from two spatially separated quantum dots is demonstrated. Here, a maximum visibility of v = (39 ± 2)% was achieved for equal emission energies of both single photon sources. By changing the emission energy of one of the two quantum dots via a variation of its temperature, the photons emitted from each source could be made increasingly distinguishable, resulting in a decrease of the interference visibility. To obtain even larger two-photon interference visibilities, a strict resonant excitation of the quantum dot exciton is very promising. Hence, a confocal dark field microscope was built for experiments in resonance fluorescence. Single photon emission as well as the Mollow triplet were already identified in resonance fluorescence. KW - Quantenpunkt KW - Optischer Resonator KW - Quantenkommunikation KW - Mikroresonator KW - Purcell-Effekt KW - quantum dot KW - micro cavity KW - two photon interference KW - photocurrent KW - Ununterscheidbarkeit KW - Einzelphotonenemisson KW - Photostrom Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121649 ER - TY - THES A1 - Gensler, Daniel T1 - Entwicklung klinischer Methoden zur Quantifizierung der longitudinalen Relaxationszeit T1 in der MRT T1 - Development of clinical methods for quantifying the longitudinal relaxation time T1 in MRI N2 - Die Aufgabenstellung in der vorliegenden Arbeit bestand in der Entwicklung und Umsetzung neuer T1-Quantifizierungsverfahren, die zuverlässig in der klinischen Routine angewendet werden können. Die ausgearbeiteten Techniken umfassten dabei zwei Hauptarbeitsschwerpunkte. Zum einen die Implementierung einer neuartigen dynamischen T1- Thermometriemethode für MR-Sicherheitsuntersuchungen medizinischer Geräte und Implantate, wie beispielsweise Kathetern oder Herzschrittmachern, und zum anderen die Entwicklung eines robusten kardialen T1-Mapping-Verfahrens, welches auch bei stärker erkrankten Patienten mit eingeschränkter Atemanhaltefähigkeit stabil anwendbar ist. Mit der entwickelten kombinierten Heiz- und T1-Thermometriesequenz konnte ein neues Verfahren präsentiert werden, mit dem ein zu untersuchendes medizinisches Gerät oder Implantat kontrolliert erwärmt und die Temperaturänderung zeitgleich präzise erfasst werden kann. Dabei war es möglich, die HF-induzierte Erwärmung der metallischen Beispielimplantate sowohl in homogenem Gel als auch in inhomogenem Muskelgewebe exakt und ortsaufgelöst zu quantifizieren. Die MR-technisch errechneten Temperaturwerte zeigten dabei eine sehr gute Übereinstimmung zu den ermittelten Referenzwerten mit einer Temperaturabweichung von meist weniger als 1K. Die Ergebnisse zeigen, dass es mit der präsentierten Methode möglich ist, die räumliche Temperaturverteilung in einem großen Bereich mit einer einzigen Messung quantitativ zu erfassen. Dies ist neben der Nichtinvasivität der Methode der größte Vorteil im Vergleich zu der Einzelpunktmessung mittels eines bei solchen Messungen sonst zumeist verwendeten fluoroptischen Temperatursensors. Bei gestreckten Implantaten kann demnach idealerweise das gesamte Objekt während einer einzigen Messung auf potentielle Temperaturänderungen oder sogenannte Hotspots untersucht werden, was bei der Verwendung von Temperatursensoren lediglich mit großem Zeitaufwand möglich ist, da hier die Temperatur jeweils nur punktuell erfasst werden kann. Im Vergleich zu anderen publizierten MR-Thermometrieverfahren, welche auf der PRF-Technik basieren, bietet die hier präsentierte Methode vor allem den Vorteil, dass hiermit auch eine präzise Temperaturquantifizierung in inhomogenem biologischem Gewebe mit starken Suszeptibilitätsunterschieden wie beispielsweise zwischen Herz und Lunge möglich ist. Somit stellt die Methode ein leistungsstarkes Hilfsmittel für nicht-invasive MR-Sicherheitsuntersuchungen nicht nur an medizinischen Implantaten sondern beispielsweise auch für MR-geführte Interventionen dar. Mit der entwickelten kardialen T1-Mapping-Sequenz TRASSI wurde eine leistungsstarke Methode zur exakten und hoch aufgelösten Generierung kardialer T1-Karten in äußerst kurzer Messzeit (< 6 s) vorgestellt. Durch ihre außerordentliche Robustheit sowohl gegenüber Bildartefakten als auch Herzrhythmusstörungen während der Datenakquisition bietet die Sequenz deutlich verbesserte Möglichkeiten für die Diagnostik verschiedener Herzerkrankungen. Aufgrund der sehr kurzen Akquisitionszeit wird insbesondere auch die Generierung von T1-Karten bei schwer erkrankten Patienten mit kurzer Atemanhaltefähigkeit ermöglicht. Im Vergleich zu derzeit üblicherweise verwendeten alternativen Verfahren wie etwa MOLLI, konnten die T1-Karten mit vergleichbarer Bildauflösung in bis zu 70% kürzerer Messzeit akquiriert werden. Die Ergebnisse der durchgeführten Phantommessungen belegen außerdem, dass die Methode exaktere T1-Werte liefert als dies beispielsweise mit MOLLI möglich ist. Des Weiteren weist TRASSI im Gegensatz zu MOLLI keine T1-Abhängigkeit von der Herzrate auf, wodurch die vorgestellte Technik besonders für diagnostische Studien geeignet ist, welche eine sehr hohe Genauigkeit und Reproduzierbarkeit im Zeitverlauf oder zwischen verschiedenen Patienten erfordern. Mit TRASSI konnten die Strukturen des Herzens bei den durchgeführten in vivo Untersuchungen durchweg mit scharfen Kanten und ohne Bewegungsartefakte dargestellt werden. Dabei wurde unabhängig von der Herzrate und der Bildebene stets eine sehr gute Bildqualität erreicht. Der Hauptgrund hierfür ist vermutlich in der sehr kurzen Akquisitionszeit und der radialen Datenaufnahme zu sehen. Beide Verfahren reduzieren Artefakte aufgrund von Bewegungen wie beispielsweise Herzschlag und Atmung erheblich. Die aufgenommenen T1-Karten zeigen bei allen Probanden und Patienten eine gute diagnostische Bildqualität. So konnten auch die infarzierten Bereiche bei Patienten mit Myokardinfarkt deutlich visualisiert und quantitativ erfasst werden. Nochmals hervorzuheben ist die beobachtete besondere Robustheit der TRASSI Methode gegenüber Artefakten beziehungsweise T1-Quantifizierungsfehlern bei Patienten mit Herzrhythmusstörungen. Auch bei untersuchten Patienten mit starken Arrhythmien während der Bildgebung konnte eine sehr gute Bildqualität und Genauigkeit der errechneten T1-Karten erreicht werden. Die Ergebnisse der Extrazellularvolumen-Quantifizierung zeigen zudem, dass mittels TRASSI auch weiterführende diagnostische Methoden entwickelt und angewandt werden können. Dabei konnten durch Rückrechnung hochaufgelöster und präziser Extrazellularvolumen-Karten beispielsweise Infarktbereiche deutlich visualisiert und signifikante Unterschiede zwischen akut und chronisch infarziertem Herzmuskelgewebe nicht nur identifiziert sondern auch quantitativ charakterisiert werden. Somit ist diese Methode insbesondere für eine potentielle Differenzierung zwischen reversibel und irreversibel geschädigten Herzarealen interessant. Für die Zukunft ist es wünschenswert, weitergehende Untersuchungen an verschiedenen spezifischen Herzerkrankungen vorzunehmen. Zu solchen Erkrankungen gehören beispielsweise die Herzmuskelentzündung (Myokarditis) oder Herzklappenerkrankungen. Diese Krankheitsbilder sind hinsichtlich einer möglichen transienten oder permanenten Schädigung des Herzmuskels mit den bisher verfügbaren Verfahren nur sehr schwer oder lediglich im weit fortgeschrittenen Stadium exakt diagnostizierbar. Die vorgestellte TRASSI-Sequenz bietet hier eine gute Möglichkeit für eine frühzeitige Erkennung der Auswirkungen solcher Erkrankungen auf den Herzmuskel. Weiterführende Untersuchungen der TRASSI-Methode zu deren Robustheit gegenüber spezifischen Herzrhythmusstörungen und ein umfassender Vergleich zum bereits etablierten MOLLI-Verfahren könnten darüber hinaus die Alltagstauglichkeit von TRASSI weiter spezifizieren und den Weg in die klinische Routine ebnen. Die bereits dargelegten positiven Ergebnisse des Verfahrens lassen vermuten, dass TRASSI potentiell ein sehr gutes nicht-invasives Diagnoseverfahren für verschiedenste Herzerkrankungen darstellt. Im Vergleich zu bereits bestehenden Techniken liegen die Vorteile der TRASSI-Methode nach den bisher vorliegenden Ergebnissen zusammenfassend vor allem in der Generierung diagnostisch verlässlicherer T1-Werte bei gleichzeitig verringerter Messzeit, wodurch das Verfahren insbesondere auch für schwer erkrankte Patienten mit starken Arrhythmien und eingeschränkter Atemanhaltefähigkeit geeignet ist. TRASSI ist darüber hinaus aber auch für MR-Untersuchungen im Hochfeld besser geeignet als entsprechende bSSFP-basierende Verfahren wie beispielsweise MOLLI. Dies liegt vor allem daran, dass TRASSI eine Gradientenecho-basierte Bildgebungsmethode ist und somit eine niedrige spezifische Absorptionsrate aufweist. Zudem sind Gradientenecho-Sequenzen allgemein weniger empfindlich gegenüber Suszeptibilitätsartefakten, so dass beispielsweise metallische Implantate bei Patienten sich weniger störend auf die erreichbare Bildqualität auswirken. In der vorliegenden Arbeit wurde sowohl eine exakte T1-Thermometriesequenz als auch eine sehr schnelle und präzise kardiale T1-Mapping-Methode vorgestellt. Für zukünftige Arbeiten ist es wünschenswert, beide Sequenzen bzw. deren Mechanismen zu vereinen und eine Temperaturquantifizierung am Herzen praktisch durchzuführen. Dies wäre zum einen für MR-Sicherheitsuntersuchungen von Schrittmacherelektroden in vivo vorteilhaft, und zum anderen wäre hiermit eine direkte Erfolgskontrolle während einer Katheterablation realisierbar. Eine solche Ablationsbehandlung könnte durch eine genaue Lokalisierung des behandelten - also erhitzten - Herzareals sehr viel präziser durchgeführt werden, wodurch auch bei komplexeren Ablationen die Behandlungserfolge erhöht werden könnten. In einer ersten Veröffentlichung hierzu konnte bereits gezeigt werden, dass eine MR-gestützte Katheterablation die Heilungs- und Erfolgsaussichten des Eingriffes steigern kann. Dieses Verfahren könnte potentiell mit Hilfe einer Echtzeittemperaturüberwachung basierend auf dem TRASSI-Verfahren noch weiter verbessert werden. In Zusammenfassung wurden in dieser Arbeit zwei neue T1-Quantifizierungsverfahren entwickelt und vorgestellt, die voraussichtlich zuverlässig im klinischen Alltag angewendet werden können und neue nicht-invasive diagnostische Möglichkeiten eröffnen. Die implementierten Sequenzen ermöglichen dabei zum einen eine exakte Temperaturquantifizierung und zum anderen ein präzises kardiales T1-Mapping. Beide Verfahren versprechen dabei robuste und reproduzierbare Ergebnisse und könnten in Zukunft den Weg in die klinische Routine finden und so bei einer fundierten Diagnostik verschiedenster Herzerkrankungen behilflich sein. N2 - The goal of the present study was to develop and implement new T1-quantification methods that can be reliably applied in clinical practice. The elaborated techniques focused on two main objectives: first, the implementation of a novel dynamic T1-thermometry technique for MR-safety investigations of medical devices and implants, such as catheters or pacemakers; and second, the development of a robust cardiac T1-mapping method, which is applicable even in severely ill patients with limited breath-hold capabilities. With the newly developed combined heating and T1-thermometry sequence, a new MR method was presented, which allowed a controlled heating of a medical device or implant under investigation, while simultaneously detecting temperature changes near these devices with high accuracy. With this MR sequence it was possible to quantify and spatially accurately resolve the radio frequency-induced heating of exemplary metallic implants both in a homogeneous gel phantom and in inhomogeneous porcine muscle. The MR-calculated temperature values showed good agreement with the determined reference values, with a temperature deviation of usually less than 1K. The results show that with the presented method it is possible to quantify the spatial temperature distribution in a large area. This is - in addition to the non-invasiveness of the method - the main advantage compared to the single-point measurement of commonly used fluoroptic temperature sensors: Ideally, elongated implants can be characterized regarding potential temperature changes or hot spots along the whole device during a single MR measurement. Compared to other published MR-thermometry methods based on the PRF technique the presented T1-based technique particularly provides the advantage of a precise temperature quantification even in inhomogeneous biological tissue with strong susceptibility differences such as between the heart and the lungs. Thus, the method represents a powerful tool for non-invasive MR-safety investigations not only for implanted medical devices, but also for MR-guided interventions. With the developed cardiac T1-mapping sequence TRASSI, a powerful technique for the generation of exact, high-resolution cardiac T1-maps acquired in very short measurement time (< 6 s) was presented. Through the extraordinary robustness both to image artifacts and heart rhythm disturbances during data acquisition, this sequence provides significantly improved possibilities for various diagnostic purposes in clinical cardiology. Due to the very short acquisition time, TRASSI particularly offers the possibility for the generation of T1-maps in severely ill patients with short breath-hold capabilities. Compared to currently commonly used alternative MR techniques, such as MOLLI, T1-maps with similar resolution could be acquired in up to 70 % shorter measurement time. Furthermore, the results of the phantom measurements show that TRASSI provides more accurate T1 values than MOLLI. In addition, TRASSI shows - in contrast to MOLLI - no heart rate T1-dependency. Thus, the presented technique is particularly suited for diagnostic studies, which require a very high accuracy and reproducibility over time or between different patients. With TRASSI, the heart morphology could consistently be identified with sharp edges and without any motion artifacts in the performed in vivo studies. The good image quality could be achieved in all measurements regardless of the heart rate and the image plane. The main reason for these findings can be anticipated in the very short acquisition time and the radial data acquisition. Both significantly reduce artifacts due to motion such as heartbeat and breathing. Diagnostic image quality of the T1 maps in patients with myocardial infarction allowed for visualization and spatial T1-quantification in all subjects. Of note is the observed extraordinary robustness of the TRASSI method against artifacts and T1-errors in patients with cardiac arrhythmias. Even in patients with severe arrhythmias during the imaging procedure a very good image quality and accuracy of the calculated T1-maps could be achieved. Moreover, the results of the extracellular volume quantification show that with TRASSI additional diagnostic methods can be developed and applied. The calculation of accurate high-resolution extracellular volume maps was suitable for visualization of infarcted areas in the myocardium. Furthermore, significant differences between acute and chronically infarcted myocardial tissue could not only be visually identified, but also quantitatively characterized. Thus, this method is particularly interesting for a differentiation between reversible and irreversible myocardial injury. For the future, it is desirable to carry out further clinical studies on various specific heart diseases. Such diseases include, for example, inflammation of the heart muscle (myocarditis) or valvular heart diseases. The diagnosis of these diseases regarding a possible damage of the myocardium is currently problematic and only possible in advanced stages using the methods available today. Here, the presented TRASSI sequence provides a favorable opportunity for the early detection of transient or permanent myocardial damage. Further studies of TRASSI for its robustness against specific cardiac arrhythmias and a comprehensive comparison with the already established MOLLI method could further confirm the everyday practicality of TRASSI and pave the way into clinical routine. The already available positive results of TRASSI suggest this method to be well suited as a non-invasive diagnostic technique for various heart diseases. From the experiments available, it can be concluded that, compared to existing techniques like MOLLI, TRASSI provides more accurate T1-values in a simultaneously reduced measurement time. This positions TRASSI particularly suitable for severely ill patients with distinctive arrhythmias and/or reduced breath-hold capabilities. In addition, TRASSI is better suited for high field MR examinations than corresponding bSSFPbased methods such as MOLLI. This is because TRASSI is a gradient echo-based imaging method and thus it has a lower specific absorption rate. Gradient echo-based sequences are also generally less sensitive to susceptibility artifacts and thus interferences caused by metallic implants of correspondent patients show less negative effects on image quality. In the current work an exact T1-thermometry sequence as well as a very fast and accurate cardiac T1-mapping method was presented. For future work, it is desirable to combine these two sequences and their mechanisms to be able to perform accurate temperature quantification in the beating heart. This would be on the one hand beneficial for MR-safety examinations of pacemaker electrodes in vivo, and on the other hand allow for a direct control of success during catheter ablation. Hence, a catheter ablation procedure could be performed with greatly increased spatial accuracy due to precise localization of heat development in the myocardium. Consequently, the safety and outcomes especially in complex ablations could be increased. In a first publication it could be already shown that MR-guided catheter ablation has the potential to increase procedural success in the future. This interventional technique could potentially be further improved by implementation of a real-time temperature visualization using TRASSI. In summary, two new T1-quantification methods have been developed and presented in this work, which can be reliably applied in clinical practice and which are expected to allow for new non-invasive diagnostic possibilities. The implemented sequences allow on the one hand exact temperature quantification in the myocardium and on the other hand accurate cardiac T1-mapping. Both methods promise robust and reproducible results, so that they are expected to find the way into clinical routine, helping in diagnosis and treatment of various heart diseases in the near future. KW - Kernspintomographie KW - Thermometrie KW - kardiale MRT KW - Gewebecharakterisierung KW - T1-Quantifizierung KW - cardiac MRI KW - tissue characterization KW - T1 quantification KW - Relaxationszeit Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126582 ER - TY - THES A1 - Stichel, Thomas Günther T1 - Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren für die regenerative Medizin mittels Zwei-Photonen-Polymerisation T1 - Fabrication of scaffolds of hybrid polymers for regenerative medicine using two photon polymerization N2 - In der vorliegenden Arbeit wurde das Verfahren der Zwei-Photonen-Polymerisation von anorganisch-organischen Hybridpolymeren (ORMOCER®e) untersucht. Untersuchungsschwerpunkte bildeten dabei die theoretischen Betrachtungen der Wechselwirkung zwischen Laser und Hybridpolymer, die experimentelle Charakterisierung unterschiedlicher ORMOCER®e sowie die Aufskalierung der Technologie im Hinblick auf die Herstellung von Scaffold-Strukturen für die regenerative Medizin. Hierbei wurde u. a. ein innovativer Belichtungsaufbau entworfen und aufgebaut, der es erlaubt makroskopische, poröse Scaffold-Strukturen mit minimalen Strukturgrößen im Bereich von wenigen Mikrometern herzustellen. ORMOCER®e sind typischerweise für optische Anwendungen konzipiert, weisen allerdings z. T. biokompatible Eigenschaften auf. Das Material ORMOCER® MB-47 wurde von M. Beyer eigens für biologische Anwendungen synthetisiert. Es zeichnet sich durch Biokompatibilität, teilweiser Biodegradierbarkeit und hervorragende Strukturierbarkeit durch die Zwei-Photonen-Polymerisation aus. Das in dieser Arbeit verwendete Mikrostrukturierungssystem beinhaltet im Wesentlichen einen Ultrakurzpulslaser, der 325 fs Pulse bei 1030 nm emittiert (verwendet wird die zweite Harmonische bei 515 nm), ein hochpräzises Positionierungssystem, bestehend aus drei luftgelagerten Lineartischen mit einer Reichweite von 10 cm (y-, z-Richtung) bzw. 15 cm (x-Richtung) sowie diversen Objektiven zur Fokussierung. Mit diesen Komponenten lassen sich komplexe dreidimensionale Strukturen mit minimalen Strukturgrößen von bis unter 100 nm erzeugen. In Kapitel 5.1 wurden theoretische Untersuchungen im Hinblick auf das Wechselwirkungsverhalten zwischen der fokalen Intensitätsverteilung und dem Materialsystem zur Bildung eines Voxels durchgeführt, wobei das technische Wechselwirkungsvolumen und das chemische Wechselwirkungsvolumen samt den reaktionskinetischen Abläufen separat betrachtet wurde. Das technische Wechselwirkungsvolumen beschreibt die Wechselwirkung zwischen der fokalen Intensitätsverteilung und dem Materialsystem im Rahmen eines Schwellwertprozesses, der es erlaubt Strukturdimensionen unterhalb des Beugungslimits zu realisieren. Die theoretischen Untersuchungen diesbezüglich ergaben, dass sphärische Aberrationen die fokale Intensitätsverteilung (Intensity-Point Spread Function (IPSF)) in Abhängigkeit der Belichtungskonfiguration z. T. sehr stark beeinflussen. Darüber hinaus wurde durch Betrachtung des Schwellwertverhaltens ein mathematischer Zusammenhang zwischen der IPSF und der Leistungsabhängigkeit der Charakteristik des technischen Wechselwirkungsvolumens geschaffen. Das chemische Wechselwirkungsvolumen beschreibt das tatsächliche Volumen der stattfindenden Polymerisationsreaktion. Dieses geht über das des technischen hinaus, was eine Folge von raumeinnehmendem Kettenwachstum im Rahmen von reaktionskinetischen Teilprozessen ist. Durch die Simulationen dieser reaktionskinetischen Abläufe wurde das leistungsabhängige, zeitliche Verhalten der Reaktionsteilnehmer (Radikale, Monomer, Photoinitiator) und des Vernetzungsgrades ermittelt. Die Simulation wurden für sehr kurze Belichtungszeiten (< 10 ms) auf der Basis von gekoppelten Differentialgleichungen nach Uppal & Shiakolas durchgeführt. Dabei wurde der Einfluss der Teilchendiffusion sowie der Temperaturentwicklung als gering erachtet und in den Berechnungen vernachlässigt. Die Simulationsergebnisse zeigen, dass eine geringe Belichtungszeit nicht unbedingt durch größere Laserleistungen ausgeglichen werden kann, um einen bestimmten Vernetzungsgrad zu erzielen. Vielmehr führt eine höhere Leistung zu einem raschen Verbrauch des Photoinitiators im Reaktionsvolumen und damit einem schnelleren Erliegen der Polymerisationsreaktion. Um dennoch hohe Vernetzungsgrade erzielen zu können, sind die Reaktionsgeschwindigkeitskoeffizienten der Propagation und der Terminierung k_P und k_T sowie eine ausreichende Photoinitiatorkonzentration von entscheidender Bedeutung. Je größer das Verhältnis k_P/k_T, desto höhere Vernetzungsgrade können auch bei kurzen Belichtungszeiten realisiert werden, wobei ein wesentlicher Teil der Polymerisation als Dunkelreaktion stattfindet. Diese Erkenntnis ist für die Aufskalierung der Technologie der Zwei-Photonen-Polymerisation von großer Bedeutung, welche mit einer Verkürzung der Belichtungszeiten einhergehen muss. Des Weiteren zeigen die Simulationen, dass das spatiale Konversionsprofil eines Voxels ein lokales Minimum im Zentrum aufweisen kann. Dieses Phänomen tritt dann auf, wenn aufgrund der applizierten Leistung, welche gemäß des Profils der IPSF im Zentrum am höchsten ist, der Photoinitiator im Zentrum rasch verbraucht wird. In Kapitel 5.2 wurde die Voxelbildung, das Vernetzungsverhalten sowie die mechanischen Eigenschaften belichteter ORMOCER®e bei unterschiedlichen Parametern und Materialsystemen experimentell untersucht. An Hand von Voxelfeldern wurden die Voxelgröße, das Aspektverhältnis und das Voxelvolumen bei unterschiedlichen Laserleistungen ermittelt. Die Ergebnisse wurden mit den berechneten technischen Wechselwirkungsvolumina verglichen, wobei die Differenz von tatsächlicher Voxelgröße und technischem Wechselwirkungsvolumen als eine weitere charakteristische Größe eingeführt wurde. Dabei zeigte sich, dass besonders die Voxellänge von der Länge des technischen Wechselwirkungsvolumens derart abweicht, dass dies nicht durch raumeinnehmendes Kettenwachstum im Rahmen der Reaktionskinetik erklärt werden kann. Mögliche Erklärungsansätze basieren hierbei auf Wechselwirkungseffekte zwischen Lichtfeld und Material. Beispielsweise könnten durch den nichtlinearen optischen Kerr-Effekt oder die Polymerisation selbst Brechzahlinhomogenitäten induziert werden, welche die Voxelbildung durch Selbstfokussierung beeinflussen. Der Unterschied der Voxelbreite, also das laterale chemische Voxelwachstum, zur Breite des technischen Wechselwirkungsvolumens wurde hingegen mit Hilfe der Reaktionskinetik erklärt. Dabei zeigte sich, dass dieser Unterschied sowohl vom Material selbst als auch von der Fokussieroptik abhängt. Des Weiteren wurde die Polymerisationsrate der unterschiedlichen Materialien aus der Auftragung des Voxelvolumens gegenüber der Laserleistung durch lineare Approximation bestimmt. Hierbei wurde festgestellt, dass die Materialsysteme z. T. erhebliche Unterschiede aufweisen. Als das Materialsystem mit der höchsten Polymerisationsrate hat sich das auf Acrylaten als vernetzbare Gruppen basierende OC-V in Kombination mit dem Irgacure® Oxe02 Photoinitiator herausgestellt. Aus diesem Grund wurde es für die Herstellung von makroskopischen Strukturen durch die Zwei-Photonen-Polymerisation bevorzugt verwendet. Die unterschiedlichen Materialien wurden ferner mit Hilfe der µ-Raman-Spektroskopie auf ihr Vernetzungsverhalten untersucht. Konkret wurden hierbei Linienfelder unter Variation der Scan-Geschwindigkeit und der Laserleistung mit Hilfe der 2PP hergestellt und vermessen. Die Vernetzungsgrade wurden semi-quantitativ aus den Spektren ermittelt. Insgesamt wurden Vernetzungsgrade im Bereich zwischen 40 % und 60 % gemessen, wobei mit OC-V und 2 Gew.-% Irgacure® Ox02 die höchsten Vernetzungsgrade erzielt wurden. Des Weiteren hat sich gezeigt, dass die Konversionsgrade für die jeweiligen Materialsysteme bei allen Scan-Geschwindigkeiten sich auf einem im Rahmen der Fehlergrenzen gleichem Niveau befinden. Damit kann der durch Simulationen theoretisch prognostizierte Abfall des Sättigungskonversionsgrades mit zunehmender Scan-Geschwindigkeit mit entsprechend variierenden Belichtungszeiten nicht als verifiziert angesehen werden. Die verschiedenen Materialsysteme wurden außerdem bezüglich ihrer mechanischen Eigenschaften charakterisiert. Zu diesem Zweck wurden zylindrische Formkörper unter verschiedenen Bedingungen (1PP, 2PP, verschiedene Photoinitiatorkonzentrationen) hergestellt und Druckfestigkeitsmessungen durchgeführt, sowie die Dichten und die Vernetzungsgrade aus den Formkörpern bestimmt. Insgesamt wurden Elastizitätsmodule im Bereich zwischen 0,40 und 1,37 GPa und Bruchfestigkeitswerte zwischen 117 bis 310 MPa ermittelt. Es konnte festgestellt werden, dass die Konzentration des Photoiniators das Vernetzungsverhalten und damit die mechanischen Eigenschaften der Formkörper stark beeinflusst. Während geringe Konzentrationen zu geringeren Vernetzungsgraden und niedrigen Elastizitätsmodulen führten, zeigten die Formkörper höherer Konzentration ein deutlich spröderes Verhalten mit höheren Vernetzungsgraden und Elastizitätsmodulen. Das höchste Elastizitätsmodul wurde an Hand von Formkörpern vermessen, welche aus OC-V mit 2 Gew.-% Irgacure® Ox02 hergestellt wurden. Darüber hinaus wurde festgestellt, dass sich die mechanischen Eigenschaften von durch 2PP hergestellten Formkörpern durch die applizierte Laserleistung beeinflussen lassen. Die Ursache hierfür ist, dass durch die Laserleistung die Voxelgröße und damit der Überlapp zwischen den Voxeln eingestellt werden kann. Im Bereich des Überlapps findet dann eine Doppelbelichtung des Materials statt, was zu höheren Vernetzungsgraden führen kann. Außerdem wurden durch die 2PP bei hinreichend großen Belichtungsleistungen auch Formkörper realisiert, welche höhere Elastizitätsmodule und Bruchfestigkeitswerte aufwiesen als Körper, welche durch UV-Belichtung hergestellt wurden. Die Aufskalierung der Zwei-Photonen-Technologie wurde in Kapitel 5.3 behandelt. Neben einer ausführlichen Diskussion zu den Herausforderungen diesbezüglich, wurden zwei Belichtungsstrategien zur Herstellung von makroskopischen Scaffold-Strukturen eingesetzt und optimiert. Hierbei ist insbesondere der Badaufbau hervorzuheben, der es erlaubte Strukturen von prinzipiell unbegrenzter Höhe mit Hilfe der Zwei-Photonen-Polymerisation herzustellen. Eine wesentliche Herausforderung der Aufskalierung der 2PP ist die Beschleunigung des Prozesses. Aus den Betrachtungen geht hervor, dass für eine gravierende Beschleunigung der 2PP-Strukturierung neben der Scan-Geschwindigkeit auch das Beschleunigungsvermögen des Positionierungssystems entscheidend ist. Des Weiteren sind auch Parallelisierungsmethoden mit z. B. diffraktiven optischen Elementen nötig, um ausreichende Prozessgeschwindigkeiten zu erzielen. Der Standardaufbau mit Luftobjektiven wurde dazu verwendet millimetergroße Strukturen mit hoher Qualität aus ORMOCER®en herzustellen. Auch wenn die maximale Strukturhöhe durch den Arbeitsabstand des Objektivs beschränkt ist, hat sich gezeigt, dass dieser Aufbau sich für die einfache Herstellung von millimetergroßen Test-Scaffold-Strukturen eignet, welche z. B. für Zellwachstumsversuche oder mechanische Belastungstest eingesetzt werden können. Das biodegradierbare MB-47 wurde hierbei ebenfalls erfolgreich eingesetzt und u. a. für die Herstellung von Drug-Delivery-Strukturen verwendet. Der Badaufbau, basierend auf einem Materialbad mit durchsichtigem Boden, einem darin befindlichen und in der Vertikalen (z-Richtung) beweglichen Substrathalter sowie einer Belichtung von unten durch eine sich in der Ebene bewegende Fokussieroptik, wurde verwendet um eine Freiheitsstatue mit 2 cm Höhe sowie millimetergroße Scaffold-Strukturen mit Porengrößen im Bereich von 40 bis 500 µm in ORMOCER-V zu realisieren. Weitere Strukturierungsresultate mit z. T. anwendungsbezogenem Hintergrund sind die Gehörknöchelchen des menschlichen Ohrs in Lebensgröße, ein Scaffold in Form eines Steigbügels des menschlichen Ohrs, Test-Scaffold-Strukturen für mechanische oder biologische Untersuchungen sowie Drug-Delivery Strukturen. Es wurden Bauraten von bis zu 10 mm^3/h erzielt. Bezüglich der Prozessgeschwindigkeit und Strukturhöhe wurde bei Weitem noch nicht das Potential des luftgelagerten Positioniersystems ausgeschöpft. Dafür bedarf es einer Gewichtsoptimierung des bestehenden Belichtungsaufbau, um höhere Beschleunigungswerte und Scan-Geschwindigkeiten realisieren zu können. Unter Annahme einer effektiven Gewichtsoptimierung und der damit verbundenen Erhöhung der Beschleunigung auf 10 m/s^2 könnte eine Baurate bei einer Scan-Geschwindigkeit von 225 mm/s und einem Slice- und Hatch-Abstand von 15 und 10 µm von etwa 60 mm^3/h erzielt werden. Im Rahmen der Aufskalierung wurde ebenfalls der experimentelle Einsatz von diffraktiven optischen Elementen zur Fokus-Multiplikation untersucht. Die Experimente wurden mit Hilfe eines Elements durchgeführt, welches eine 2 x 2 Punkte-Matrix neben der ungebeugten 0. Ordnung bereitstellt und Bestandteil eines experimentellen Setups war, welches aus Linsen, Blenden und einem Objektiv zur Fokussierung bestand. Mit Hilfe der erzeugten Spot-Matrix wurden zum einen simultan vier Drug-Delivery-Strukturen hergestellt und zum anderen einzelne Scaffold-Strukturen realisiert. In jedem Fall wurde eine Beschleunigung des Prozess bzw. eine Erhöhung der Polymerisationsrate um den Faktor 4 für die verwendeten Parameter erreicht. Bei der Herstellung der Scaffolds wurden zwei unterschiedliche Strategien verfolgt. Während zum einen die Periodizität der inneren Scaffold-Struktur auf die Fokusabstände angepasst und damit simultan vier aneinandergereihte Einheitszellen hergestellt wurden, konnte zum anderen auch demonstriert werden, dass durch die geschickte Bewegung der Fokusse eine ineinander verschobene Struktur möglich ist. Der Vorteil der letzteren Strategie ist, dass auf diese Weise eine komplette Schicht gescannt werden kann und damit hohe Scan-Geschwindigkeiten realisiert werden können. Die erzielten Bauraten waren dennoch nicht größer als die Bauraten, die mit einem einzelnen Spot im Rahmen des Standardaufbaus oder des Badaufbaus erreicht wurden. Hierfür bedarf es weiterer Optimierung der Parameter und des Setups. Transmittiert fokussiertes Licht eine Grenzfläche zweier Medien mit unterschiedlichen Brechungsindizes, dann tritt sphärische Aberration auf, welche sich durch die Verbreiterung des Fokus besonders in axiale Richtung bemerkbar macht. Da diese im Rahmen der verwendeten Belichtungsstrategien die Strukturierungsergebnisse nachweislich beeinträchtigen, wurden experimentelle Untersuchungen sowie Optimierungsroutinen diesbezüglich durchgeführt. Im Zusammenhang mit dem Standardaufbau wurde eine Leistungsanpassung während der Strukturierung vorgenommen. Auf diese Weise wurde erreicht, dass bei variabler Fokustiefe im Material die maximale Intensität trotz sphärischer Aberration konstant gehalten wurde, wodurch sich die strukturelle Homogenität der Scaffolds entlang der axialen Richtung (optische Achse) deutlich verbesserte. Des Weiteren wurde der Badaufbau dazu verwendet, die axiale Intensitätsverteilung in-situ für diskrete Fokustiefen unter der Verwendung eines Objektivs mit der NA von 0,60 abzubilden. Zu diesem Zweck wurde aus hergestellten Voxelfeldern eine Voxelfeldfunktion ermittelt und mit der axialen IPSF korreliert. Dabei wurde angenommen, dass sich das chemische Wechselwirkungsvolumen vernachlässigbar gering vom technischen Wechselwirkungsvolumen unterscheidet. Die experimentellen Ergebnisse zeigten deutlich die für sphärische Aberrationen typischen Nebenmaxima auf. Die Lage bzw. Abstände dieser entsprachen in guter Übereinstimmung den jeweiligen Simulationen. Schließlich wurde noch die sphärische Aberration durch den Korrekturring der Objektive für verschiedene Deckglasdicken korrigiert. Die resultierende IPSF wurde ebenfalls mit Hilfe des Badaufbaus abgebildet, wobei keinerlei Nebenmaxima gefunden werden konnten. Die Breite des Hauptmaximums konnte deutlich verringert werden. Zusammengefasst lässt sich sagen, dass im Rahmen dieser Arbeit erhebliche Fortschritte bei der Aufskalierung der 2PP zur Erzeugung von Scaffold-Strukturen für die regenerative Medizin erzielt wurden. Die erreichten Strukturdimensionen und die Bauraten übertreffen alle bis dato bekannten Ergebnisse. Dabei wurden auch durch theoretische Betrachtungen und experimentellen Methoden grundlegende Erkenntnisse über die Reaktionsdynamik der durch die Zwei-Photonen-Absorption initiierten Polymerisationsreaktion gewonnen. Nichtsdestotrotz sind einige Fragestellungen offen sowie Problematiken des Prozesses vorhanden, die für eine Realisierung von makroskopischen Scaffold-Strukturen gelöst werden müssen. So sind die realisierten Bauraten noch zu gering, um in angemessener Zeit makroskopische Scaffolds-Strukturen herzustellen, welche deutlich größer als 1 cm^3 sind. Aus diesem Grund müssen weitere Verbesserungen bezüglich der Scan-Geschwindigkeit sowie des Einsatzes von diffraktiven optischen Elementen zur Erhöhung der Polymerisationsrate erzielt werden. Da bei der Verwendung von Multi-Spot-Arrays, welche mit Hilfe gewöhnlicher diffraktiver optischer Elemente erzeugt wurden, die Realisierung von beliebigen und detaillierten äußeren Scaffold-Formen eingeschränkt ist, empfiehlt es sich den Einsatz von Spatial Light-Modulatoren zu verfolgen. Diese fungieren als dynamisch modulierbares DOE, mit dem einzelne Spots gezielt ein- und ausgeblendet und Spotabstände dynamisch variiert werden können. Schließlich ist es vorstellbar, den Spatial Light-Modulator mit dem Badaufbau zu kombinieren, um uneingeschränkte, große Strukturen in annehmbarer Zeit mit hochaufgelösten Details herstellen zu können. Dieses Vorgehen bedarf allerdings noch der tiefgreifenden Untersuchung der Potentiale des Spatial Light-Modulators. Darüber hinaus weisen die theoretischen und experimentellen Untersuchungen zur Reaktionskinetik darauf hin, dass die Voxelentstehung ein komplexer Prozess ist, der möglicherweise auch durch nichtlineare optische Wechselwirkungseffekte abseits der Zwei-Photonen-Absorption beeinflusst wird. Daher sind hier weitere Untersuchungen und Berechnungen zu empfehlen, um z. B. den Einfluss einer intensitätsabhängigen Brechzahl auf die Voxelbildung quantifizieren zu können. Entsprechende Ergebnisse könnten schließlich dazu dienen, dass im Rahmen dieser Arbeit entwickelte Modell zur Voxelbildung, welches auf der getrennten Betrachtung von technischen und chemischen Wechselwirkungsvolumen basiert, zu verbessern. Ein leistungsfähiges Modell, welches die Voxelbildung in Abhängigkeit des Materials und der Fokussieroptik präzise vorhersagen kann, wäre für das Erzielen optimaler Strukturierungsergebnissen ein Gewinn. N2 - In this thesis, the two photon polymerization technique using ORMOCER®s was investigated thoroughly. The main aspects of matter were the theoretical investigations of the interaction between laser and polymer, the experimental characterization of the different ORMOCER®s, and the scale-up of the photon polymerization technique in order to fabricate scaffolds for the regenerative medicine. The latter was achieved by designing and building up an innovative exposure device[38] which enables the fabrication of scaffold structures with minimal structure sizes of a view microns. The experiments were done using UV sensitive anorganic-organic hybrid polymers, also known as ORMOCER®s. These are typically synthesized for optical applications, but some are also biocompatible. The ORMOCER® MB-47 was invented by M. Beyer for biological application and possesses biocompatibility, partial biodegradability, and advanced 2PP structuring behavior. The micro-structuring system used contains an ultra-short pulse laser which emits 325 fs pulses at 1030 nm (applied was 515 nm using second harmonic generation), a highly precise positioning system which consists of three air-bearing stages with a travel range of 10 cm (y, z direction) and 15 cm (x direction), respectively, and some objectives for focusing. With these components, complex three-dimensional structures with minimal structure size below 1 µm can be produced. In Capital 5.1, theoretical studies of the interaction between the focal intensity distribution and the material, which defines voxel growth, were performed. Therefore, the technical interaction volume and the chemical interaction volume were separately investigated. The technical interaction volume describes the threshold driven interaction between the focal intensity distribution and the material system, which allows the realization of structure sizes below the resolution limit (diffraction) of the wavelength used. The theoretical investigations showed that spherical aberration influences the focal intensity distributions (Intensity-Point Spread Function (IPSF)) which were calculated for different experimental exposure configuration. The results propose a severe influence with increasing focus depth into the material. Moreover, a formal relation between the IPSF and the technical interaction volume was derived by using the threshold assumption. By using the Gaussian beam assumption as IPSF, the analogy of the derived formula to the voxel growth model of Serbin et al. was recognized. The chemical interaction volume represents the actual volume of the polymerization reaction. Its amount exceeds the technical interaction volume due to the space-consuming chain growth during the polymerization. By the simulation of the reaction kinetics of the polymerization, the time- and power-depending behavior of the different reactants (radicals, monomer, photo initiator) as well as the degree of conversion was calculated. The simulations were done for very short exposure times (< 10 ms) by using a system of coupled differential equations which are based on a model invented by Uppal & Shiakolas. Therefore, the influence of diffusion and temperature was estimated to be small on short time scales and thus neglected. The results of the simulations show that a short exposure time cannot be necessarily compensated by high laser powers to achieve a certain degree of conversion. Higher laser power leads rather to a swift consumption of the photo initiator and thus to a disruption of the polymerization. In order to achieve high degrees of conversions, the reactive rate coefficients of the propagation and termination k_P and k_T as well as a sufficient amount of photo initiator concentration is essential. The larger the ratio k_P/k_T the higher degree of conversion can be realized even with short exposure times whereas a significant part of the reaction takes place during the dark period. This finding is important for the scale-up of the photon polymerization technique which has to involve shorter exposure times. Moreover, the simulations show that the spatial profile of the degree of conversion can feature a central minimum. This phenomenon occurs when the central maximum intensity of the IPSF consumes the entire photo initiators in short times which leads to a disruption of the polymerization. In Capital 5.2, the voxel growth, the behavior of conversion as well as the mechanical properties of hardened ORMOCER®s were experimentally investigated with different parameters and material systems. By means of voxel fields, voxel sizes, aspect ratios and voxel volumes at different laser powers were determined. The results were compared with the calculated technical interaction volume, whereas the difference was invented as a new characteristic value. It has been shown that the voxel length deviates clearly from the length of the technical interaction volume which cannot be explained by space-consuming chain growth during the polymerization. Instead, it was assumed that this observation is reasoned by interaction effects between light and material (optical Kerr effect, polymerization) leading to an inhomogeneous refractive index distribution and thus to self-focusing and self-trapping. In contrast to that, the difference between the voxel diameter and the diameter of the technical interaction volume was correlated with reaction kinetic influences. Additionally, the dependency of the voxel volume on the laser power was linear approximated in order to determine the polymerization rate of different material systems. Here, strong differences between the materials were identified. The material with the highest polymerization rate was OC-V with the Irgacure® Oxe02 photo initiator which consists of acrylates as cross-linkable group. Because of this, this material system was preferred for 2PP structuring of large scale structures. The different materials were investigated concerning their conversion behavior by means of µ-Raman spectroscopy. Therefore, fields of lines were produced by 2PP with varying scan speed and laser power and measured. The degree of conversion was then semi-quantitative extracted from the spectra. All in all, the degrees of conversion were determined to be in the range of 40 to 60 % for all materials. The material with the highest degree of conversion was the OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the measurements showed that the degree of conversion for each material system does not vary with the scan speed (exposure time) within the limits of measurement error. Thus, the simulations from Capital 5.1.3, which predicted that shorter exposure times cannot be necessarily compensated by higher laser powers, could not be confirmed. Furthermore, the mechanical properties of the different materials were characterized. Therefore, cylindrical samples were produced with different processes and parameters and tested with a compressive load. Also the densities and degrees of conversion were determined. All in all, elastic moduli between 0,40 and 1,37 GPa and load failures between 117 and 310 MPa were measured. It was detected that the photo initiator concentration influences the conversion behavior and thus the mechanical properties of the samples. While low concentrations led to lower degrees of conversion and lower elastic moduli, the samples produced with higher concentrations were more brittle with higher degrees of conversion and elastic moduli. The highest elastic modulus was measured for samples which were produced in OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the mechanical properties of samples produced with 2PP can be influenced by the utilized laser power. This is reasoned by the voxel sizes which can be adjusted by the laser power and which determine the overlap of vicinal voxels at distinct hatch and slice distances. In the overlap area double exposure takes place which can lead to higher degrees of conversion. It was found that with sufficient laser powers the 2PP leads to higher elastic moduli and load failures than the 1PP. Capital 5.3 deals with the scale-up of the photon polymerization technique. After the discussion of the challenges, two exposure strategies were used to produce macroscopic scaffold structures. Especially, the vat setup has to be emphasized which can be used to build structures with basically unlimited structure heights by means of the 2PP technique. One of the major challenges concerning the scale-up of the 2PP is the speed-up of the process. Therefore, the scan speeds as well as the acceleration of the positioning system play important roles. Moreover it was detected that further parallelizing techniques as the utilization of diffraction optical elements are needed in order to achieve a sufficient speed-up of the 2PP technology. The standard exposure setup with air objectives was used to fabricate millimeter-sized structures in ORMOCER®s which high quality. Though the maximal achievable structure height is limited by the working distance of the objective used, the setup is suitable for the fabrication of macroscopic scaffolds which can be utilized for biological or mechanical testing. Moreover, the biodegradable MB-47 was successfully used for the fabrication of Drug Delivery structures. The vat setup bases on a vat/bath as material reservoir with transparent bottom, a sample holder moveable in the vertical (z) direction, and an upside down x-y-scanning objective. The sample can be moved upwards which enables one to build structures whose heights are not limited by the working distance of the employed objective anymore. This setup was used to fabricate a model of the statue of liberty with a height of 2 cm and millimeter-sized scaffolds with pore sizes in the area between 40 and 500 µm in ORMOCER®-V. Moreover, the human ossicles in life size, a scaffold in the shape of the human stapes, different test scaffold structures for mechanical and biological investigations and drug delivery structures were build. The achieved maximum building rate was 10 mm^3/h. So far, the speed-up and scale-up potentials of the air-bearing positioning system haven’t been exhausted when using the vat setup. Therefore, the setup has to be optimized regarding weight and stability in order to realize higher accelerations of up to 10 m/s^2. This would enable build rates of up to 60 mm3/h with a scan speed of 224 mm/s and slice and hatch distances of 15 and 10 µm. Moreover, the speed-up by means of diffractive optical elements was experimentally investigated. Therefore, an optical setup was constructed which includes the diffractive optical element, some lenses, an objective, and a blind to blank the zero order. By this a 2 x 2 spot matrix was generated which was used for the simultaneous fabrication of four drug delivery structures and the production of single scaffold structures. In both cases an increase of the polymerization rate was achieved regarding to structuring without diffractive optical elements. For the fabrication of the scaffold structures two different scan strategies were performed. Using the first one, a scaffold was built up by the simultaneous structuring of four scaffolds’ gyroid unit cells. After finishing these cells, more cells were stitched to them until a millimeter-sized scaffold was achieved. For this strategy, it’s important that the size of the unit cell design is adjusted to the focal matrix distances. With the second strategy a scanning of the whole spot matrix along the whole scaffold flank is performed. By this it was possible to produce a pile of interleaved beams which represents a woodpile-like scaffold. The fact that the produce lines of each layer are as long as scaffold flank leads to the advantage that higher scan speeds and thus build rates can be achieved than with the first strategy. Nevertheless, the realized maximum build rates weren’t exceeding the build rates which were reached by using the standard setup or the vat setup. Thus, more optimization of parameters and setup is needed. If focused laser lights transmits through an interface of two materials with different refractive indices, spherical aberration occurs which leads to blurring of the focal intensity distribution especially in the axial direction. When using air objectives this blurring affects the structuring results. Hence theoretical and experimental investigations were done in order to optimize exposure routines. When using the standard exposure setup, power adoption was performed during the structuring process which allows holding the maximum focal intensity constant at varying focal depths in the presence of spherical aberration influences. By this, a clear improvement of the scaffolds’ quality and homogeneity along the axial direction was achieved. Furthermore, the vat setup with the NA 0.60 objective was used to perform an experimental in situ mapping of the focal axial intensity distribution for different focal depths. A voxel field function was extracted from produced voxel fields and correlated with the axial intensity distribution. Therefore, it was assumed that the chemical interaction volume is equal to the technical interaction volume. The experimental results showed clearly the presence of side maxima which are typical for spherical aberration influences. The distances between them were predicted quite exactly by theoretical simulations. Finally, the spherical aberrations were reduced by the correction collar of the objective. The resulting intensity distribution was also mapped with the vat setup and no side maxima were found for the experimental intensity distribution. Moreover the contrast of the main maximum was clearly improved. Overall, it can be concluded that within this work a noticeable progress in the scale-up of the two-photon polymerization technique was achieved which is important for the fabrication of scaffold structures for the regenerative medicine. The realized structure dimensions and build rates exceed all, so far, known specifications of structures fabricated by two-photon polymerization. Moreover, basic knowledge of the most important aspects of the scale-up was discovered by thoroughly theoretical and experimental investigations. Nevertheless, there is still much improvement necessary to establish the two photon polymerization technique as a competitive tool for the production of scaffold structures which are larger than 1 cm^3. Higher scan speeds and advanced setups with diffractive optical elements must be applied to achieve build rates in the range over 1 cm^3/h. Due to the lack in flexibility of usual diffractive optical elements, it is recommended to use spatial light modulators which are dynamic adjustable diffractive optical elements. With them it is possible to vary the spot intensity distribution, spot number as well as the spot distances during the process. Finally, it is imaginable that in future the vat setup combined with a spatial light modulator can be used for the fabrication of large macro structures with finest details in adequate time. But therefore, it is necessary to perform thoroughly investigations concerning the potentials of spatial light modulators. Moreover, the theoretical and experimental investigations on the reaction kinetics show that voxel growth is a complex process which is possibly affected by nonlinear optical interactions aside from the two-photon absorption phenomenon. Thus, intensive study should be done in order to, for example, quantify the influence of an intensity-dependent refractive index on the voxel growth. Maybe, results could be used to improve the voxel growth model of this work which bases on the separate consideration of the technical and chemical interaction volumes. A powerful tool enabling the prices prediction of voxel growth characteristics depending on material and focusing optics would help to improve the detail quality of fabricated scaffolds. KW - Tissue Engineering KW - Polymere KW - Mikrofertigung KW - Two-photon polymerization KW - Two-photon absorption KW - Scaffold fabrication KW - Zwei-Photonen-Polymerisation KW - Zweiphotonenabsorption KW - Reaktionskinetik KW - Raman-Spektroskopie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130161 ER - TY - THES A1 - Beetz, Johannes T1 - Herstellung und Charakterisierung von Halbleiterbauelementen für die integrierte Quantenphotonik T1 - Fabrication and characterization of semiconductor devices for integrated quantum photonics N2 - Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung quantenphotonischer Komponenten, welche für eine monolithische Integration auf einem Halbleiter-Chip geeignet sind. Das GaAs-Materialsystem stellt für solch einen optischen Schaltkreis die ideale Plattform dar, weil es flexible Einzelphotonenquellen bereithält und mittels ausgereifter Technologien auf vielfältige Weise prozessiert werden kann. Als Photonenemitter werden Quantenpunkte genutzt. Man kann sie mit komplexen Bauelementen kombinieren, um ihre optischen Eigenschaften weiter zu verbessern. Im Rahmen dieser Arbeit konnte eine erhöhte Effizienz der Photonenemission beobachtet werden, wenn Quantenpunkte in Wellenleiter eingebaut werden, die durch photonische Kristalle gebildet werden. Die reduzierte Gruppengeschwindigkeit die diesem Effekt zugrunde liegt konnte anhand des Modenspektrums von kurzen Wellenleitern nachgewiesen werden. Durch zeitaufgelöste Messungen konnte ermittelt werden, dass die Zerfallszeit der spontanen Emission um einen Faktor von 1,7 erhöht wird, wenn die Emitter zur Mode spektrale Resonanz aufweisen. Damit verbunden ist eine sehr hohe Modeneinkopplungseffizienz von 80%. Das Experiment wurde erweitert, indem die zuvor undotierte Membran des Wellenleiters durch eine Diodenstruktur ersetzt und elektrische Kontakte ergänzt wurden. Durch Anlegen von elektrischen Feldern konnte die Emissionsenergie der Quantenpunkte über einen weiten spektralen Bereich von etwa 7meV abgestimmt werden. Das Verfahren kann genutzt werden, um die exzitonischen Quantenpunktzustände in einen spektralen Bereich der Wellenleitermode mit besonders stark reduzierter Gruppengeschwindigkeit zu verschieben. Hierbei konnten für Purcell-Faktor und Kopplungseffizienz Bestwerte von 2,3 und 90% ermittelt werden. Mithilfe einer Autokorrelationsmessung wurde außerdem nachgewiesen, dass die Bauelemente als Emitter für einzelne Photonen geeignet sind. Ein weiteres zentrales Thema dieser Arbeit war die Entwicklung spektraler Filterelemente. Aufgrund des selbstorganisierten Wachstums und der großen räumlichen Oberflächendichte von Quantenpunkten werden von typischen Anregungsmechanismen Photonen mit einer Vielzahl unterschiedlicher Energien erzeugt. Um die Emission eines einzelnen Quantenpunktes zu selektieren, muss der Transmissionsbereich des Filters kleiner sein als der Abstand zwischen benachbarten Spektrallinien. Ein Filter konnte durch die Variation des effektiven Brechungsindex entlang von indexgeführten Wellenleitern realisiert werden. Es wurde untersucht wie sich die optischen Eigenschaften durch strukturelle Anpassungen verbessern lassen. Ein weiterer Ansatz wurde mithilfe photonischer Kristalle umgesetzt. Es wurde gezeigt, dass der Filter hierbei eine hohe Güte von 1700 erreicht und gleichzeitig die Emission des Quantenpunkt-Ensembles abgetrennt werden kann. Die Bauelemente wurden so konzipiert, dass die im photonischen Kristall geführten Moden effizient in indexgeführte Stegwellenleiter einkoppeln können. Ein Teil dieser Arbeit beschäftigte sich zudem mit den Auswirkungen von anisotropen Verspannungen auf die exzitonischen Zustände der Quantenpunkte. Besonders starke Verspannungsfelder konnten induziert werden, wenn der aktive Teil der Bauelemente vom Halbleitersubstrat abgetrennt wurde. Dies wurde durch ein neu entwickeltes Fabrikationsverfahren ermöglicht. Infolgedessen konnten die Emissionsenergien reversibel um mehr als 5meV abgestimmt werden, ohne dass die optischen Eigenschaften signifikant beeinträchtigt wurden. Die auf den aktiven Teil der Probe wirkende Verspannung wurde durch die Anwendung verschiedener Modelle abgeschätzt. Darüberhinaus wurde gezeigt, dass durch Verspannungen der spektrale Abstand zwischen den Emissionen von Exziton und Biexziton gezielt beeinflusst werden kann. Die Kontrolle dieser exzitonischen Bindungsenergie kann für die Erzeugung quantenmechanisch verschränkter Photonen genutzt werden. Dieses Ziel kann auch durch die Reduzierung der Feinstrukturaufspaltung des Exzitons erreicht werden. Die experimentell untersuchten Quantenpunkte weisen Feinstrukturaufspaltungen in der Größenordnung von 100meV auf. Durch genau angepasste Verspannungsfelder konnte der Wert erheblich auf 5,1meV verringert werden. Beim Durchfahren des Energieminimums der Feinstrukturaufspaltung wurde eine Drehung der Polarisationsrichtung um nahezu 90° beobachtet. Desweiteren wurde ein Zusammenhang des Polarisationsgrades mit der Feinstrukturaufspaltung nachgewiesen. Es wurde ein weiterer Prozessablauf entworfen, um komplexe Halbleiterstrukturen auf piezoelektrische Elemente übertragen zu können. Damit war es möglich den Einfluss der Verspannungsfelder auf Systeme aus Quantenpunkten und Mikroresonatoren zu untersuchen. Zunächst wurde demonstriert, dass die Modenaufspaltung von Mikrosäulenresonatoren reversibel angepasst werden kann. Dies ist ebenfalls von Interesse für die Erzeugung polarisationsverschränkter Photonen. An Resonatoren aus photonischen Kristallen konnte schließlich gezeigt werden, dass das Verhältnis der spektralen Abstimmbarkeiten von exzitonischen Emissionslinien und Resonatormode etwa fünf beträgt, sodass beide Linien in Resonanz gebracht werden können. Dieses Verhalten konnte zur Beeinflussung der Licht-Materie-Wechselwirkung genutzt werden. N2 - The focus of this work lies on the development of quantum photonic components which are capable to be integrated into a monolithic semiconductor chip. The GaAs material system is an ideal platform for such an optical circuit since it offers flexible emitters for single photons and can be processed in various ways using mature technologies. Quantum dots can serve as photon emitters. They can be readily combined with complex devices in order to enhance their optical properties. In this thesis, an increased efficiency of the photon emission was observed when quantum dots are embedded into photonic crystal waveguides. The reduced group velocity which is responsible for this effect was verified in short waveguides by analyzing spectral features of the mode. Time resolved measurements were used to show a decrease of the decay time of the spontaneous emission time by a factor of 1.7 when the emitter is resonant to the mode. As a consequence, a very high mode coupling efficiency of 80% was found. In an extended experiment, the previously undoped membrane of the waveguide was replaced by a diode-like layer structure and electrical contacts were added to the device. Using an electrical field, the emission energies of the quantum dots were tuned in a wide spectral range of approximately 7 meV. This technique can be used to shift the excitonic states of the quantum dots towards the spectral part of the waveguide mode where the group velocity is strongly reduced. As a result, the Purcell factor and the coupling efficiency were found to be as high as 2.3 und 90%. Using autorcorrelation measurements single photon emission was demonstrated for the devices. A futher topic of this work is focused on the development of spectral filters. Due to the self-assembled growth and high spatial surface density of quantum dots, typical excitation schemes generate a great number of photons with different energies. In order to select the emission of a single quantum dot, the transmission range of the filters must be lower than the distance of adjacent spectral lines. A filter device was realized by variations of the effective refractive index alongside of ridge waveguides. The optical properties were improved by structural adjustments. Another approach was implemented by using photonic crystals. This filter yielded a quality factor of 1700 and was able to suppress the emission of the quantum dot ensemble. The devices were designed to efficiently couple the mode from the photonic crystal to a ridge waveguide. Another part of this work addresses the effect of anistropic strain on the excitonic states of the quantum dots. In order to induce high amounts of strain, the active parts of the devices must be separated from the semiconductor substrate. For this reason a new fabrication process was developed. Consequently, reversible tuning ranges of more than 5 meV could be achieved for the emission energies while largely maintaining the optical properties. Strain applied at the active parts of the sample was estimated using various models. Furthermore, it was demonstrated that the spectral distance between exciton and biexziton is influenced by strain. The manipulation of the excitonic binding energy is useful for the generation of quantum-mechanically entangled photons. Another way to accomplish this goal is the reduction of the fine structure splitting of the exciton. The fine structur splitting of quantum dots used in the experiments is in the order of magnitude of 100 µeV. This value was decreased to 5.1 µeV by precise adjustments of the induced strain. A rotation of the emission polarization by almost 90◦ was observed when crossing the energetic minimum of the fine structure splitting. Furthermore, a change of the degree of polarization associated with the fine structure splitting was demontrated. A further process flow was developed in order to transfer complex device structures onto piezoelectric substrates. This allows for the investigation of strain induced to systems composed of quantum dots and microresonators. It was demonstrated that the spectral splitting of the mode of micropillar resonators can be tuned in a reversible manner. This finding is again interesting for the generation of polarization-entangled photons. When strain is applied to photonic crystal resonators a ratio of 5 is observed for the tuning ranges of excitonic emission lines and resonator mode with the result that resonance can accomplished between both lines. Since the tuning sensitivities are different the interaction of light and matter can be adjusted by strain. KW - Galliumarsenid-Bauelement KW - Resonatoren KW - Photonische Kristalle KW - Quantenpunkt KW - Photonik KW - Halbleiter Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117130 ER - TY - THES A1 - Ebensperger, Thomas T1 - Konzeption, Umsetzung und Evaluierung eines linsenlosen Röntgenmikroskopes T1 - Design, Setup and Characterization of a Lensless X-ray Microscope N2 - Diese Arbeit befasst sich mit der Konzeption, Umsetzung und Charakterisierung eines Rönt- genmikroskops für harte Röntgenstrahlung mit der Möglichkeit zur dreidimensionalen Bild- gebung. Der vorgestellte Aufbau basiert auf geometrischer Vergrößerung und verzichtet im Gegensatz zu anderen Röntgenmikroskopiemethoden auf den Einsatz optischer Elemente. Dreidimensionale Bildgebung wird durch einen linearlaminographischen Aufnahmemodus realisiert, bei dem unterschiedliche Durchstrahlungsrichtungen durch das Objekt durch eine relative Verschiebung von Quelle und Detektor zustande kommen. Die Röntgenquelle des Mikroskops besteht aus einer zu einer Nanofokusröntgenröhre um- gebauten Elektronenmikrosonde mit 30 kV Beschleunigungsspannung (dies entspricht einer Wellenlänge von bis zu 0,041 nm). Durch die Elektronenoptik kann ein intensiver Elektronen- strahl anstelle eine Probe auf ein Transmissionstarget fokussiert werden. In dieser Arbeit wird eine Möglichkeit evaluiert, die Schichtdicke der röntgenaktiven Schicht des Transmissionstar- gets für die gegebene Beschleunigungsspannung zu optimieren. Dabei werden eine Schichtdi- cke für maximale Röntgenleistung (700 nm Wolfram) und eine für maximale Röntgenleistung bezogen auf die entstehende Quellfleckgröße (100 nm Wolfram) identifiziert. Dadurch erreicht dieses System eine laterale Ortsauflösung von 197 nm, gemessen an einem Siemensstern. Diese ist eine Größenordnung besser als bei modernen SubμCT-Anlagen, die zur zerstörungsfrei- en Prüfung eingesetzt werden, und einen Faktor 2 besser als bei Laborröntgenmikroskopen basierend auf Fresnel’schen Zonenplatten. Abgesehen von der lateralen Auflösung bei hochkontrastigen Objekten werden auch die Abbil- dungseigenschaften für schwach absorbierende Proben mit Inline-Phasenkontrastbildgebung untersucht. Dazu wird eine Methode entwickelt mit der anhand der gegebenen Anlagenpara- meter der optimale Quell-Objekt-Abstand zur Maximierung des Fringe-Kontrasts gefunden werden kann. Dabei wird die Ausprägung des Fringe-Kontrasts auf die Phase −iα zurück geführt. Das vorgeschlagene Modell wird durch Messungen am Röntgenmikroskop und an einer weiteren Röngtenanlage verifiziert. Zur Beurteilung der dreidimensionalen Bildgebung mit dem vorgeschlagenen linearlaminogra- phischen Aufnahmemodus kann dieser auf eine konventionelle Computertomographie mit ein- geschränktem Winkelbereich zurückgeführt werden und so die maximal erreichbare Winkel- information bestimmt werden. Des Weiteren werden numerische Berechnungen durchgeführt, um die Einflüsse von Rauschen und geometrischen Vorgaben einschätzen zu können. Ein experimenteller Test des Laminographiesystems wird anhand eines hochkontrastigen (Fres- nel’sche Zonenplatte) und eines niederkontrastigen Objekts (Kohlefasergewebe) durchgeführt. Es zeigte sich, dass die laterale Auflösung während der dreidimensionalen Rekonstruktion gut erhalten bleibt, die Tiefenauflösung aber nicht die gleiche Qualität erreicht. Außerdem konnte festgestellt werden, dass die Tiefenauflösung sehr stark von der Geometrie und Zusammen- setzung des untersuchten Objekts abhängt. N2 - The general topic of this thesis is the design, setup and characterization of a hard x-ray microscope with 3D imaging capability. The presented setup is based on geometric magnifi- cation and does not make use of x-ray optical elements in contrast to most other methods for x-ray microscopy. Three dimensional imaging is realized using a linear laminographic ima- ging mode which uses a relative linear displacement of source and detector to realize different views through the object. The x-ray source of the setup is based on an electron probe micro analyzer with 30 kV acce- leration voltage that has been refitted to serve as a nano focus x-ray source producing x-rays with a wavelength down to 0.041 nm. By means of the used electron optics a highly intense electron beam can be focused on a transmission target. In this thesis a method of optimizing the thickness of the x-ray source layer of the target for a given acceleration voltage is evalua- ted. Thus, two thicknesses for the used tungsten target can be identified: one for maximum x-ray yield (700 nm) and one for maximum yield per source size (100 nm). With the optimized targets a lateral resolution of 197 nm can be achieved. This is an improvement of one order of magnitude compared to state-of-the-art sub-micron CT setups for non-destructive testing and an improvement of a factor of 2 compared to laboratory setups using Fresnel zone plates. In addition to resolution tests at high contrast specimens, the imaging of weakly absorbing specimens is addressed. Therefor, a method for identifying the optimal source object distance for a given imaging setup in order to maximize the fringe contrast in inline phase contrast imaging has been developed by maximizing the absolute value of the phase of the Fresnel propagator −iα. This method has been verified by experiments at the proposed microscope and with an x-ray imaging setup using a liquid metal jet anode. To assess the 3D imaging capabilities of the setup, the laminographic imaging mode can be described as a conventional computed tomography with limited scanning angle. This allows an assessment of the accessible volume information. Furthermore, numerical experiments have been performed to evaluate the influence of noisy projections and geometric inaccuracies. An experimental test of the laminographic system has been conducted using both a high- contrast specimen (Fresnel zone plate) and a low-contrast specimen (carbon fibre mesh). The lateral resolution of the single projections can be transferred to the 3D volumes. The depth resolution, however, does not reach the same quality due to the limited information. Furthermore, it can be stated that depth resolution is highly dependent on the scanned specimen. KW - Harte Röntgenstrahlung KW - Röntgenmikroskopie KW - Ultrathin Transmission Target KW - Röntgenmikroskop KW - Dreidimensionales Bild KW - Physik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117937 ER - TY - THES A1 - Fuchs, Peter T1 - Monolithische Quantenkaskadenlaser mit monomodiger und weit abstimmbarer Emission T1 - Monolithic quantum cascade lasers with monomode and widely tunable emission N2 - Ausgehend von mittels Molekularstrahlepitaxie im InGaAs/InAlAs/InP Materialsystem gewachsenen Lasermedien wurden monochromatische Quantenkaskadenlaser für die GasSensorik mit Emission im mittleren Infrarot entworfen, hergestellt und charakterisiert. Vorrangige Ziele waren hierbei die Entwicklung von leistungsstarken monomodigen Lasern im langwelligen Spektralbereich um 14 µm, sowie von Bauteilen mit weiter und schneller spektraler Abstimmbarkeit. Für den Entwurf der Laserstege wurde zunächst die zeitliche Entwicklung der Temperaturverteilung für verschiedene Varianten von Wellenleitern sowohl im gepulsten als auch im kontinuierlichen Betrieb simuliert. Anhand der berechneten thermischen Bauteilwiderstände konnten so geeignete Prozessparameter für die Herstellung der Laserstrukturen ermittelt werden Zur Herstellung von monochromatischen DFB-Lasern auf Basis eines MesaWellenleiters mit Seitenwandgittern wurde ein Prozess entwickelt, der sich - im Vergleichzu gängigen Verfahren zur Strukturierung von DFB-Gittern - durch eine stark reduzierte Anzahl an Verfahrenschritten und eine schnelle und einfache Durchführbarkeit auszeichnet. Für Laser mit 4 mm Länge und 14 µm mittlerer Breite wurde eine Spitzenleistung über 200 mW bei einer externen Effizienz von 330 mW/A und einer Schwellstromdichte von 2,1 kA/cm^2 bei Raumtemperatur bestimmt. DFB-Laser um 14 µm, welche - durch die große Wellenlänge bedingt – höhere Schwellstromdichten aufweisen, wurden dagegen auf Basis von nasschemisch geätzten Doppelkanal-Wellenleitern mit in die Oberseite des Steges geätzten Gittern und dickem Gold auf den Stegflanken hergestellt, um eine bessere laterale Wärmeabfuhr zu erreichen. Basierend auf der Analyse des Strahlprofils und des Emissionsspektrums war trotz der großen Stegbreite ausschließlich Betrieb auf der Grundmode zu beobachten. So konnte eine Spitzenleistung von 810 mW bei einer Schwellstromdichte von 4,3 kA/cm^2 bei Raumtemperatur erreicht werden. Um eine größere spektrale Abstimmbarkeit zu erreichen als dies mit DFB-Lasern möglich ist, wurde ein Lasertyp auf Basis von zwei gekoppelten Fabry-P erot Kavitäten entworfen, hergestellt und untersucht. Mit diesem Konzept konnte über eine geringe Stromvariation ein Umschalten zwischen verschiedenen Resonanzen erreicht werden, was bei konstanter Temperatur der Wärmesenke um Raumtemperatur einen Abstimmbereich von 5,2 cm^−1 ermöglichte. Unter Einbeziehung einer Variation der Temperatur der Wärmesenke konnte monomodige Emission in einem Spektralbereich von 52 cm^−1 erreicht und die Tauglichkeit der Laser für die Gas-Sensorik anhand einer Absorptionsmessung an Ammoniak demonstriert werden. Da die monomodige Spitzenleistung dieser Laser jedoch konzeptbedingt auf wenige mW beschränkt war, wurde für den Einsatz weit abstimmbarer Laser in der Spurengasanalytik im letzten Teil der Arbeit ein anderer Lasertyp mit flachgeätztem Bragg-Reflektor entwickelt. Durch sorgfältige Wahl der Gitterparameter und ein spezielles Puls-Schema wurde eine über 30 cm^−1 quasi-kontinuierlich abstimmbare, monomodige Emission erreicht. Die Stabilität und die spektrale Reinheit des Laserlichts mit einer Seitenmodunterdrückung von mehr als 30 dB konnte anhand von zeitaufgelösten Messungen des Abstimmvorgangs und durch ein Absorptionsexperiment mit Ethen belegt werden. Die erzielte spektrale Auflösung war durch die Messelektronik begrenzt und betrug 0,0073 cm^-1. Zudem ergab sich auch die Möglichkeit einer Analyse des thermischen Übersprechens, welche einen vernachlässigbaren Einfluss für den Pulsbetrieb der Laser zeigte und eine moderate Erwärmung benachbarter Segmente um 10% des für das vorsätzlich beheizte Segment gemessenen Wertes. Des Weiteren konnte dank der Möglichkeit zur unabhängigen Strominjektion in verschiedene Sektionen die Temperaturabhängigkeit von Verstärkung und Absorption im Resonator untersucht werden. Herausstechende Eigenschaften dieser Laser wie die Verringerung der gepulsten Chirprate im Vergleich zu DFB-Lasern um den Faktor 3 konnten anhand von systematischen Untersuchungen mit einer Vielzahl von Bauteilen analysiert und auf die zeitlicheTemperaturentwicklung bzw. die räumliche Temperaturverteilung im Lasersteg zurückgeführt werden. Die optische Spitzenleistung von 600 mW und externe Effizienzen bis 300mW/A sollten auch den Einsatz in der Spurengasanalyse erlauben, die hohe Geschwindigkeit mit der die Emissionswellenlänge variiert werden kann, überdies die Untersuchung der Reaktionskinetik in der Gasphase. N2 - The main focus of this work was the design, fabrication and characterization of widely tunable monochromatic quantum cascade laser sources based on InGaAs/InAlAs/InP gain material grown by molecular beam epitaxy. Primary targets were the development of high-power lasers in the long-wavelength region of the mid-infrared around 14 µm as well as the design of devices with broad and fast tunability. To gain insight into the time evolution and spatial distribution of the waste heat in the laser ridge for both pulsed and cw-operation a thermal simulation was performed. Based on the calculated thermal resistance of the laser structures optimum parameters for the fabrication process were deducted. A fabrication procedure for monochromatic DFB-lasers based on mesa-waveguides with lateral sidewall gratings was devised. It exhibits a strongly reduced number of fabrication steps and enables a quick and simple implementation compared to established types of DFB lasers. The electro-optic characteristics as well as the farfield-profile of the laser emission and the coupling coefficient of the DFB-grating were systematically investigated in dependence of the geometry of the ridge waveguide. Lasers with a resonator length of 4 mm and an average ridge width of 14 µm showed a peak output power of more than 200 mW with an external efficiency of 330 mW/A and a threshold current density of 2.1 kA/cm^2. In contrast, DFB lasers emitting around 14 µm were fabricated as double-channel waveguides with a DFB-grating on top of the laser ridge. A thick gold layer was deposited around the laser ridge to provide enhanced heat dissipation since inherently higher losses at long wavelengths lead to higher electrical power densities during operation and subsequently the production of more waste heat. It was found that lasers with very wide ridges of 28 µm exhibited the highest average output power of 11 mW at room temperature given the maximum targeted duty-cycle of 10% as specified by the application of industrial detection of acetylene. This way a record peak output power of 810 mW with a threshold current density of 4.3 kA/cm^2 at room temperature was reached. In order to acquire greater spectral tunability compared to DFB-lasers, multisegment lasers based on two coupled FP-cavities were designed, fabricated and characterized. Single-mode emission with side-mode suppression ratios up to 30 dB, operation above room temperature and reproducible mode switching between different cavity-resonances via current-tuning was observed in accordance with theory. A tuning range of 5.2 cm−1 was achieved at constant temperature. With additional temperature tuning single-mode emission within a spectral range of 52 cm−1 was observed. The usability of these devices for gas sensing purposes was demonstrated with a gas absorption experiment using ammonia. Since the monomode peak output power of these coupled cavity lasers was limited to a few mW due to constraints of the mode selection principle, the last part of the thesis deals with a novel type of multi-segment laser featuring a shallow etched Bragg-reflector. Through careful design of the grating parameters and a specific pulsing scheme quasi-continuously tunable single mode emission over 30 cm−1 was achieved. Excellent spectral purity and pulse stability with side-mode suppression ratios greater than 30 dB (noise limited) could be demonstrated by means of time-resolved measurements of the tuning behavior. The achievable spectral resolution in an absorption experiment with ethene was shown to be better than 0.0073 cm−1 and limited by the signal acquisition electronics. The influence of thermal crosstalk between the laser segments was investigated and found to be negligible for pulsed operation. For constant injected currents a moderate temperature rise in the neighbouring segment of about 10% compared to the value in the deliberately heated segment was observed. Moreover the temperature dependence of both gain and waveguide absorption could be determined separately by individual current injection into different segments and subsequent analysis of the threshold currents. Outstanding characteristics of these lasers like the reduction of the laser chirp by a factor of three compared to DFB lasers were systematically investigated on the basis of a multitude of devices. Finally comprehension of the temperature evolution and the spatial distribution of the temperature in the laser resonator lead to an explanation for both phenomena. The high peak output power of 600 mW and external efficiences up to 300 mW/A should prepare the ground for trace gas sensing applications with these devices. Their fast tuning capabilities should also enable the investigation of reaction kinetics in the gas phase with a single laser source. KW - Quantenkaskadenlaser KW - Quantenkaskadenlaser KW - gekoppelte Kavitäten KW - weite Abstimmbarkeit KW - monomodige Laser KW - Einmodenlaser Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109432 ER - TY - THES A1 - Heindel, Tobias T1 - Elektrisch gepumpte Quantenpunkt-Einzelphotonenquellen für die Quantenkommunikation T1 - Electrically Pumped Quantum-Dot Single-Photon Sources for Quantum Communication N2 - Als erste kommerziell verfügbare Technologie der Quanteninformation ermöglicht die Quanten-Schlüsselverteilung eine sichere Datenübertragung indem einzelne Photonen oder quantenmechanisch verschränkte Photonenpaare zur Erzeugung eines Schlüssels verwendet werden. Die hierfür benötigten nicht-klassischen Photonen-Zustände können durch Halbleiter-Quantenpunkte erzeugt werden. Im Gegensatz zu anderen Quanten-Emittern wie isolierten Atomen, organischen Molekülen oder Fehlstellen in Diamantnanokristallen bieten diese zudem den Vorteil, direkt in komplexe Halbleiter-Mikrostrukturen integriert werden zu können. Quantenpunkte sind somit prädestiniert für die Entwicklung neuartiger optoelektronischer Bauelemente auf einer skalierbaren Technologieplattform. Vor diesem Hintergrund werden in der vorliegenden Arbeit die Eigenschaften elektrisch gepumpter Quantenpunkt-Mikrostrukturen untersucht. Als optisch aktives Medium dienen dabei selbstorganisierte InAs/GaAs-Quantenpunkte. Die Zielsetzung ist die Erzeugung nicht-klassischen Lichts für Anwendungen in der Quantenkommunikation, wobei ein besonderer Fokus auf dem elektrischen Betrieb der entsprechenden Quantenlichtquellen liegt. Dabei werden sowohl ausgeprägte Resonatoreffekte im Regime der schwachen Licht-Materie-Wechselwirkung ausgenutzt, um helle Einzelphotonenquellen zu realisieren, als auch die Eigenschaften korrelierter Photonenpaare zweier spektral separierter Quantenpunkt-Zustände analysiert. Als Untersuchungsmethode wird in erster Linie die spektral und zeitlich hochauflösende Mikro-Lumineszenz-Spektroskopie bei kryogenen Temperaturen eingesetzt. Zudem erfolgen Experimente zur Photonenstatistik anhand von Messungen der Auto- sowie Kreuzkorrelationsfunktion zweiter Ordnung. Wie im Folgenden aufgeführt, gelingt dabei der Bogenschlag von grundlegenden Untersuchungen an Quantenpunkt-Mikrostrukturen bis hin zur erstmaligen Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in realistischen Experimenten zur Quanten-Schlüsselverteilung außerhalb einer geschützten Laborumgebung. Elektrisch getriggerte Einzelphotonenquellen: Für die Erzeugung elektrisch getriggerter, einzelner Photonen wurden Quantenpunkte in Mikroresonatoren eingebettet. Diese basieren auf dotierten, zylindrischen Fabry-Pérot Mikrosäulenresonatoren, deren Design bezüglich der Photonen-Auskoppeleffizienz optimiert wurde. […] Anhand von Messungen zur Photonenstatistik konnte für diese spektral resonant gekoppelten Quantenpunkt-Mikroresonatorsysteme sowohl unter kontinuierlicher- als auch unter gepulst-elektrischer Anregung Einzelphotonen-Emission nachgewiesen werden. […] Anhand einer eingehenden Analyse der Emissionsraten sowie der elektrischen Injektionseffizienzen bei Anregungs-Repetitionsraten von bis zu 220 MHz konnte gezeigt werden, dass die untersuchten Mikroresonatoren zudem als äußerst effiziente, elektrisch getriggerte Einzelphotonenquellen eingesetzt werden können. Sowohl bezüglich der Einzelphotonen-Emissionsraten von bis zu (47,0+/-6,9) MHz als auch der Gesamteffizienz der Bauteile bis hin zu (34+/-7) % konnten dabei Rekordwerte erzielt werden. Korrelierte Photonenpaare elektrisch gepumpter Quantenpunkte: […] Quanten-Schlüsselverteilung mit elektrisch getriggerten Einzelphotonenquellen: Ausgehend von den grundlegenden Untersuchungen dieser Arbeit, erfolgte die erstmalige Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in Experimenten zur Quanten-Schlüsselverteilung. Basierend auf den eingehend analysierten Quantenpunkt-Mikroresonatoren, wurden dabei zwei Experimente in Freistrahloptik mit unterschiedlichen Übertragungsdistanzen durchgeführt. In beiden Fällen wurde ein BB84-Protokoll nachgeahmt, indem auf die einzelnen Photonen eine feststehende Abfolge von vier unterschiedlichen Polarisationszuständen aufmoduliert wurde. Das erste Experiment, durchgeführt im Labormaßstab in Würzburg, basierte auf einem Quantenkanal mit einer Länge von etwa 40 cm und arbeitete bei einer Taktrate von 183 MHz. Die höchste dabei erzielte ausgesiebte Schlüsselrate (engl. sifted-key rate) betrug 35,4 kbit/s bei einem Quanten-Bitfehlerverhältnis (QBER) von 3,8 %. Der Einzelphotonen-Charakter der Emission innerhalb des Quantenkanals konnte jeweils eindeutig nachgewiesen werden […]. Das zweite Experiment zur Quanten-Schlüsselverteilung wurde mittels zweier Teleskope über eine Distanz von 500 m in der Münchner Innenstadt zwischen den Dächern zweier Gebäude der Ludwig-Maximilians-Universität realisiert. […] Bei einer Taktrate von 125 MHz konnte mit diesem System im Einzelphotonen-Regime eine maximale sifted-key rate von 11,6 kbit/s bei einem QBER von 6,2 % erzielt werden. Diese erstmalige Implementierung elektrisch betriebener, nicht-klassischer Lichtquellen in Experimenten zur Quanten-Schlüsselverteilung stellt einen wichtigen Schritt hinsichtlich der Realisierung effizienter und praktikabler Systeme für die Quantenkommunikation dar. N2 - Quantum key distribution is the first commercially available technology of quantum information and allows for secure data communication by utilizing single-photons or entangled photon-pairs for key generation. The required non-classical light states can be produced by semiconductor quantum dots. Compared to other quantum emitters, such as isolated atoms, organic molecules or vacancy centers in diamond nanocrystals, they offer the advantage of being capable for the integration into complex semiconductor microstructures. Therefore quantum dots are predestinated for the development of novel optoelectronic devices on a scalable technology platform. In this context, the work at hand explores the properties of electrically-pumped quantum dot microstructures. Thereby selforganized InAs/GaAs quantum dots serve as optically active medium. Aim of this work is the generation of non-classical light for applications in quantum communication, at which the study focuses specifically on electrical operation of the respective quantum light sources. In this framework pronounced cavity effects in the weak coupling regime of light-matter interaction will be employed to realize bright single-photon sources. Furthermore the properties of correlated photon-pairs from two spectrally-seperated quantum dot states will be analyzed. The structures were investigated by means of microluminescence spectroscopy with high spatial and temporal resolution. Moreover, experiments on the photon statistics were performed by measurements of the second-order auto- and cross-correlationfunction. As specified below, achievements within this study range from fundamental investigations on quantum dot microstructures to the first implementation of electrically-triggered quantum dot single-photon sources in realistic quantum key distribution experiments outside a shielded lab environment. Electrically-Triggered Single-Photon Sources: For the generation of electrically-triggered single-photons quantum dots were embedded in microcavities. The latter ones are based on doped Fabry-Pérot micropillar resonators featuring a design that was optimized for enhanced photon-exctraction effiency. […] Photon statistic measurements on these resonantly-coupled quantum dot micropillar systems prooved single-photon emission under continuous electrical as well as pulsed electrical excitation. […] A detailed investigation of the photon emission rates and carrier injection efficincies at excitation repetition rates of up to 220 MHz showed, that the micropillar cavities can be used as extremely efficient single-photon sources. Record high values for single-photon emission rates of up to (47.0+/-6.9) MHz as well as overall efficiencies of up to (34+/-7) % were achieved for these devices. Correlated Photon-Pairs of Electrically Pumped Quantum Dots: […] Quantum Key Distribution Using Electrically Triggered Single-Photon Sources: Based on the fundamental investigations in this work, the first implementation of electrically driven quantum dot single-photon sources into quantum key distribution experiments was carried out. Utilizing the investigated quantum dot micropillar cavities, two free space experiments were performed with different transmission distances. In both cases a BB84-protocoll was emulated by modulating the single-photons with a fixed pattern of four different polarization settings. The first experiment, performed on a lab-scale in Würzburg, is based on a 40 cm quantum channel and worked at a clock rate of 183 MHz. Sifted-key rates of up to 35.4 kbit/s with a quantum bit error ratio (QBER) of 3.8 % were achieved. Single-photon emission within the quantum channel was proven unambiguously […]. The second quantum key distribution experiment was realized over a distance of 500 m in downtown Munich, connecting two buildings of the Ludwig-Maximilians-Universität via telescopes on the rooftops. […] Using this system at a clock rate of 125 MHz, a maximum sifted-key rate of 11.6 kbit/s at a QBER of 6.2 % was achieved in the single-photon regime. This first implementation of an electrically-driven non-classical light source in quantum key distribution experiments can be considered as a major step toward the realization of efficient and practical quantum communication systems. KW - Quantenpunkt KW - Lumineszenzdiode KW - Einzelphotonenemission KW - semiconductor quantum dot KW - single photon emission KW - non-classical light KW - electrically triggered KW - quantum key distribution KW - quantum information technology KW - Quantenkryptologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105778 ER - TY - THES A1 - Lermer, Matthias T1 - Wachstum und Charakterisierung von Quantenpunkt-Mikrotürmchen mit adiabatischer Modenanpassung T1 - Growth and characterisation of quantum dot - micropillars with adiabatic mode transission N2 - Verschiedene Konzepte zur Realisierung einer geeigneten Umgebung für Licht- Materie-Wechselwirkung konkurrieren um Anerkennung und eine ständige Optimierung der Systemparameter findet statt. Das Konzept von Mikrotürmchen scheint prädestiniert, da es viele anwendungsfreundliche Eigenschaften in sich vereint. Allerdings stellt die drastische Abnahme des Q Faktors für kleiner werdende Durchmesser d einen wesentlichen Limitierungsfaktor dieser Strukturen dar. Für viele Anwendungen resultiert daraus ein Kompromiss aus hohem Q Faktor und kleinem Modenvolumen der Strukturen, wodurch das volle Potential des Resonatorsystems nicht ausgeschöpft werden kann. Ziel dieser Arbeit war es, die drastische Abnahme des Q Faktors von Mikrotürmchen mit Durchmessern um 1μm aufzuheben und dadurch Resonatoren mit d < 1μm für ausgeprägte Licht-Materie-Wechselwirkung herzustellen. Dazu wurde erstmalig beabsichtigt eine Modenanpassung in Mikrotürmchen vorgenommen. Mittels Molekularstrahlepitaxie konnte eine Übergangsregion, bestehend aus drei Segmenten, in diese Strukturen implementiert und so ein adiabatischer Modenübergang zwischen der aktiven Mittelschicht und den Spiegelbereichen vorgenommen werden. Der positive Einfluss dadurch ergab sich in einer signifikanten Verbesserung des gemessenen Q Faktors für Durchmesser unter 1μm. Für d = 0.85μm konnte ein Q Faktor von 14 400 bestimmt werden. Dies stellt damit den höchsten je gemessenen Wert für Mikrotürmchen im Submikrometerbereich dar. Dadurch wird ein Bereich mit Modenvolumina < 3 kubischen Wellenlängen erschlossen und ausgeprägte Wechselwirkungseffekte im Mikrotürmchensystem sind zu erwarten. Starke Quantenpunkt-Licht-Kopplung konnte in diesen Strukturen nachgewiesen werden. Die höchste Vakuum-Rabiaufspaltung betrug 85μeV und die Visibilität wurde zu 0.41 bestimmt. Im Zuge der weiteren Optimierung der Systemparameter für die starke Kopplung wurde ein ex-situ Ausheilschritt auf die verwendete Quantenpunktsorte angewendet. In magnetooptischen Untersuchungen konnte damit eine Verdopplung der mittleren Oszillatorstärke auf einen Wert von 12 abgeschätzt werden. Weiter konnte in adiabatischen Mikrotürmchen über einen großen Durchmesserbereich von 2.25 bis 0.95μm eindeutiger Laserbetrieb des Quantenpunktensembles nachgewiesen werden. Dabei konnte eine kontinuierliche Reduzierung der Laserschwelle von über zwei Größenordnungen für kleiner werdende Durchmesser beobachtet werden. Für Durchmesser � < 1.6μm betrug der Beta-Faktor der Mikrolaser in etwa 0.5. Sie zeigten damit beinahe schwellenloses Verhalten. Zuletzt wurde der elektrische Betrieb von adiabatischen Mikrotürmchen gezeigt. Dafür wurde eine dotierte Struktur mit adiabatischem Design hergestellt. Im Vergleich zur undotierten Struktur fielen die gemessenen Q Faktoren in etwa um 5 000 geringer aus. Die spektralen Eigenschaften sowohl des Resonators als auch einzelner Quantenpunktlinien zeigten vernachlässigbare Abhängigkeit der Anregungsart (optisch oder elektrisch) und zeugen von einem erfolgreichen Konzept zum elektrischen Betrieb der Bauteile. Zeitaufgelöste Messungen erlaubten die Beobachtung von interessanten Dynamiken der Rekombination von Ladungsträgern in den Proben. Als Ursache dafür wurde ein hohes intrinsisches Feld, welches auf Grund des Designs der Schichtstruktur entsteht, identifiziert. Weiter zeigte sich, dass sich das interne Feld durch Anregungsart und extern angelegte Spannungen manipulieren lässt. N2 - Various concepts for the realization of a proper environment for interaction of light and matter compete for recognition and a continous optimizing process takes place. The concept of micropillars seems to be predestinated as it unifies many helpful properties for daily use applications. To this day the drastic decrease of the Q factor for smaller diameters d has been a fundamental reason for the limitation of these structures. For many applications a trade-off between high Q factor and small mode volume has been neccessary, so that the full potential of the resonator system has not been exploited totally. The objective of this work was to compensate for the drastic decrease of the Q factor of micropillars with diameters around 1μm and to fabricate resonators with d < 1μm for pronounced interaction of light and matter. For this purpose for the first time an intended mode engineering has been exploited in micropillars. By means of molecular beam epitaxy an intersection region, consisting of three segments, has been implemented in these structures and so an adiabatic transition of the mode between the active midsection and the mirrorparts has been achieved. The positive influence has been proven by a significant improvement of the measured Q factor for diameters below 1μm. For d = 0.85μm a Q factor of 14 400 has been detected. This is the highest Q factor ever measured for microilllars in the submicron regime. By that a regime with mode volumes < 3 cubic wavelengths gets accessible and pronounced effects of interaction in the system of micropillars are expected. In these structures strong quantum dot - light coupling has been shown. The largest vacuum- Rabisplitting has been 85μeV and the visibility has been determined to 0.41. In the course of further optimization of the system parameters for the regime of strong coupling an ex-situ annealing step has been adopted to the used type of quantum dots. Magnetooptical analysis has shown a doubling of the oscillator strength and allowed an estimation for the value to 12. Furthermore in adiabatic micropillars, over a vast diameter range from 2.25 to 0.95μm, clear evidence for lasing of the quantum dot ensemble has been shown. Simultanously a continous decrease of the lasing threshold by more than two orders of magnitude for small diameters has been observed. For Diameters < 1.6μm the Beta-factor of the microlasers has been determined to be around 0.5. Therefore they showed almost thresholdless behavior. Finally electrical operation of adiabatic micropillars has been shown. For that a doped structure with the adiabatic design has been fabricated. In comparison with the undoped structure the measured Q factors drop to values around 5 000. The spectral properties of both the resonator and single quantum dot lines have shown negligible dependence on the form of excitation (optical or electrical), indicating that a successful concept for the electrical excitation of the devices has been established. Time resolved measurments have allowed to observe interesting dynamics of the recombination of charge carriers. We have identified the large intrinsic field, which arises because of the design of the layer structure, being the origin for this. Furthermore we have shown, that the internal field can be manipulated by the excitation scheme and the external applied voltage. KW - Molekularstrahlepitaxie KW - Quantenpunkt KW - Adiabatische Modenanpassung KW - adiabatic modetransission KW - Licht Materie Wechselwirkung KW - light matter coupling KW - Optoelektronik KW - Lithografie KW - Spektroskopie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127438 ER - TY - THES A1 - Müller, Thomas M. T1 - Computergestütztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid–Aluminiumoxid Keramiken T1 - Computer-Aided Material Design: Microstructure and Electrical Properties of Zirconia-Alumina-Ceramics N2 - Die Mikrostruktur von Zirkonoxid–Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen äquivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repräsentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachträglich hinzugefüg. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE für die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache Übernahme der Voxelstrukturen in hexaedrische Elemente führt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zunächst eine adaptive Oberflächenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verkürzen ohne die Genauigkeit der FES zu beeinträchtigen, wurden die Oberflächenvernetzungen dergestalt vereinfacht, dass eine hohe Auflösung an den Ecken und Kanten der Strukturen erhalten blieb, während sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberflächenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und für die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zunächst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Berücksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute Übereinstimmung zwischen den experimentellen und simulierten Werten bezüglich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einflüsse verschiedener mikrostruktureller Parameter, wie Porosität, Korngröße und Komposition, auf das makroskopische Materialverhalten näher zu untersuchen. N2 - The microstructures of zirconia–alumina ceramics are investigated by scanning electron microscopy (SEM) and further characterised by quantitative image analysis. This leads to specific morphological parameters which are compared with the same parameters derived from three-dimensional model structures generated in voxel-based representative volume elements (RVE). Modified Voronoi clusters are employed to represent alumina and zirconia phases. Pores are added at the grain corners and edges respectively. After adjusting all the relevant morphological parameters of the model to the real ceramics’ microstructure, the RVE has to be meshed for finite element simulations (FES). Hexahedral elements which simply use the voxel structure did not lead to sufficient accuracy of the FES. As a first step, an adapted surface tessellation is generated, using a generally classed marching tetrahedra method. Special care is taken to preserve the topology as well as the individual volumes and interfaces of the model. In terms of processing time and accuracy of the FES it is very important to simplify the initially generated surface mesh in a manner that preserves detailed resolution at corners and along edges, while decimating the number of surface elements in flat regions, i.e. at the grain boundaries. From the surface mesh an adequate tetrahedral volume tessellation, including solid elements representing the grain boundaries, is created, which is used for the FES. Therefore, a FE-model for the simulation of impedance spectra has been established and validated. To simulate the macroscopic electrical behaviour of polycrystalline ceramics, the electrical properties of the individual constituting phases need to be measured. This is done by impedance spectroscopy up to 1000 °C. Further analysis of the experimental data with special respect to the effect of the grain boundaries is carried out to obtain the individual phases’ properties. The sample composition was varied from pure zirconia to pure alumina. A very good agreement between experimental and simulated data was achieved in terms of electrical, thermal and mechanical properties. The FES were employed to scrutinize the effects of systematically varying microstructural properties, such as porosity, grain size and composition, on the macroscopic material behaviour. KW - Keramischer Werkstoff KW - Mikrostruktur–Eigenschafts–Korrelationen KW - Mikrostrukturmodellierung KW - Impedanzspektroskopie KW - Finite Element Simulationen KW - Microstructure–Property–Relationship KW - Microstructure Modelling KW - Impedance Spectroscopy KW - Finite Element Simulations KW - Mikrostruktur KW - Computersimulation KW - Finite-Elemente-Methode KW - Simulation KW - Dreidimensionales Modell KW - Gefügekunde Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110942 ER - TY - THES A1 - Lother, Steffen Reiner T1 - Entwicklung eines 3D MR-Tomographen zur Erdfeld- und multimodalen MR-MPI-Bildgebung T1 - Development of a 3D MRI-System for Earth Field MRI and the Combination MRI-MPI N2 - Das Ziel dieser Arbeit war die Entwicklung und die Anfertigung eines 3D Erdfeld-NMR Tomographen, um damit die benötigte Technik der MR eines MR-MPI-Tomographen am Lehrstuhl zu etablieren. Daraufhin wurden alle nötigen Komponenten für ein komplettes 3D Erdfeld-NMR-System entwickelt, gebaut und getestet. Mit diesem Wissen wurde in enger Zusammenarbeit mit der MPI-Arbeitsgruppe am Lehrstuhl ein multimodaler MR-MPI-Tomograph angefertigt und die prinzipielle Machbarkeit der technischen Kombination dieser zwei Modalitäten (MRT/MPI) in einer einzigen Apparatur gezeigt. Auf diesem Entwicklungsweg sind zusätzlich innovative Systemkomponenten entstanden, wie der Bau eines neuen Präpolarisationssystems, mit dem das Präpolarisationsfeld kontrolliert und optimiert abgeschaltet werden kann. Des Weiteren wurde ein neuartiges 3D Gradientensystem entwickelt, das parallel und senkrecht zum Erdmagnetfeld ausgerichtet werden kann, ohne die Bildgebungseigenschaften zu verlieren. Hierfür wurde ein 3D Standard-Gradientensystem mit nur einer weiteren Spule, auf insgesamt vier Gradientenspulen erweitert. Diese wurden entworfen, gefertigt und anhand von Magnetfeldkarten ausgemessen. Anschließend konnten diese Ergebnisse mit der hier präsentierten Theorie und den Simulationsergebnissen übereinstimmend verglichen werden. MPI (Magnetic Particle Imaging) ist eine neue Bildgebungstechnik mit der nur Kontrastmittel detektiert werden können. Das hat den Vorteil der direkten und eindeutigen Detektion von Kontrastmitteln, jedoch fehlt die Hintergrundinformation der Probe. Wissenschaftliche Arbeiten prognostizieren großes Potential, die Hintergrundinformationen der MRT mit den hochauflösenden Kontrastmittelinformationen mittels MPI zu kombinieren. Jedoch war es bis jetzt nicht möglich, diese beiden Techniken in einer einzigen Apparatur zu etablieren. Mit diesem Prototyp konnte erstmalig eine MR-MPI-Messung ohne Probentransfer durchgeführt und die empfindliche Lokalisation von Kontrastmittel mit der Überlagerung der notwendigen Hintergrundinformation der Probe gezeigt werden. Dies ist ein Meilenstein in der Entwicklung der Kombination von MRT und MPI und bringt die Vision eines zukünftigen, klinischen, multimodalen MR-MPI-Tomographen ein großes Stück näher. N2 - Developement of an 3D MRI System for Earth Field MRI and the Kombination with MPI KW - NMR-Spektroskopie KW - Erdmagnetismus KW - Kernspintomografie KW - 3D Erdfeld-NMR Tomograph KW - MR-MPI-Tomograph KW - Präpolarisationssystems KW - Gradientensystem KW - Magnetresonanztomographie KW - Systembau KW - Erdfeld KW - Magnetpartikelbildgebung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99181 ER - TY - THES A1 - Stäb, Daniel T1 - Erweiterung der Anatomischen Abdeckung in der MRT des Herzens T1 - Anatomic Coverage Extension in Cardiac MRI N2 - Die MRT hat sich in den letzten Jahren zu einem wichtigen Instrument in der Diagnostik von Herzerkrankungen entwickelt. Da sie ohne ionisierende Strahlung auskommt, stellt sie vor allem auch eine nichtinvasive Alternative zu den nuklearmedizinischen Verfahren und der Computertomographie dar. Im speziellen ermöglicht die kardiale MRT die ortsaufgelöste Darstellung des Herzens mit einer Vielzahl an Kontrasten. Neben der Morphologie können damit auch zahlreiche Funktionsparameter des Herzens, wie die Ejektionsfraktion des linken Ventrikels, oder die Viabilität und Perfusion des Herzmuskels untersucht werden. Atmung und Herzbewegung stellen allerdings große Anforderungen an die MR-Herzbildgebung. Die beiden Störfaktoren limitieren den Zeitraum, der zur Bildakquisition zur Verfügung steht und erzeugen so Konflikte zwischen räumlicher Auflösung, anatomischer Abdeckung, zeitlicher Auflösung und dem Signal-zu-Rausch-Verhältnis (SNR). Ferner ergibt sich für die meisten eingesetzten Verfahren eine erhöhte Komplexität. Die Bildgebungssequenzen müssen mittels EKG an den Herzrhythmus des Patienten angepasst und die Bildakquisitionen im Atemanhaltezustand durchgeführt werden. In manchen Fällen ist sogar eine Aufspaltung der Messung in mehrere Einzelakquisitionen nötig, was wiederum die Dauer der Untersuchungen verlängert und den Patientenkomfort reduziert. Mit technischen Entwicklungen im Bereich der Gradienten und der Empfangsspulen sowie durch den Einsatz dedizierter Bildgebungstechniken konnten in den letzten Jahren signifikante Verbesserungen erzielt und der Stellenwert der MR-Bildgebung in der Herzdiagnostik erhöht werden. Von großer Bedeutung sind dabei auch Beschleunigungsverfahren wie die Parallele Bildgebung, die eine deutliche Verkürzung der Datenakquisition ermöglichen und so den Einfluss von Atmung und Herzbewegung wirksam reduzieren. Die Beschleunigung wird dabei grundsätzlich durch eine unvollständige Datenakquisition bzw. Unterabtastung des k-Raums erzielt, welche im Zuge der Bildrekonstruktion durch Ausnutzen zusätzlich vorhandener Informationen kompensiert wird. Bei der Parallelen Bildgebung ersetzen beispielsweise mehrere um das Objekt herum angeordnete Empfangsspulen die zum Teil unvollständig durchgeführte Gradientenbasierte Ortskodierung. Die Beschleunigungsverfahren sind allerdings wegen der verringerten Datenaufnahme auch immer mit einer Reduktion des SNR verbunden. Eine alternative Strategie zur Beschleunigung der 2D-Bildgebung mit mehreren Schichten stellt die simultane Multischichtbildgebung mit Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration(MS-CAIPIRINHA) dar. Anders als bei der konventionellen Parallelen Bildgebung wird die Beschleunigung hier nicht durch eine reduzierte Datenaufnahme erzielt. Vielmehr werden Multiband-RF-Pulse eingesetzt, um die Spins in mehreren Schichten gleichzeitig anzuregen. Durch Anwenden schichtspezifischer RF-Phasenzyklen wird die Phase der Spins individuell in jeder Schicht moduliert, wodurch sich eine gegenseitige Verschiebung der Schichten im FOV ergibt. Die Verschiebung erleichtert die Separation der gleichzeitig angeregten Schichten mit Verfahren der Parallelen Bildgebung. Sie erlaubt außerdem eine Minimierung der bei der Rekonstruktion entstehenden Rauschverstärkung. Die Multischichtbildgebungstechnik zeichnet sich gegenüber der konventionellen Parallelen Bildgebung durch ein wesentlich höheres SNR und durch eine Bildrekonstruktion mit geringeren Rekonstruktionsfehlern aus. In dieser Dissertation wurden verschiedene Strategien zur Anwendung von MS-CAIPIRINHA in der MRT des Herzens präsentiert sowie ihre Vorund Nachteile gegenübergestellt. Im Allgemeinen ermöglichen die vorgestellten Konzepte eine hinsichtlich des SNR sehr effiziente Erweiterung der anatomischen Abdeckung. Unter anderem wurde eine Möglichkeit vorgestellt, mit der es uneingeschränkt gelingt, MS-CAIPIRINHA in der Bildgebung mit bSSFP-Sequenzen anzuwenden. Die Steady-State-Sequenz wird aufgrund ihres hohen intrinsischen SNR und vorteilhaften Kontrastverhaltens sehr häufig in der MRT des Herzens bei 1,5T eingesetzt. Wie auch die simultane Multischichtbildgebung erfordert sie zum Halten der Magnetisierung im stationären Zustand die Applikation eines dedizierten RF-Phasenzyklus während der Datenakquisition. Der Phasenzyklus der Sequenz ist allerdings nicht ohne Weiteres mit den Phasenzyklen der Multischichttechnik kompatibel, so dass eine Verknüpfung der beiden Verfahren bisher nur durch Aufspalten der Bildakquisition in mehrere Teilmessungen gelang. Mit dem in Kapitel 5 vorgestellten Konzept ist diese zumeist impraktikable Segmentierung nicht mehr erforderlich. Generalisierte RF-Phasenzyklen, die sowohl die Anforderungen der Sequenz, als auch die der Multischichtbildgebung erfüllen, ermöglichen eine uneingeschränkte Anwendung der Multischichttechnik in der Bildgebung mit bSSFP oder vergleichbaren Steady-State-Sequenzen. Die Multischichttechnik ist damit auch bei Untersuchungen in Echtzeit oder mit Magnetisierungspräparation – Verfahren, die unter anderem in der MR-Herzdiagnostik Verwendung finden – einsetzbar. Anhand von Echtzeit-, Cine- und First-Pass-Herzperfusionsuntersuchungen am menschlichen Herzen konnte die Anwendbarkeit des Konzepts erfolgreich demonstriert werden. Durch die Akquisition zweier Schichten in der Zeit, die normalerweise zur Bildgebung einer einzelnen Schicht benötigt wird, gelang eine Verdoppelung der anatomischen Abdeckung bei unverändert hoher Bildqualität. Bei den Herzperfusionsuntersuchungen konnten je RR-Intervall sechs Schichten akquiriert werden. Bei Echtzeit- und Cine-Messungen erlaubt das Konzept eine signifikante Reduktion der Anzahl der Atemanhaltezustände und dementsprechend eine wirksame Verkürzung der Patientenuntersuchung und eine Verbesserung des Patientenkomforts. In Kapitel 6 wurde eine effiziente Strategie zur Anwendung der simultanen Multischichtbildgebung in der First-Pass-Herzperfusionsbildgebung bei 3T vorgestellt. Es wurde gezeigt, dass durch den Einsatz von MS-CAIPIRINHA mit Beschleunigungsfaktoren, die größer sind als die Anzahl der simultan angeregten Schichten, neben der anatomischen Abdeckung auch die räumliche Auflösung innerhalb der Bildgebungsschicht erhöht werden kann. Beide Verbesserungen sind für die MR-gestützte Diagnostik der Koronaren Herzerkrankung von Bedeutung. Während mit einer hohen räumlichen Auflösung subendokardiale und transmurale Infarktareale unterschieden werden können, erleichtert eine hohe anatomische Abdeckung die genaue Eingrenzung hypoperfundierter Bereiche. Das grundsätzliche Prinzip der vorgestellten Strategie besteht in der Kombination zweier unterschiedlicher Beschleunigungsansätze: Zur Verbesserung der anatomischen Abdeckung kommt die simultane Multischichtbildgebung zum Einsatz. Zusätzlich zur gleichzeitigen Anregung mehrerer Schichten wird der k-Raum regelmäßig unterabgetastet. Die dabei erzielte Beschleunigung wird zur Verbesserung der räumlichen Auflösung eingesetzt. Die Bildrekonstruktion erfolgt mit Verfahren der Parallelen Bildgebung. Der Vorteil des Konzepts liegt insbesondere im vollständigen Erhalt der Datenakquisitionszeit gegenüber einer unbeschleunigten Messung mit Standardabdeckung und -auflösung. Anders als bei konventionellen Beschleunigungsverfahren wirken sich lediglich die Verkleinerung der Voxelgröße sowie die Rauschverstärkung der Bildrekonstruktion SNR-reduzierend aus. Die Rauschverstärkung wird dabei, durch die gegenseitige Verschiebung der simultan angeregten Schichten im FOV, so gering wie möglich gehalten. Die Anwendbarkeit des Konzepts konnte anhand von Simulationen sowie Untersuchungen an Probanden und Herzinfarktpatienten erfolgreich demonstriert werden. Simultanes Anregen zweier Schichten und 2,5-faches Unterabtasten des k-Raums ermöglichte die Durchführung von Untersuchungen mit einer anatomischen Abdeckung von sechs bis acht Schichten je RR-Intervall und einer räumlichen Auflösung von 2,0×2,0×8,0mm3. Es konnte gezeigt werden, dass die angewandte GRAPPA-Rekonstruktion, trotz der effektiv fünffachen Beschleunigung, robust und im Wesentlichen mit geringer Rauschverstärkung durchführbar ist. Bildqualität und SNR waren für eine sektorweise Absolutquantifizierung der Myokardperfusion ausreichend, während die hohe räumliche Auflösung die Abgrenzung kleiner subendokardialer Perfusionsdefizite ermöglichte. Aufgrund seiner großen Flexibilität und recht einfachen Implementierbarkeit ist das Beschleunigungskonzept vielversprechend hinsichtlich einer Anwendung in der klinischen Routine. Die diesbezügliche Tauglichkeit ist allerdings in weiterführenden Patientenstudien noch zu evaluieren. Alternativ zu diesem Konzept wurde in Kapitel 7 noch eine weitere, ebenfalls auf MS-CAIPIRINHA basierende Strategie für die First-Pass-Herzperfusionsbildgebung bei 3T mit großer anatomischer Abdeckung und hoher räumlicher Auflösung vorgestellt. Wie zuvor bestand die Grundidee des Konzepts darin, MS-CAIPIRINHA mit Beschleunigungsfaktoren anzuwenden, welche größer sind als die Anzahl der simultan angeregten Schichten und die Vergrößerung der anatomischen Abdeckung durch simultanes Anregen mehrerer Schichten zu realisieren. Um allerdings die bei der Bildrekonstruktion und Schichtseparation entstehende Rauschverstärkung zu minimieren, wurde zur Verbesserung der räumlichen Auflösung innerhalb der Schicht das nichtlineare Beschleunigungsverfahren Compressed Sensing zum Einsatz gebracht. Die erst in den letzten Jahren entwickelte Technik ermöglicht die exakte Rekonstruktion zufällig unterabgetasteter Daten, sofern bekannt ist, dass sich das rekonstruierte Bild in eine wohldefinierte sparse Darstellung überführen lässt. Neben der Erreichbarkeit hoher Beschleunigungsfaktoren bietet Compressed Sensing den Vorteil einer Bildrekonstruktion ohne signifikante Rauscherhöhung. Zur Einbindung des Verfahrens in das Multischichtbildgebungskonzept erfolgt die für die Verbesserung der Auflösung nötige Unterabtastung des k-Raums, zufällig und inkohärent. Zur Bildrekonstruktion sind zwei Teilschritte erforderlich. Im ersten Teilschritt werden die durch die zufällige Unterabtastung entstandenen inkohärenten Artefakte mit Compressed Sensing entfernt, im zweiten die gleichzeitig angeregten Schichten mit Verfahren der Parallelen MRT separiert. Es konnte gezeigt werden, dass die Kombination aus Compressed Sensing und MS-CAIPIRINHA eine Reduktion der inhomogenen Rauschverstärkung ermöglicht und zur Durchführung von qualitativen First-Pass-Herzperfusionsuntersuchungen mit einer Abdeckung von sechs bis acht Schichten je RR-Intervall sowie einer räumlichen Auflösung von 2,0 × 2,0 × 8,0mm3 geeignet ist. Des Weiteren konnte gezeigt werden, dass das angewandte Multischicht-Bildgebungskonzept einer Anwendung des entsprechenden Compressed-Sensing-Konzepts ohne simultane Multischichtanregung überlegen ist. Es stellte sich allerdings auch heraus, dass die rekonstruierten Bilder mit systematischen Fehlern behaftet sind, zu welchen auch ein signifikanter rekonstruktionsbedingter Verlust an zeitlicher Auflösung zählt. Dieser kann zu einer Verzerrung quantitativ bestimmter Perfusionswerte führen und verhindert so robuste quantitative Messungen der Myokardperfusion. Es ist außerdem davon auszugehen, dass auch abrupte Signalveränderungen, die bei Arrhythmien oder Bewegung auftreten, nur sehr ungenau rekonstruiert werden können. Die Systematischen Rekonstruktionsfehler konnten anhand zweier Verfahren, einer Monte-Carlo-Simulation sowie einer Analyse der lokalen Punktantworten präzise Untersucht werden. Die beiden Analysemethoden ermöglichten einerseits die genaue Bestimmung systematischer und statistischer Abweichungen der Signalamplitude und andererseits die Quantifizierung rekonstruktionsbedingter zeitlicher und räumlicher Auflösungsverluste. Dabei konnte ein Mangel an Sparsität als grundlegende Ursache der Rekonstruktionsfehler ermittelt werden. Die bei der Analyse eingesetzten Verfahren erleichtern das Verständnis von Compressed Sensing und können beispielsweise bei der Entwicklung nichtlinearer Beschleunigungskonzepte zur Bildqualitätsanalyse eingesetzt werden. N2 - In the recent years Magnetic Resonance Imaging (MRI) has become a powerful clinical tool for the diagnosis of cardiovascular diseases. In fact, getting along without ionizing radiation, the technique represents a noninvasive alternative to computed tomography or nuclear medicine treatment. In cardiac MRI, the heart can be imaged with a large variety of contrasts, which helps assessing not only morphologic but also functional information like the ejection fraction of the left ventricle or the viability and perfusion of the myocardium. However, having to deal with a moving organ, cardiac MRI is very challenging. In particular, breathing and the motion of the heart restrict the time available for imaging and a trade-off has to be found between signal-to-noise ratio (SNR), spatial resolution, anatomic coverage and temporal resolution. In addition, the motion enforces complexity. In-vivo examinations have to be performed in breath hold and ECG triggering has to be applied in order to adopt the sequences to the cardiac cycle. In several cases, measurements have to be split into multiple acquisitions which significantly prolongs the examination and reduces the patient comfort. Nevertheless, recent advances in gradient and receiver coil design in addition to the development of dedicated sequences for imaging led to significant improvements and helped strengthening the role of MRI in the diagnosis of cardiovascular diseases. A major part of the improvements has been achieved by employing acceleration techniques like Parallel Imaging. By substantially shortening the data acquisition they allow reducing the impact of motion onto the examinations. The acceleration is basically achieved by undersampling k-space, i.e. performing the data acquisition incompletely. The lack of data is compensated by making use of additional information inherently available. In Parallel Imaging for example, multiple receiver coils positioned around the subject to be investigated are utilized to partially replace the spatial encoding conventionally performed by gradient switching. However, employing these acceleration strategies always comes along with a reduction of the SNR since the time utilized for data sampling is shortened. For accelerating 2D measurements of multiple slices, an alternative approach is given by the simultaneous multi-slice imaging technique Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration (MS-CAIPIRINHA). Unlike conventional Parallel Imaging, which requires shortening of the data acquisition, the technique provides acceleration by exciting the spins in multiple slices at the same time using multi-band radio frequency (rf) pulses. The slices are provided with specific rf phase cycles that allow shifting the simultaneously excited slices with respect to each other in the FOV. The shift facilitates the separation of the slices using Parallel Imaging reconstruction techniques. Moreover, it allows minimizing the inhomogeneous noise amplification coming along with the reconstruction. With respect to conventional Parallel Imaging, MS-CAIPIRINHA benefits from considerably higher SNR and an image reconstruction with less reconstruction errors. In this thesis several strategies for employing the simultaneous multi-slice imaging technique in the field of cardiac MRI have been presented together with their advantages and disadvantages. In general, the individual concepts allow for increasing the anatomic coverage in a very SNR efficient manner. First of all, a concept was presented that allows applying MS-CAIPIRINHA to bSSFP sequences. Providing an advantageous image contrast and intrinsically high SNR, the steady-state sequence is often utilized for cardiac MR examinations at field strengths of 1,5T. Like the simultaneous multi-slice imaging technique, it requires the strict application of a dedicated rf phase cycle to keep the magnetization in steady state. However, this rf phase cycle is incompatible to the rf phase cycles usually employed in MS-CAIPIRINHA. Thus, the combination of the two methods is impaired unless the imaging procedure is split into several measurements. This rather impractical segmentation is not required utilizing the concept proposed in chapter 5. By employing generalized rf phase cycles that match the requirements of the simultaneous multi-slice imaging technique while simultaneously fulfilling the steady state condition of the sequence, MS-CAIPIRINHA can be employed unrestrictedly to bSSFP or similar steady state sequences. The simultaneous multi-slice imaging technique is thus also applicable to magnetization prepared and real-time imaging modalities. Both types of examinations are frequently utilized in cardiac MRI. The applicability of the concept was successfully demonstrated for real-time cine, segmented cine and myocardial first-pass perfusion imaging. By scanning two slices in the time conventionally required for the acquisition of one single slice, the anatomic coverage could be doubled while maintaining the image quality almost completely. The myocardial first-pass perfusion examinations for example could be performed with a coverage of six slices every RR-interval. In real-time and cine imaging, the concept allows significantly reducing the number of breath holds that have to be performed. Thus, the examination is considerably shortened and the patient comfort ameliorated. In chapter 6, an efficient strategy for applying MS-CAIPIRINHA to contrast enhanced myocardial first-pass perfusion imaging at 3T was presented. It could be shown that by employing the simultaneous multi-slice imaging technique with an acceleration factor higher than the number of simultaneously excited slices, not only the anatomic coverage but also the spatial resolution can be increased. Both improvements are of importance for the MRI based diagnosis of coronary artery disease. While a high spatial resolution allows distinguishing between transmural and subendocardial hypoperfused regions, a large anatomic coverage facilitates their exact localization. The proposed technique is based on the combination of two different acceleration approaches: For increasing the anatomic coverage the simultaneous multi-slice imaging technique is employed. In addition to exciting multiple slices at once, k-space is regularly undersampled. This supplemental acceleration is utilized to increase the spatial resolution. Image calculation and slice separation is performed using conventional Parallel Imaging reconstruction techniques. In particular, the concept benefits from conserving the image acquisition time with respect to a non-accelerated examination with standard coverage and resolution. In contrast to conventional acceleration techniques, where significantly higher undersampling has to be performed, only the voxel size and the inhomogeneous noise amplification contribute to the SNR reduction. Moreover, the noise amplification is minimized by shifting the simultaneously excited slices with respect to each other in the FOV. The applicability of the concept was demonstrated on volunteers and patients. By exciting two slices at the same time and additionally undersampling k-space by a factor of 2.5, an anatomic coverage of six to eight slices every RR-interval and a spatial resolution of 2,0×2,0×8 0mm3 were achieved. The applied GRAPPA reconstruction algorithm was shown to allow for a robust image reconstruction with basically low noise amplification. The spatial resolution facilitated the differentiation between subendocardial and transmural hypoperfused areas and the image quality as well as the SNR were sufficiently high for a sectorwise absolute quantitative estimation of the myocardial blood flow. Regarding the high flexibility and simple applicability in addition to the robustness and speed of the image reconstruction, the concept is a promising candidate for clinical perfusion studies. However, further patient studies are required to prove the applicability of the concept in clinical routine. As an alternative to this concept, in chapter 7, a different acquisition strategy for myocardial first-pass perfusion imaging with extended coverage and high spatial resolution based on MS-CAIPIRINHA was presented. As before, the underlying idea was to apply the multi-slice imaging technique with acceleration factors higher than the number of slices excited at the same time and to achieve the anatomic coverage extension by means of simultaneous multislice excitation. Nevertheless, in order to minimize the inhomogeneous noise amplification coming along with the image reconstruction, the nonlinear acceleration method Compressed Sensing was employed for increasing the spatial resolution within the imaging plane. This recently developed acceleration technique allows exactly reconstructing MR images from randomly undersampled data as far as the reconstructed image can be sparsified by applying a well-defined transformation. The technique allows for high acceleration factors and benefits from an image reconstruction without significant noise amplification. In order to apply Compressed Sensing to the multi-slice imaging concept, the undersampling for resolution improvement is performed randomly and the image reconstruction is carried out in two separate steps. First, Compressed Sensing is applied in order to remove the incoherent artifacts introduced by random undersampling. Second, the slices are separated by applying conventional Parallel Imaging reconstruction techniques. It could be shown that combining MS-CAIPIRINHA with Compressed Sensing allows reducing the noise amplification and facilitates myocardial first-pass perfusion imaging with an anatomic coverage of six to eight slices every heartbeat and a spatial resolution of 2.0×2.0×8.0mm3. Moreover, it could be shown that the technique is superior to employing the Compressed Sensing concept without simultaneous multi-slice excitation. However, the concept also comes along with an impairment of image quality by systematic reconstruction errors. Amongst the latter for example there is a loss of temporal resolution, which might induce significant errors in a quantitative perfusion analysis. Robust quantitative measurements of the myocardial blood flow are thus not feasible so far. In presence of arrhythmia or motion, significant reconstruction errors, having a major impact onto the quality and the temporal fidelity of the measurement are expected. The systematic reconstruction errors could be precisely analyzed by employing a simple Monte Carlo simulation and a dedicated local point spread function analysis. The two specific tools were utilized to reveal the systematic and statistical deviations of the signal amplitude as well as the spatiotemporal resolution losses. A lack of sparsity could thereby be identified as the basic error cause. In general, the evaluation tools provide useful information for understanding the nonlinear character of Compressed Sensing and may be utilized for image quality analysis in the development of nonlinear reconstruction concepts. KW - Kernspintomographie KW - Herz KW - MRT KW - Herz KW - Parallele Bildgebung KW - CAIPIRINHA KW - Compressed Sensing KW - MRI KW - Cardiac KW - Parallel Imaging KW - Compressed Sensing KW - CAIPIRINHA KW - Biophysik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93405 ER - TY - THES A1 - Choli, Morwan T1 - Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate für neuroradiologische MRT-Untersuchungen an Hochfeldsystemen T1 - Hybrid methods for reducing specific Absorption rate in neuroradiologic MRI-examinations at high-field MR-systems N2 - Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldstärke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzkörper-MRT-Systeme in die Grundlagenforschung. Höhere Magnetfeldstärken führen grundsätzlich zum einem verbesserten Signal-zu-Rausch- Verhältnis, welches sich gewinnbringend in eine erhöhte Ortsauflösung oder schnellere Bildaufnahme äußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldstärke zusammenhängt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschränkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zulässigen SAR-Grenzwerten und somit nicht unverändert auf Hochfeld-Systeme übertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualität erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zusätzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern ermöglichen. Ziel dieser Arbeit ist es, routinefähige und SAR-reduzierte MRT-Standard-Protokolle für neuroanatomische Humanuntersuchungen mit räumlicher Höchstauflösung bei Magnetfeldern von 3T und 7T zu etablieren. N2 - Spin echo based MRI sequences builds one of the main priorities in the medical/-morphological MRI imaging. Especially T2-weighted spin-echo sequences and the multi-spin-echo RARE imaging sequence represents one of the basic methods, which allows to minimize measurement times down to minutes or seconds. Modern MRI systems usually have a magnetic field strength beyond 1.5T. In order to acquire high resolution images with acceptable acquisition times, high RF power is needed. In many cases the intrinsic safety limits of the radiated power are already exeeded at field strengths of 3T. This leads often to restrictions for the full performance. In research systems of 7T and more T2-weighted images are only feasible with significant amount of time. Especially in RARE imaging methods, which require a large number of refocusing pulses, this is a significant restriction factor. Therefore, in recent years there were further development of hybrid sequences which combines different acquisition methods together into one, to exploit their fully advantages of the basic methods and to minimize ... KW - Kernspintomografie KW - spezifische Absorptionsrate KW - Magnetresonanztomografie KW - Hybridbildgebung KW - Absorption Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100023 ER - TY - THES A1 - Wießner, Michael T1 - Isolierte Moleküle und delokalisierte Zustände: Einblick in die elektronische Struktur organischer Adsorbate mittels winkelaufgelöster Photoemission T1 - Isolated molecules and delocalised states: Insight into the electronic structure of organic adsorbates by angle-resolved photoemission N2 - Die vorliegende Arbeit demonstriert an Hand von verschiedenen Modellsystemen wie detailliert sich die grundlegenden Eigenschaften molekularer Adsorbate mit der winkelaufgelösten Photoemission erkunden lassen. Die von Peter Puschnig et al. vorgestellte Verknüpfung zwischen Photoemissionsintensität und den Molekülorbitalen im Grundzustand mittels einer Fouriertransformation war dabei entscheidend, um die verschiedenen physikalischen Effekte einordnen und verstehen zu können. Während für Coronen oder HBC die Orbitale im Grundzustand sehr gut zum Experiment passen, lassen sich für PTCDA und NTCDA einige Abweichungen von der DFT-Rechnung auf Basis der (semi-)lokalen GGA- oder LDA-Funktionale erkennen, die sich bei Messungen mit s-Polarisation hervorheben lassen. Diese können auf den Einfluss des Endzustandes in der Photoemission zurückgeführt werden. Im Rahmen der Dysonorbitale lassen sich die dafür verantwortlichen Relaxationseffekte zwischen dem N-Elektronensystem des Moleküls im Grundzustand und dem (N-1)-Elektronensystem des zurückbleibenden Kations explizit beschreiben. Die Berechnung des Photoemissionssignals mittels Fouriertransformation des Grundzustandes kann darüber hinaus weitere physikalische Effekte nicht korrekt berücksichtigen. Erste Anzeichen hierfür konnten am PTCDA-HOMO bei einer Photonenenergie von 27 eV und s-Polarisation detektiert werden. Darüber hinaus kann die Näherung des Photoelektronenendzustands als ebene Welle den beobachteten zirkularen Dichroismus am HOMO und LUMO von PTCDA nicht erklären. Erst in der Erweiterung durch eine Partialwellenzerlegung des Photoelektronenendzustands tritt ein dichroisches Signal in der theoretischen Beschreibung auf. Für das delokalisierte pi-Elektronensystem von PTCDA ist aber selbst diese Verfeinerung noch nicht ausreichend, um das Experiment korrekt beschreiben und weitere Eigenschaften vorhersagen zu können. Qualitativ lassen sich die Veränderungen im CDAD bei der Transformation um 90° für HOMO und LUMO mit einem gruppentheoretischen Ansatz verstehen. Damit ist es möglich, den molekularen Zuständen ihre irreduzible Darstellung zuzuweisen, worüber sich für PTCDA die Verteilung der quantenmechanischen Phase rekonstruieren lässt. Dies ist deshalb äußerst bemerkenswert, da üblicherweise in physikalischen Experimenten nur die Intensität und keine Informationen über die Phase messbar sind. Damit können die Photoemissionsmessungen im k||-Raum vollständig in den Realraum transformiert werden, wodurch die laterale Ortsinformation über die höchsten besetzen Molekülorbitale von PTCDA zugänglich wird. Neben der Bestimmung der molekularen Orbitale, deren Struktur von der Anordnung der Atome im Molekül dominiert wird, enthält die winkelaufgelöste Photoemission Informationen über die Adsorbat-Substrat-Wechselwirkung. Für hoch geordnete Monolagen ist es möglich, die verschiedenen Verbreiterungsmechanismen zu trennen und zu analysieren. Bei den untersuchten Systemen sind die Verbreiterungen aufgrund von unterschiedlichen Adsorptionsplätzen oder Probeninhomogenitäten ebenso wie die experimentelle Auflösung der 2D-Analysatoren vernachlässigbar gegenüber Lebensdauereffekten und evtl. Verbreiterung aufgrund von Dispersionseffekten. Bereits bei den äußerst schwach wechselwirkenden Systemen Coronen auf Ag(111) und Au(111) unterscheiden sich die beiden Systeme in ihrer Lorentzverbreiterung beim HOMO. In erster Näherung lässt sich dies auf eine Lebensdauer des entstandenen Photolochs zurückführen, welches je nach Stärke der Substratkopplung unterschiedlich schnell mit Substratelektronen aufgefüllt werden kann. Die Lorentzbreite als Indikator für die Wechselwirkung bzw. Hybridisierungsstärke zeigt für die Systeme mit Ladungstransfer vom Substrat in das Molekül eine sehr viel größere Verbreiterung. Zum Beispiel beträgt die Lorentzbreite des LUMO für NTCDA/Ag(110) FWHM=427 meV, und somit eine mehr als fünfmal so große Verbreiterung als für das HOMO von Coronen/Au(111). Diese starke Verbreiterung geht im Fall von NTCDA/Ag(110) wie auch bei den untersuchten Systemen NTCDA/Cu(100) und PTCDA/Ag(110) einher mit einem Ladungstransfer vom Substrat ins Molekül, sowie mit der Ausbildung eines zusätzlichen charakteristischen Signals in der Winkelverteilung des LUMO, dem Hybridisierungszustand bei kx,y=0Å-1. Die Intensität dieses Zustands korreliert bei den Systemen NTCDA auf Cu(100) bzw. auf Ag(110) jeweils mit der Lorentzbreite des LUMO-Zustands. Die Hybridisierung zwischen Molekül und Substrat hat noch weitere Auswirkungen auf die beobachtbaren physikalischen Eigenschaften. So führt die starke Hybridisierung mit dem Substrat wiederum dazu, dass sich die intermolekulare Dispersion für die Elektronen im LUMO-Zustand deutlich verstärkt. Der direkte Überlapp der Wellenfunktionen ist im System PTCDA/Ag(110) laut DFT-Rechnungen relativ klein und führt lediglich zu einer Bandbreite von 60 meV. Durch die Hybridisierung mit den delokalisierten Substratbändern erhöht sich der Grad der Delokalisierung im LUMO-Zustand, d.h. die Bandbreite steigt auf 230 meV, wie das Experiment bestätigt. Im Gegensatz zu früheren STM/STS-basierten Messungen [Temirov2006] kann mit der Kombination aus DFT-Rechnung und ARPES-Experiment eindeutig nachgewiesen werden, dass das Substrat im Fall von PTCDA/Ag(110) die Bandbreite verstärken kann, sodass sich die effektive Masse der Lochladungsträger von meff=3,9me auf meff=1,1me reduziert. Im Blick auf die eingangs gestellte Frage, ob sich molekulare Adsorbate eher wie isolierte Moleküle oder als periodische Festkörper beschreiben lassen, kommt diese Arbeit auf ein differenziertes Ergebnis. In den Impulsverteilungen, die sich aus der Form der molekularen Wellenfunktionen ableiten lassen, spiegelt sich eindeutig der isolierte molekulare Charakter wieder. Dagegen zeigt sich in der Energiedispersion E(k||) ein delokalisierter, blochartiger Charakter, und es konnte demonstriert werden, dass es zu einem Vermischen von Metall- und Molekülwellenfunktionen kommt. Molekulare Adsorbate sind also beides, isolierte Moleküle und zweidimensionale Kristalle mit delokalisierten Zuständen. N2 - This work demonstrates the versatility of angular resolved photoemission (ARPES) in extracting fundamental properties of molecular condensates. With the technique proposed by Peter Puschnig et al., ARPES intensities of aromatic molecules can be linked to the absolute square of the fourier transformed molecular orbital. This allows experimentally identifying individual orbitals and understanding different physical mechanisms at the interface between an organic layer and a metal. This technique shows a clear agreement between theoretical intensity distributions, as e.g. derived from density functional theory (DFT), and the measurements on systems like coronene and HBC. Opposite to that, deviations occur on PTCDA and NTCDA for both local and semilocal density functionals, is s-polarized light is used. Additional measurements with different polarisation directions show, that relaxation effects in the final state lead to a mixing of the N-particle initial state with the N-1-particle final state. This phenomenon can be described theoretically within the framework of Dyson orbitals, in an approximate way already by introducing self-interaction corrected density functionals. Additional deviations from the simple approximation of the photoelectron by a plane wave can be made visible with circular polarised light. For the PTCDA HOMO and LUMO, circular dichroism appears in the angular distribution of the photoemission intensity, an effect that is by definition not included in the plane wave approximation. A refined approximation given by the partial wave expansion of the final state shows a distinct dichroism of both the HOMO and LUMO. But apparently this approximation is not able to describe the detailed circular dichroism angular distribution. In the future, this might be possible by applying the Independent Atomic Center (IAC) approximation including multiple intramolecular scattering. The origin of the dichroic signal can be elucidated by measurements with different incidence directions and applying group theory. The changes in the dichroism signal of the HOMO and LUMO upon rotation by 90° is different indicating on different irreducible representations for both states. This paves the way to reconstruct the intramolecular phase distribution for the rather simple PTCDA HOMO and LUMO. Access to this distribution is usually hindered by the measurement process itself due to the absolute square in the evaluation of the photoemission matrix elements. And finally with the knowledge of the intensity and the phase a transformation of the HOMO and LUMO to real space is possible. Next to the measurement of individual molecular orbitals, ARPES contains signatures from the molecule substrate interaction. For a unique identification of the several interaction mechanisms a commensurate lattice of molecules is indispensable. Otherwise different adsorption sites would sum up to a broad photoemission signal, both in energy and momentum direction. For the commensurate systems of coronene or HBC on the Ag(111) and Au(111) surfaces, this prerequisite is fulfilled. The analysis of the peak shape shows different Lorentzian broadenings of the adiabatic vibronic transition of the HOMO. This width can be approximately correlated to the lifetime of the photo hole. Therefor a stronger molecule metal interaction leads to a faster decay of the photo hole on the molecule and consequently to broader lorentzian line width. For example the lorentzian width of the hybridized NTCDA on Ag(110) is of FWHM=427 meV and therewith five times larger than the rather weakly interacting coronene on Au(111). The strong interaction for NTCDA on Ag(110) but also for the investigated systems NTCDA on Cu(100) and PTCDA on Ag(110) goes along with charge transfer from the substrate to the molecule, i.e. the LUMO gets filled for the molecules in the first layer. Moreover a hybridization occurs between the metal and the molecule resulting in an additional contribution to the LUMO in the momentum distribution at kx,y=0Å-1. In the direct comparison of the NTCDA/Ag(110) and NTCDA/Cu(100) adsorption systems, this intensity of this contribution can be linked to the interaction strength deduced from the lorentzian width of the respective LUMO. The hybridization has even more consequences on this interface system. The observable intermolecular band dispersion gets drastically enhanced due to the increased interaction strength mediated by the molecule substrate hybridization. The direct overlap of the PTCDA LUMO wave function is according to the DFT calculation rather small leading to a band width of only 60 meV. Opposite to that, the experiment as well as the calculation for a PTCDA layer adsorbed on a silver slab show a band width of 230 meV, which can only be explained by the additional adsorbate. And opposite to previous STM/STS measurements [Temirov2006] the observed substrate mediated band width enhancement is clearly observed for a molecular state, whose effective mass is reduced by this mechanism from meff=3,9me to meff=1,1me. In conclusion, this work demonstrates how the properties of electrons in molecules and at interfaces to a metal can be detected and characterised by the photoemission technique. If these systems are rather characterized by localized molecular orbitals than by delocalized bloch waves, depends on the individual properties. On the one hand the momentum dependency of the photoemission intensity of indivdual orbitals match nearly perfect the calculation on isolated molecules. On the other hand, the momentum dependent binding energies E(k||) show a bloch-like character, whose band width is amplified by the substrate interaction. This means, the molecular adsorbate is both, molecules and a 2D-crystal with delocalized states. KW - Organisches Molekül KW - Adsorbat KW - ARPES KW - Organische Moleküle KW - Hochgeordnete Monolagen KW - Molekülphysik KW - Festkörperphysik KW - Perylendianhydrid Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-95265 ER - TY - THES A1 - Münch, Steffen T1 - Photolumineszenz-Spektroskopie an niederdimensionalen Halbleiterstrukturen auf III-V-Basis T1 - Photoluminescence Spectroscopy on low-dimensional III-V Semiconductor Structures N2 - Die vorliegende Arbeit beschäftigt sich mit optischen Untersuchungen an niederdimensionalen III/V-Halbleiterstrukturen. Dabei werden zunächst im ersten Teil selbst-organisiert gewachsene Nanodrähte aus InP und GaN bezüglich ihrer Oberflächen- und Kristallqualität charakterisiert. Dies ist besonders im Hinblick auf zukünftige opto- und nanoelektronische Bauteile von Interesse. Der zweite, grundlagenorientierte Teil der Arbeit ist im Bereich der Quantenoptik angesiedelt und widmet sich magneto-optischen Studien zur Licht-Materie Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen im Regime der starken Kopplung. Oberflächen-Untersuchungen an Halbleiter-Nanodrähten Bei diesem Teilaspekt der vorliegenden Arbeit stehen Untersuchungen von Halbleiter-Nanodrähten mittels zeitintegrierter und zeitaufgelöster Photolumineszenz (PL)-Spektroskopie im Vordergrund. Diese eindimensionalen Nanostrukturen bieten eine vielversprechende Perspektive für die weitere Miniaturisierung in der Mikroelektronik. Da konventionelle Strukturierungsverfahren wie die optische Lithographie zunehmend an physikalische und technologische Grenzen stoßen, sind selbstorganisierte Wachstumsprozesse hierbei von besonderem Interesse. Bei Nanodrähten besteht darüber hinaus konkret noch die Möglichkeit, über ein gezieltes axiales und radiales Wachstum von Heterostrukturen bereits bei der Herstellung komplexere Funktionalitäten einzubauen. Auf Grund ihres großen Oberfläche-zu-Volumen Verhältnisses sind die elektronischen und optischen Eigenschaften der Nanodrähte extrem oberflächensensitiv, was vor allem im Hinblick auf zukünftige Anwendungen im Bereich der Mikro- oder Optoelektronik sowie der Sensorik von essentieller Bedeutung ist. Zur näheren Untersuchung der Oberflächeneigenschaften von Nanodrähten eignet sich die optische Spektroskopie besonders, da sie als nicht-invasive Messmethode ohne aufwändige Probenpräparation schnell nützliche Informationen liefert, die zum Beispiel in der Optimierung des Herstellungsprozesses eingesetzt werden können. Quantenoptik an Halbleiter-Mikrokavitäten Der zweite Teil dieser Arbeit widmet sich der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen. Dabei ist das Regime der starken Kopplung zwischen Emitter und Resonator, auch im Hinblick auf mögliche zukünftige Anwendungen in der Quanteninformationsverarbeitung, von besonderem Interesse. Diese Mikroresonator-Türmchen, die auf planaren AlAs/GaAs-Mikroresonatoren mit InGaAs Quantenpunkten in der aktiven Schicht basieren, wurden mittels zeitintegrierter und zeitaufgelöster Mikro-PL-Spektroskopie in einem äußeren magnetischen Feld in Faraday-Konfiguration untersucht. Grundlegende Untersuchungen von Quantenpunkten im Magnetfeld Zunächst wurden InxGa(1−x)As-Quantenpunkte mit unterschiedlichem In-Gehalt (x=30%, 45% und 60%) magneto-optisch untersucht. Aufgrund der größeren Abmessungen weisen die Quantenpunkte mit 30% In-Anteil auch hohe Oszillatorstärken auf, was sie besonders für Experimente zur starken Kopplung auszeichnet. Unter dem Einfluss des Magnetfeldes zeigte sich ein direkter Zusammenhang zwischen der lateralen Ausdehnung der Quantenpunkte und ihrer diamagnetischen Verschiebung. Starke Kopplung im magnetischen Feld Neben der Möglichkeit, das Resonanzverhalten über das externe Magnetfeld zu kontrollieren, zeigte sich eine Korrelation zwischen der Kopplungsstärke und dem magnetischen Feld, was auf eine Verringerung der Oszillatorstärke im Magnetfeld zurückgeführt werden konnte. Diese steht wiederum im Zusammenhang mit einer Einschnürung der Wellenfunktion des Exzitons durch das angelegte Feld. Dieser direkte Einfluss des Magnetfeldes auf die Oszillatorstärke erlaubt eine in situ Variation der Kopplungsstärke. Photon-Photon-Wechselwirkung bei der starken Kopplung im Magnetfeld Nach der Demonstration der starken Kopplung zwischen entarteten Exziton- und Resonatormoden im Magnetfeld, wurden im weiteren Verlauf Spin-bezogene Kopplungseffekte im Regime der starken Kopplung untersucht. Es ergaben sich im Magnetfeld unter Variation der Temperatur zwei Bereiche der Wechselwirkung zwischen den einzelnen Komponenten von Resonator- und Exzitonenmode. Von besonderem Interesse ist dabei eine beobachtete indirekte Wechselwirkung zwischen den beiden photonischen Moden im Moment der Resonanz, die durch die exzitonische Mode vermittelt wird. Diese sogenannte Spin-vermittelte Photon-Photon-Kopplung stellt ein Bindeglied zwischen eigentlich unabhängigen photonischen Moden über den Spinzustand eines Exzitons dar. N2 - This thesis deals with optical investigations on low-dimensional III/V-semiconductor structures. In the first part self-organized nanowires made of InP and GaN are characterized for their surface and crystal quality, which is of special interest with respect to future opto- and nanoelectronic devices. The second part is dedicated to the more basic research topic of Quantum Optics. It presents magneto-optical studies on the light-matter interaction in quantum dot microresonator systems within the regime of strong coupling. Surface investigations on semiconductor nanowires This aspect of the present work focuses on investigations of semiconductor nanowires by means of time-integrated and time-resolved photoluminescence (PL) spectroscopy. These one-dimensional nanostructures provide a promising perspective for the further miniaturization of microelectronics. Since conventional structuring techniques increasingly face physical and technological boundaries, self-organized growth processes are of special interest in this context. Moreover, nanowires offer the possibility to implement complex functionalities already during their fabrication by means of controlled growth of axial and radial heterostructures. Due to their high surface-to-volume ratio the electronic and optical properties of nanowires are extremely sensitive to the surface conditions, which is of essential relevance for future applications in the range of micro- and optoelectronics as well as sensor technology. For a detailed investigation of the surface properties of nanowires optical spectroscopy is especially suitable, because as a non-invasive measurement method it quickly provides useful information without the necessity of an eloborate sample preparation. This information can, for instance, be adopted for the optimization of the fabrication process. Quantum Optics in semiconductor microcavities The second part of this thesis addresses the light-matter interaction in quantum dot-microresonator systems. Here, the regime of strong coupling between emitter and resonator is of special interest, also with respect to potential future applications in the field of quantum information processing. These microresonator-pillars based on planar AlAs/GaAs microresonators with InGaAs quantum dots in the active layer have been investigated by means of time-integrated and time-resolved micro-PL-spectroscopy in an external magnetic field in Faraday configuration. Basic investigations of quantum dots in magnetic fields In the first place, InxGa(1−x)As quantum dots with different In-content (x = 30%, 45% and 60%) have been investigated magneto-optically. Due to their bigger dimensions these quantum dots with 30% In-content exhibit higher oscillator strengths which makes them especially suitable for experiments on strong coupling. The influence of the magnetic field showed a direct relation between the lateral extension of the quantum dots and their diamagnetic shift. Strong coupling in magnetic fields Besides the possibility of tuning the system in resonance by the external magnetic field, a correlation between the coupling strength and the magnetic field was discovered which could be ascribed to a reduction of the oscillator strength in the magnetic field. This in turn is based on a squeeze of the exciton’s wavefunction by the applied field. This direct influence of the magnetic field on the oscillator strength allows for an in situ control of the coupling strength. Photon-photon interaction under strong coupling in magnetic fields After the demonstration of strong coupling between degenerate exciton and resonator modes in magnetic fields, spin-related coupling effects within the regime of strong coupling have been investigated. Two regions of interaction between the individual components of the resonator and exciton mode developed in the magnetic field under variation of the temperature. Here, an observed indirect interaction between both photonic modes at the moment of resonance is of special interest, because it is mediated by the excitonic mode. This so-called spinmediated photon-photon coupling represents a link between technically independent photonic modes via the spin state of an exciton. KW - Drei-Fünf-Halbleiter KW - Niederdimensionaler Halbleiter KW - Photolumineszenzspektroskopie KW - quantum dot KW - quantum optics KW - optical spectroscopy KW - solid state physics KW - nanowire KW - Quantenpunkt KW - Quantenoptik KW - Optische Spektroskopie KW - Festkörperphysik KW - Nanodraht Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74104 ER - TY - THES A1 - Rydzek, Matthias T1 - Infrarot-optische, elektrische und strukturelle Charakteristika spektralselektiver Funktionsschichten auf der Basis dotierter Metalloxide T1 - Infrared-optical, electrical and structural characteristics of spectrally selective functional coatings based on doped metal oxides N2 - Optisch transparente und elektrisch leitfähige Funktionsschichten auf der Basis dotierter Metalloxid-Halbleiter spielen eine bedeutende Rolle als wärmestrahlungsreflektierende Schichten in der modernen Architektur. Über die im Material vorhandenen freien Ladungsträger wird eine kollektive Anregung im infraroten Spektralbereich ermöglicht, die zu einem Anstieg der Reflektivität der Metalloxidschicht führt. Dies geht einher mit einer Reduktion der Wärmeabstrahlung der Funktionsschicht. Die Motivation der vorliegenden Dissertation lag in der Herstellung, sowie in einer umfassenden Analyse der infrarot-optischen, elektrischen und strukturellen Charakteristika von nasschemisch abgeschiedenen Funktionsschichten auf Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid. Die Prämisse war hierbei, dass die Funktionsschichten einen möglichst hohen Reflexionsgrad, respektive einen geringen thermischen Emissionsgrad im infraroten Spektralbereich aufweisen. Im Rahmen der Arbeit wurden deshalb vorrangig die Einflüsse der Sol-Parameter und der Art der Probenpräparation auf die infrarot-optischen Schichteigenschaften hin untersucht. Hierbei hat sich gezeigt, dass es verschiedene Möglichkeiten gibt, die Eigenschaften der Funktionsschichten im infraroten Spektralbereich zu beeinflussen. Dies kann einerseits bereits bei der Herstellung der Beschichtungslösungen über eine Variation von Parametern wie dem Grad der Dotierung bzw. der Konzentration des Sols erfolgen. Andererseits lassen sich gewünschte infrarot-optische Schichteigenschaften direkt über eine Anpassung der Kristallisationstemperaturen unter Zuhilfenahme geeigneter oxidierender und reduzierender Prozessgase einstellen. Im Verlauf der Optimierung der Probenpräparation konnte zudem gezeigt werden, dass eine Variation der Anzahl der Funktionsschichten und die damit verbundene Veränderung der Schichtdicke maßgebliche Einflüsse auf die infrarot-optischen Eigenschaften hat. Die umfassende optische Charakterisierung der optimierten Proben vom UV über den sichtbaren Spektralbereich bis hin zum IR ergab, dass der Gesamtemissionsgrad eines Glassubstrats durch die Aufbringung eines Mehrschichtsystems deutlich gesenkt werden kann, wobei sich die visuelle Transparenz nur geringfügig ändert. Im Falle des verwendeten Indium-Zinn-Oxids genügt eine vierfache Beschichtung mit einer Dicke von rund 450 nm, um den Emissionsgrad von unbeschichtetem Glas (0.89) auf unter 0.20 zu senken, wobei die visuelle Transparenz mit 0.85 nur um rund 6 % abnimmt. Bei Aluminium-Zink-Oxid ergibt sich ein Optimum mit einer rund 1 µm dicken Beschichtung, bestehend aus 11 Einzelschichten, die den Emissionsgrad der Oberfläche auf unter 0.40 senkt. Die optische Transparenz liegt hierbei mit 0.88 nur geringfügig unter dem unbeschichteten Glas mit einem Wert von 0.91. Neben der ausführlichen Charakterisierung der Einflüsse auf die IR-optischen Schichteigenschaften lag der Fokus der Arbeit auf der Analyse der strukturellen und elektrischen Eigenschaften der optimierten Proben. Mittels REM- und AFM-Aufnahmen konnten Einblicke in die Schichtstruktur und Oberflächenbeschaffenheit der erzeugten Funktionsschichten gewonnen werden. Es hat sich gezeigt, dass bedingt durch dicht beieinanderliegende Kristallite eine geringe Porosität innerhalb der Funktionsschicht entsteht, wodurch eine relativ hohe elektrische Leitfähigkeit gewährleistet ist. Dabei resultiert eine homogene Oberflächenstruktur mit einer geringen Oberflächenrauheit. Die Homogenität der Funktionsschichten, speziell im Hinblick auf eine gleichmäßige Verteilung der maßgeblichen Atome, wurde mit Hilfe von SNMS- Messungen und einem EDX-Element-Mapping verifiziert. Mit Hilfe der Analyse des spezifischen Widerstands der optimierten Funktionsschichten konnte ein Zusammenhang zwischen den infrarot-optischen und elektrischen Schichteigenschaften über die Hagen-Rubens Relation erarbeitet werden. Darüber hinaus wurden an den besten, infrarot-optisch optimierten Proben charakteristische Parameter wie die Bandlückenenergie, die Ladungsträgerdichte und die Ladungsträgerbeweglichkeit ermittelt. Über die Ladungsträgerdichte war es zudem möglich, die spektrale Lage der Plasmawellenlänge zu bestimmen. Basierend auf den ermittelten Werten der optimierten Metalloxidschichten im Bereich der elektronischen Charakterisierung konnte eine Korrelation der infrarot-optischen und elektrischen Schichteigenschaften anhand charakteristischer Punkte im Spektrum der Funktionsschichten erarbeitet werden. Abschließend wurde der Verlauf des spektralen Reflexionsgrads theoretisch modelliert und über eine Parametervariation an den tatsächlich gemessenen Reflexionsgrad der infrarot-optisch optimierten Proben angefittet. Hierbei zeigte sich eine gute Übereinstimmung der in den physikalischen Grundlagen der vorliegenden Arbeit getroffenen Annahmen mit den experimentell ermittelten Werten. N2 - Optically-transparent and electrically-conductive functional coatings based on doped metal oxide semiconductors play a significant role as thermally-reflective coatings. Their collective excitation in the infrared spectral range is enabled via the free charge carriers in the material, which leads to an increase in the metal oxide coating's reflectance. This is concurrent with a reduction in the thermal emittance of the functional coating. Various TCO deposition processes have been established for the majority of applications; the sol-gel process, however, is particularly significant since it is cost-efficient and flexible. The objective of this thesis was to thoroughly analyze the infrared optical, electrical and structural characteristics of functional coatings based on indium tin oxide and aluminium-doped zinc oxide produced by way of wet deposition. The intention was to create functional coatings with the highest possible reflectance, or rather lowest thermal emittance in the infrared spectral range. In this vein, an important aspect of this thesis was to investigate not only the influence of the sol parameters, but also of sample preparation on the infrared optical coating properties. It became evident that there are various ways of influencing the properties of the functional coatings in the infrared spectral range. Firstly, this can be achieved by varying parameters when the coating solutions are produced, such as the degree of doping or the concentration of the sol. Secondly, specific infrared optical coating properties can be directly modified by adjusting the crystallization temperatures with the aid of suitable oxidizing and reducing gases. During the course of optimizing sample preparation it also became apparent that variation in the number of functional coatings and therefore in the thickness of the metal oxide used has a decisive influence on the infrared optical properties. The individual steps involved in the production process were improved throughout the course of numerous parametric studies with respect to achieving the highest possible reflectance in the infrared range. Comprehensive optical characterization of the optimized samples in the spectral range from ultraviolet over the visible and up to the thermal infrared showed that the total emittance of a glass substrate can be clearly reduced by applying a multilayer coating, while the visual transparency is only slightly altered. In the case of the indium tin oxide used, a four-layer coating with a thickness of approximately 450 nm was sufficient to reduce the emittance of the uncoated glass (0.89) to 0.20, while the visual transmittance of 0.85 only deteriorated by about 6 %. In the case of the aluminium-doped zinc oxide used, an optimum was achieved with an approximately 1 µm thick coating comprising 11 individual layers which reduced the surface emittance to less than 0.40. The optical transmittance of 0.88 in this case is only slightly less than the uncoated glass with a value of 0.91. Besides extensively characterizing the influences on IR optical coating properties, this work focused on analyzing the structural and electrical properties of the optimized samples. Insights into the structure and surface composition of the functional coatings produced were gained by way of SEM and AFM. It became evident that densely packed crystallites cause low porosity within the functional coating, which ensures relatively high electrical conductivity. A homogeneous surface structure with low surface roughness results from the relatively small crystallite size (compared to the coating thickness measured) of both metal oxide systems. The homogeneity of the functional coatings, especially with respect to the uniform distribution of the decisive atoms, was verified with the aid of SNMS measurements and EDX elemental mapping. Correlation between the infrared optical and electrical coating properties was successfully shown by analyzing the specific resistance of the optimized functional coatings and then implementing the Hagen-Rubens relation. Moreover, characteristic parameters such as band gap energy, charge carrier density and charge carrier mobility were determined for the best infrared-optically-optimized samples. It was also possible to ascertain the spectral position of the plasma wavelength via the charge carrier density. On the basis of values determined for the optimized metal oxide coatings within the realm of electronic characterization, further correlation between the infrared optical and electrical coating properties became evident due to characteristic points in the spectrum of the functional coatings. To conclude, the curve of spectral reflectance was theoretically modelled and fitted to the measured reflectance of the infrared-optically-optimized samples by way of parameter variation. Good agreement was shown between the hypotheses made within this thesis and the values determined in the experiments. KW - Metalloxide KW - Dotierung KW - Dünne Schicht KW - Funktionswerkstoff KW - Reflexion KW - niedrigemittierende Beschichtung KW - Zinn-dotiertes Indiumoxid KW - Aluminium-dotiertes Zinkoxid KW - low-emissivity coating KW - indium-tin oxide KW - aluminum-zinc-oxide KW - Transparent-leitendes Oxid KW - FT-IR-Spektroskopie KW - Infrarot KW - Emissionsvermoegen KW - Sol-Gel-Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71504 ER - TY - THES A1 - Bentmann, Hendrik T1 - Spin-Bahn-Kopplung in Grenzschichten: Mikroskopische Zusammenhänge und Strategien zur Manipulation T1 - Spin-Orbit-Coupling at Interfaces: Microscopic Mechanisms and Strategies for Manipulation N2 - Die vorliegende Arbeit befasst sich mit dem Einfluss der Spin-Bahn-Kopplung (SBK) auf die zweidimensionale elektronische Struktur von Festkörperoberflächen und -grenzflächen. Aufgrund der strukturellen Inversionsasymmetrie kann die SBK in derartigen Systemen eine Spinaufspaltung der elektronischen Zustände herbeiführen und eine charakteristische impulsabhängige Spinstruktur induzieren (Rashba-Effekt). Die Studien in dieser Arbeit sind zum einen darauf gerichtet, das physikalische Verständnis der mikroskopischen Zusammenhänge, die die Spinaufspaltung und die Spinorientierung elektronischer Zustände an Grenzflächen bestimmen, zu verbessern. Des Weiteren sollen Möglichkeiten zur Manipulation der SBK durch kontrollierte Variationen chemischer und struktureller Grenzflächenparameter erforscht werden. Als Modellsysteme für diese Fragestellungen dienen die isostrukturellen Oberflächenlegierungen BiCu2 und BiAg2, deren elektronische Struktur mittels winkelaufgelöster Photoelektronenspektroskopie (ARPES) und spinaufgelöster ARPES untersucht wird. Die Resultate der Experimente werden mithilfe von ab initio-Rechnungen und einfacheren Modellbetrachtungen interpretiert. Die Arbeit schließt mit einer ausblickenden Präsentation von Experimenten zu dem topologischen Isolator Bi2Se3(0001). Vergleichende ARPES-Messungen zu BiAg2/Ag(111) und BiCu2/Cu(111) zeigen, dass bereits geringe Unterschiede in der Grenzschichtmorphologie die Größe der Spinaufspaltung in der elektronischen Struktur um ein Vielfaches verändern können. Zudem belegen spinaufgelöste Experimente eine invertierte Spinorientierung der elektronischen Zustände in BiCu2 im Vergleich mit dem Referenzsystem Au(111). Beide Resultate können durch eine theoretische Analyse des Potentialprofils und der elektronischen Ladungsverteilung senkrecht zu der Grenzfläche in Kombination mit einfachen Modellbetrachtungen verstanden werden. Es stellt sich heraus, dass Asymmetrien in der Ladungsverteilung das direkte mikroskopische Bindeglied zwischen der Spinstruktur des elektronischen Systems und den strukturellen und chemischen Parametern der Grenzschicht bilden. Weitergehende ARPES-Experimente zeigen, dass die spinabhängige elektronische Struktur zudem signifikant durch die Symmetrie des Potentials parallel zu der Grenzflächenebene beeinflusst wird. Eine Manipulation der SBK wird in BiCu2 durch die Deposition von Adatomen erreicht. Hierdurch gelingt es, die Spinaufspaltung sowohl zu vergrößern (Na-Adsorption) als auch zu verringern (Xe-Adsorption). ARPES-Experimente an dem ternären Schichtsystem BiAg2/Ag/Au(111) belegen erstmalig eine Kopplung zwischen elektronischen Bändern mit entgegengesetztem Spincharakter in einem zweidimensionalen System mit Spinaufspaltung (Interband-Spin-Bahn-Kopplung). Der zugrundeliegende Kopplungsmechanismus steht in bemerkenswerter Analogie zu den Auswirkungen der SBK auf die spinpolarisierte elektronische Struktur in ferromagnetischen Systemen. Variationen in der Schichtdicke des Ag-Substratfilms erlauben es, die Stärke der Interband-SBK zu manipulieren. N2 - This thesis deals with the effects of the spin-orbit coupling (SOC) on the two-dimensional electronic structure of crystal surfaces and interfaces. Due to the structural inversion asymmetry the SOC can provoke a spin splitting of the electronic states in such systems and thereby induce a characteristic momentum-dependent spin structure (Rashba effect). The studies presented in this work are directed towards an improved understanding of the microscopic mechanisms that govern the size of the spin splitting and the spin orientation of two-dimensional electronic states. Furthermore, possibilities to manipulate the SOC via controlled variations of the chemical and structural interface properties shall be investigated. In order to address these issues the spin-dependent electronic structure of the two isostructural surface alloys BiCu2 and BiAg2 is scrutinized by angle-resolved photoelectron spectroscopy (ARPES) and spin-resolved ARPES experiments. The experimental results are interpreted using ab initio electronic structure theory as well as more simple free-electron-type models. The thesis closes with a forward-looking presentation of experimental results on the topological insulator surface Bi2Se3(0001). ARPES measurements for BiAg2/Ag(111) and BiCu2/Cu(111) reveal that already small changes in the interface morphology can result in sizeable differences of the spin splitting. Moreover, spin-resolved experiments provide evidence for an inverted spin orientation of the electronic states in BiCu2 when compared to the reference system Au(111). Both results can be understood through a careful theoretical analysis of the potential profile and the electronic charge distribution perpendicular to the interface in combination with simple model considerations. It turns out that asymmetries in the charge distribution represent the central microscopic link between the spin structure of the electronic system and the structural and chemical interface properties. Further ARPES experiments show that the spin-dependent electronic structure is also significantly influenced by the symmetry of the potential parallel to the interface. A manipulation of the SOC is achieved in BiCu2/Cu(111) by the deposition of adatoms. Thereby it is possible both to increase the spin splitting by the adsorption of Na and to decrease it by theadsorption of Xe. ARPES experiments for the ternary layer system BiAg2/Ag/Au(111) show for the first time a coupling between electronic bands of opposite spin character in a spin-orbit split electron system (interband-spin-orbit-coupling). The underlying coupling mechanism shows remarkable analogies with the effect of SOC on the spin-polarized electronic structure in ferromagnetic systems. Variations of the layer thickness of the Ag-film allow for a manipulation of the interband-SOC. KW - Spin-Bahn-Wechselwirkung KW - Grenzflächenphysik KW - Photoemission KW - Spin-orbit coupling KW - Electronic structure KW - Interface physics KW - Elektronenstruktur Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76963 ER - TY - THES A1 - Huggenberger, Alexander T1 - Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren T1 - Optimization of site-controlled In(Ga)As quantum dots for the integration into semiconductor micro resonators N2 - Diese Arbeit beschäftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Datenübertragung, die durch Quantenkryptographie abhörsicher verschlüsselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschränkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein häufig untersuchtes System und können heutzutage mit hoher Kristallqualität durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erhöhen, wurden Mikrosäulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate für die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen Ätztechniken erreicht. Für den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema für den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. Für die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngröße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese häufig aufgrund spektraler Diffusion größer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ansätze und Strategien zur Überwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV für die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualität besitzen. Die FSS der Emission eines Quantenpunktes sollte für die direkte Erzeugung polarisationsverschränkter Photonen möglichst klein sein. Deswegen wurden unterschiedliche Ansätze diskutiert, um die FSS einer möglichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in geätzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend für den künftigen Einsatz solcher Quantenpunkte in Quellen für verschränkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschränkten Zustandes gezeigt. In Zusammenarbeit mit der Universität Tokyo wurde ein Konzept entwickelt, mit dem künftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavitäten hergestellt werden können. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikrosäulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavitätsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion für verschwindende Zeitdifferenzen nachgewiesen wurde. N2 - The present thesis is about the fabrication of site-controlled In(Ga)As quantum dots for the scalable integration into devices. The optical properties of these quantum dots were systematically optimized with special care regarding the optical linewidth and the fine structure splitting of single quantum dots. This optimization was accomplished in order to use the quantum dots in light sources for quantum key distribution By coupling semiconductor microcavities and quantum dots one is able to realize single photon sources or sources of entangled photons. This work demonstrates the scalable integration of site-controlled quantum dots into semiconductor microresonators. The growth of In(Ga)As quantum dots on GaAs substrates is a field of vivid research nowadays and can be fabricated with high quality by molecular beam epitaxy. The emission from single quantum dots exhibits lines that resemble the discrete emission spectra of atoms. This thesis uses micropillar cavities and photonic crystal cavities to direct the emission of quantum dots and to increase the extraction efficiency. The integration into these resonator systems was done by adjusting the quantum dots’ positions to reference structures on the samples. This allows for a scalable fabrication of many spatially coupled quantum dot resonator systems The substrates were patterned using a combination of optical and electron beam lithography followed by wet or dry etching. Electrical carrier injection was realized by developing a contact scheme. The quantum dots were fabricated using a stacked growth scheme that consists of a seeding layer and an optical active quantum dot layer. Quantum dots on square lattices with a period of up to 10 mum were fabricated to enable the integration of single quantum dots into semiconductor microresonators. On the other hand, it was possible to realize periods of only 200 nm which is promising for the investigation of superradiance effects in the ensemble emission of quantum dots. The optical properties of site-controlled quantum dots were investigated by studying the photoluminescence. The emission linewidth of single quantum dots is an important benchmark for the optical quality. Site-controlled quantum dots are known to exhibit large linewidths due to the effect of spectral diffusion. Different strategies to overcome this obstacle were investigated during this work. A linewidth as low as 25 mueV was observed for a single site-controlled quantum dot (on a square lattice of 2 mum period). The statistical evaluation yields a mean value of 133 mueV for this kind of quantum dots. Both results prove the high optical quality of the site-controlled quantum dots fabricated in this work. The fine structure splitting of the quantum dot emission should be close to zero for the direct observation of polarization entangled photons. Different concepts were investigated during this work to reduce the fine structure splitting of the quantum dot ensemble. The lowest splitting obtained for site-controlled In(Ga)As quantum dots on (100) GaAs was 9.8 mueV. By growing quantum dots into inverted pyramids etched into (111) GaAs one should be able to further reduce the splitting due to the threefold symmetry of (111) GaAs. Furthermore, the piezoelectric field in (211) GaAs should compensate the fine structure splitting. Using quantum dots on these high index materials the fine structure splitting was reduced to values below 5 mueV during this work. Another concept to reduce the fine structure splitting is the application of a lateral electric field which was shown to reduce the splitting from 25 mueV to 15 mueV. For the future measurement of the degree of entanglement of photons, an experimental setup was established and its functionality was proven by measuring the temporal characteristics of an biexciton-exciton-cascade. In cooperation with the group of Prof. Arakawa from Tokyo University a concept was developed to realize single quantum dot lasers by combining site-controlled quantum dots and two- or three-dimensional photonic crystal cavities in the near future. Furthermore, with the help of an electrically driven micropillar resonator the enhancement of the spontaneous emission for spectral resonance of the cavity mode with the emission of a site-controlled quantum dot was shown. This system could be used as a single photon source which is proven by the measurement of the autocorrelation function for zero time delay. KW - Quantenpunkt KW - Einzelphotonenemission KW - Drei-Fünf-Halbleiter KW - quantum dot KW - semiconductor KW - molecular beam epitaxy KW - single photon emission KW - optical resonator KW - Halbleiter KW - Molekularstrahlepitaxie KW - Optischer Resonator KW - Linienbreite Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78031 ER - TY - THES A1 - Hölscher, Uvo Christoph T1 - Relaxations-Dispersions-Bildgebung in der Magnetresonanztomographie T1 - Relaxation Dispersion Magnetic Resonance Imaging N2 - Das Ziel dieser Promotion ist der Aufbau eines dreMR Setups für einen klinischen 1,5T Scanner, das die Relaxations-Dispersions-Bildgebung ermöglicht, und die anschließende Ergründung von möglichst vielen Anwendungsfeldern von dreMR. Zu der Aufgabe gehört die Bereitstellung der zugrunde liegenden Theorie, der Bau des experimentellen Setups (Offset-Spule und Stromversorgung) sowie die Programmierung der nötigen Software. Mit dem gebauten Setup konnten zwei große Anwendungsfelder — dreMR Messungen mit und ohne Kontrastmitteln — untersucht werden. N2 - The goal of this dissertation is the design of a dreMR setup for a clinical 1.5T whole body scanner and the subsequent exploration of possible application fields for the dreMR method. This task includes the investigation of the underlying theory, the design and construction of the dreMR setup (offset-coil and current driver) and the preparation of required software. Two major application fields have been demonstrated: dreMR with and without contrast agents. KW - Kernspintomografie KW - MRT KW - Dispersion KW - dreMR KW - MRI KW - dreMR KW - NMR-Tomographie KW - Kontrastmittel KW - Bilderzeugung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79554 ER - TY - THES A1 - Albert, Ferdinand T1 - Vertikale und laterale Emissionseigenschaften von Halbleiter-Quantenpunkt-Mikroresonatoren im Regime der schwachen und starken Licht-Materie-Wechselwirkung T1 - Vertical and lateral emission properties of semiconductor quantum-dot-microresonators in the regime of weak and strong light matter interaction N2 - Die vorliegende Arbeit beschäftigt sich mit der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonatoren und deren vertikalen und lateralen Emissionseigenschaften. Quantenpunkte sind nanoskopische Strukturen, in denen die Beweglichkeit der Ladungsträger unterhalb der de-Broglie-Wellenlänge eingeschränkt ist, wodurch die elektronische Zustandsdichte diskrete Werte annimmt. Sie werden daher auch als künstliche Atome bezeichnet. Um die Emissionseigenschaften der Quantenpunkte zu modifizieren, werden sie im Rahmen dieser Arbeit als aktive Schicht in Mikrosäulenresonatoren eingebracht. Diese bestehen aus einer GaAs lambda-Kavität, die zwischen zwei Braggspiegeln aus alternierenden GaAs und AlAs Schichten eingefasst ist. Diese Resonatoren bieten sowohl eine vertikale Emission über Fabry-Perot Moden, als auch eine laterale Emission über Fl� ustergaleriemoden. Die Licht-Materie-Wechselwirkung zwischen den Resonatormoden und lokalisierten Ladungsträgern in den Quantenpunkten, genannt Exzitonen, kann in zwei Regime unterteilt werden. Im Regime der starken Kopplung wird der spontane Emissionsprozess in einem Quantenpunkt reversibel und das emittierte Photon kann wieder durch den Quantenpunkt absorbiert werden. Die theoretische Beschreibung der Kopplung eines Exzitons an die Resonatormode erfolgt über das Jaynes-Cummings Modell und kann im Tavis-Cummings Modell auf mehrere Emitter erweitert werden. Ist die Dämpfung des Systems zu gross, so befindet man sich im Regime der schwachen Kopplung, in dem die Emissionsrate des Quantenpunkts durch den Purcell-Effekt erhöht werden kann. In diesem Regime können Mikrolaser mit hohen Einkopplungsraten der spontanen Emission in die Resonatormode und niedrigen Schwellpumpströmen realisiert werden. Zur Charakterisierung der Proben werden vor allem die Methoden der Mikro-Elektrolumineszenz und der Photonenkorrelationsmessungen eingesetzt. N2 - The present work deals with the light-matter interaction in quantum dot microcavities and their vertical and lateral emission properties. Quantum dots are nanoscopic structures, in which charge carriers are confi� ned in all three dimensions below the de-Broglie wavelength. As a consequence, the density of electronic states becomes singular and quantum dots are therefore referred to as arti� cal atoms. To modify the emission properties of quantum dots, they are introduced in micropillar cavities. These consist of a GaAs � -cavity, which is sandwiched between two Bragg mirrors of alternating layers of GaAs and AlAs. The micropillar resonators provide both a vertical emission via Fabry-P� erot modes, as well as a lateral emission via whispering gallery modes. The light-matter interaction between the microcavity modes and the localized charge carriers, called exzitons, can be devided into two regimes. In the strong coupling regime, the spontaneous emission process becomes reversible and an emitted photon can be reabsorbed by the quantum dot. The theoretical description of the coupling of a two-level emitter with a photonic mode is given by the Jaynes-Cummings model. For multiple two-level emitters, it can be extended to the Tavis-Cummings model. In the weak coupling regime the spontaneous emission rate of a quantum dot can be increased by the Purcell e� ect. Here, microlasers with high spontaneous emission coupling factors and low lasing thresholds can be realized. In order to investigate the samples, especially the methods of microelectroluminescence and photon correlation measurements are applied. KW - Drei-Fünf-Halbleiter KW - Quantenpunkt KW - Halbleiterlaser KW - Quantenoptik KW - Mikrolaser KW - Mikrosäulenresonator KW - Quantenpunkt KW - Flüstergaleriemode KW - Galliumarsenidlaser KW - Optischer Resonator KW - Mikrooptik KW - Mikroresonator Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93016 ER - TY - THES A1 - Wichmann, Tobias T1 - Spulen-Arrays mit bis zu 32 Empfangselementen für den Einsatz an klinischen NMR-Geräten T1 - Coil-Arrays with up to 32 receive channels for the use on clinical NMR systems N2 - In dieser Arbeit wurden für spezielle Anwendungen an klinischen MR-Geräten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete für klinische MR-Geräte zu eröffnen oder bei bestehenden Applikationen die Diagnosemöglichkeiten durch eine Kombination von höherem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll möglich ist, Untersuchungen an Kleintieren an klinischen MR-Geräten mit einer Feldstärke von 1,5T durchzuführen. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchführen zu können, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erhält und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gewählten geometrischen Abmessungen der Spulen ist es möglich, Zubehör von dedizierten Tier-MR-Geräten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an für Ratten dimensionierten Spulen wurden grundlegende Zusammenhänge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsfähigkeit erarbeitet. Für Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter fünf Minuten MR-Messungen des Abdomens in sehr guter Bildqualität möglich sind. Ebenfalls gezeigt wurde die Möglichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgelöste Angiographien durchzuführen. Es stellte sich heraus, dass bei 1,5T dedizierte Mäusespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es möglich, auch für Mäuse ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterstützten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Geräten mit niedriger Feldstärke durchführbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Geräten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen für einen Herzpatienten sehr mühsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort für Patienten deutlich erhöhen kann. Schon mit einem ersten Prototypen für 3T war es möglich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Auflösung durchzuführen und damit auf das Atemanhalten komplett zu verzichten. Dies ermöglicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsvermögen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erhält man z. B. gemittelt über das gesamte Herz ein ca. 60 % gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zukünftig in der klinischen Routine in Echtzeit quantifizieren zu können. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen für 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgeführt. Trotz größerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegenüber der Standardspule. Durch die Einhaltung aller Kriterien für Medizinprodukte kann diese Spule auch für den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise möglich, bei gleicher Messdauer eine höhere Auflösung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegenüber der 1,5 T-Spule ist es dort sogar möglich, bei höheren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden für alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verfügbaren Spulen, hinsichtlich SNR und Beschleunigungsvermögen optimiert sind und dem Anwender neue Möglichkeiten bieten. N2 - Purpose of this work was to develop optimized phased array coils for clinical magnetic resonance imaging (MRI) systems for applications were dedicated coils were not readily available. Chapter 3 evaluates the use of dedicated small animal coils on clinical MR scanners with a field strength of 1,5T instead of using special animal-systems with higher intrinsic signal-to-noise ratio. Advantage of the clinical system is the availability and the portability of the results of animal studies to human applications because sequences can easily be adopted. The available contrast is similar and clinically tested contrast agents can directly be used. Comparisons of different array decoupling methods with respect to SNR and parallel imaging performance have been conducted on coils with the standard size of rat-coils on animal scanners as part of this work. This geometry made it possible to directly use accessories of these systems like animal beds and monitoring systems. It showed that it is possible to acquire images of the abdomen of the rat in under five minutes in very good image quality with such setup. It was also used for high resolution angiographie in very short scanning time due to the use of parallel imaging techniques. However it has shown that the use of dedicated mouse coils is at the very limit of SNR at 1.5 T. Nevertheless a four channel phased array coil was built and tested. The results are described within this work. Another application which can benefit of novel dedicated coils is the assessment of cardiac function. Especially for heart patients it can be very exhausting to hold breath for a longer period of time, which is required by the current standard protocol for cardiac imaging. The combination of 3T and many available receive channels is a very promising combination to shorten the scan time. Chapter 4 describes the development of a 32 channel cardiac phased array coil for 3T to investigate this idea. Starting with an existing coil for 1.5T a first prototype was developed which was the first coil to demonstrate real-time cardiac imaging with only slightly reduced temporal resolution. A further optimization of this coil led to a completely new coil with higher SNR performance and better parallel imaging abilities and was a further step towards real-time imaging of the heart in clinical routine. Chapter 5 describes the development of an optimized 16 channel breast coil for 3T which can be used in clinical routine. Tests at 1.5T were conducted to find the best coil element layout . It was also possible to compare the prototypes at this field strength to an existing breast coil of Siemens Healthcare. Better SNR and parallel imaging performance could be achieved due to the possibility of adjusting the coil size to different breast sizes and therefore optimizing the filling factor. These improved qualities will allow to have higher resolution in the same scan time compared to the current standard in clinical routine. In conclusion it has been shown that these applications can benefit from dedicated array coils due to better SNR and parallel imaging performance. KW - Kernspintomografie KW - NMR-Tomographie KW - Spulen-Array KW - magnetic resonance imaging KW - coil-array KW - Magnetspule KW - Magnetische Kernresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79358 ER - TY - THES A1 - Göpfert, Sebastian T1 - Einzel-Quantenpunkt-Speichertransistor: Experiment und Modellierung T1 - Single quantum dot memory transistor: Experiment and modeling N2 - In dieser Arbeit wurden Einzel-Quantenpunkt-Speichertransistoren im Experiment untersucht und wesentliche Ergebnisse durch Modellierung nachgebildet. Der Einzel-Quantenpunkt-Speichertransistor ist ein Bauelement, welches durch eine neuartige Verfahrensweise im Schichtaufbau und bei der Strukturierung realisiert wurde. Hierbei sind vor allem zwei Teilschritte hervorzuheben: Zum einen wurde das Speicherelement aus positionskontrolliert gewachsenen InAs Quantenpunkten gebildet. Zum anderen wurden durch eine spezielle Trockenätztechnik schmale Ätzstrukturen erzeugt, welche sehr präzise an der lateralen Position der Quantenpunkte ausgerichtet war. Durch diese Verfahrensweise war es somit möglich, Transistorstrukturen mit einzelnen Quantenpunkten an den charakteristischen Engstellen des Kanals zu realisieren. N2 - In this thesis single-quantum-dot memory-transistors have been studied in experiment and the experimental findings have been reproduced by modeling. The studied single-quantum-dot memory transistor is a device which has been realized by a novel process technique as regards layer composition and structuring. According to this there are two steps to be emphasized: First the memory element is based on site-controlled grown InAs quantum dots. Second, there has been used a unique dry etching technique to define narrow etched structures, which have been precisely aligned laterally with respect to the position of the quantum dots. Due to this method it was possible to realize transistor structures with single quantum dots centered in a quantum wire. KW - Quantenpunkt KW - Transistor KW - Speicherelement KW - single electron transport KW - single quantum dot KW - nanotechnology KW - Nanotechnologie KW - Elektronischer Transport KW - Single electron transfer Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-80600 ER - TY - THES A1 - Schneider, Christian T1 - Konzepte zur skalierbaren Realisierung von effizienten, halbleiterbasierten Einzelphotonenquellen T1 - Concepts for the scalable realization of efficient semiconductor single photon sources N2 - Dem Einsatz niederdimensionaler Nanostrukturen als optisch aktives Medium wird enormes Potential vorausgesagt sowohl in den klassischen optoelektronischen Bauteilen (wie z.B. Halbleiterlasern) als auch in optischen Bauteilen der näachsten Generation (z.B. Einzelphotonenquellen oder Quellen verschränkter Photonenpaare). Dennoch konnten sich quantenpunktbasierte Halbleiterlaser, abgesehen von einigen wenigen Ausnahmen (QDLaser inc.), im industriellen Maßstab bisher nicht gegen Bauelemente mit höherdimensionalen Quantenfilmen als optisch aktivem Element durchsetzen. Deshalb scheint der Einsatz von Quantenpunkten (QPen) in nichtklassischen Lichtquellen gegenwärtig vielversprechender. Um jedoch solche Bauteile bis zur letztendlichen Marktreife zu bringen, müssen neben der starken Unterdrückung von Multiphotonenemission noch wesentliche Grundvoraussetzungen erfüllt werden: In dieser Arbeit wurden grundlegende Studien durchgeführt, welche insbesondere dem Fortschritt und den Problemen der Effizienz, des elektrischen Betriebs und der Skalierbaren Herstellung der Photonenqullen dienen sollte. Zum Einen wurden hierfür elektrisch betriebene Einzelphotonenquellen basierend auf gekoppelten QP-Mikroresonatoren realisiert und de ren Bauteileffizienz gezielt optimiert, wobei konventionelle selbstorganisierte InAs-QPe als aktives Medium eingesetzt wurden. Für die skalierbare Integration einzelner QPe in Mikroresonatoren wurde des Weiteren das gesteuerte QP-Wachstum auf vorstrukturierten Substraten optimiert und auf diese Art ortskontrollierte QPe in Bauteile integriert. Für die Realisierung hocheffizienter, elektrisch gepumpter inzelphotonenquellen wurde zunächst das Wachstum von binären InAs-QPen im Stranski-Krastanov-Modus optimiert und deren optische Eigenschaften im Detail untersucht. Durch das Einbringen einer Schicht von Siliziumatomen nahe der QP-Schicht konnten die Emitter negativ geladen werden und der helle Trionenzustand der QPe als energetischer Eigenzustand des Systems zur effizienten Extraktion einzelner Photonen ausgenutzt werden. Durch die Integration dieser geladenen QPe in elektrisch kontaktierte, auf Braggspiegel basierte Mikrotürmchen konnten Einzelphotonenquellen realisiert werden, in denen gezielt Licht-Materie- Wechselwirkungseffekte zur Steigerung der Bauteileffizienz ausgenutzt wurden. Basierend auf theoretischen Überlegungen wurde die Schichtstruktur soweit optimiert, dass letztendlich experimentell eine elektrisch gepumpte Einzelphotonenquelle mit einer Photonenemissionsrate von 47 MHz sowie einer zuvor unerreichten Bauteileffizienz von 34 % im Regime der schwachen Licht-Materie-Kopplung demonstriert werden konnte. Da Effekte der Licht-Materie-Wechselwirkung zwischen QP und Resonator neben der spektralen Resonanz ebenfalls von der relativen Position von Resonator und QP zueinander abhängen, ist eine Kombination von positionierten QPen und Bauteilausrichtung nahezu unumg¨anglich für die skalierbare, deterministische Herstellung von Systemen aus perfekt angeordnetem Emitter und Resonator. Deshalb wurden bestehende Konzepte zum geordneten Wachstum von QPen weiterentwickelt: Hierbei wurde geordnetes InAs-QP-Wachstum mit Perioden realisiert, die vergleichbare Abmessungen wie optische Resonatoren aufweisen, also Nukleationsperioden zwischen 500 nm und 4 μm. Durch ein genaues Anpassen der Wachstums- und Prozessbedingungen konnte des Weiteren die Bildung von QP-Molekülen auf den Nukleationsplätzen nahezu unterdrückt beziehungsweise gesteuert werden. Durch eine systematische Optimierung der optischen Eigenschaften der QPe konnten Emitter mit Einzelquantenpunktlinienbreiten um 100 μeV realisiert werden, was eine Grundvoraussetzung zur Studie ausgeprägter Licht-Materie-Wechselwirkungseffekte in Mikroresonatoren darstellt. Letztendlich konnten durch die Integration derartiger QPe in optisch sowie elektrisch betriebene Mikroresonatoren erstmals Bauteile realisiert werden, welche einige der prinzipiellen, an eine Einzelphotonenquelle gestellten Anforderungen erfüllen. Insbesondere konnten deutliche Signaturen der schwachen Licht-Materie-Kopplung einzelner positionierter QPe in photonische Kristallresonatoren, Mikroscheibenresonatoren sowie Mikrotürmchenresonatoren festgestellt werden. Darüberhinaus konnte an einem spektral resonanten System aus einem positionierten QP und der Grundmode eines Mikrotürmchenresonators eindeutig Einzelphotonenemission unter optischer Anregung demonstriert werden. Ebenfalls konnten Mikrotürmchenresonatoren mit integrierten positionierten QPen erstmals elektrisch betrieben werden und somit die Grundvoraussetzung für eine der skalierbaren Herstellung effizienter Einzelphotonenquellen geschaffen werden. N2 - Employing low dimensional nanostructures as active medium in classical optoelectronic devices (for instance semiconductor laser diodes) as well as optical devices of the next generation (such as single photon sources or sources of entangled photon pairs promises enormous potential. Yet, despite some exceptions (for example QDLasers inc.), quantum dot (QD)-based semiconductor lasers can hardly compete with devices exploiting higher dimensional gain material so far. Hence, using QDs as single photon emitters seems very promising. In order to achieve compatibility on the market, some urgent pre-requisites still need to be met in such devices besides the surpression of multiphoton emission: • Efficiency: Only a highly efficient single photon source can be reasonably employed in applications. • Electrical operation: In order to achieve a high integration density and for reasons of user friendlyness, the device needs to be driven electrically. • Scalability: The scalable fabrication of single photon sources is pre-requisite and one of the greatest technological challenges. • Temperature: Eventually, single photon sources will only be established in the wide field of secure data transmission if their operation at room temperature can be assured. In this work, basic studies were carried out especially devoted to the progress in the first three challenges. On the one hand, electrically driven single photon sources based on coupled QD-microcavities were realized and optimized by employing conventional self organized InAs QDs as active material. On the other hand, in order to facilitate a scalable integration of single QDs into microcavities, directed QD nucleation on pre-patterned substrate was optimized. These site-controlled QDs were at last integrated into resonator devices. In order to realize highly efficient, electrically driven single photon sources, at first the growth of binary Stranski-Krastanov InAs QDs was optimized and their emission properties were investigated in detail. By introducing Silicon atoms in the vicinity of the QD-layer, the emitters could be negatively charged. The resulting bright trion state of the QDs can subsequently be exploited as the energetic eigenstate of the system for the extraction of single photons. By integrating these charged QDs in contacted, Bragg-reflector based micropillars, single photon sources were realized exploiting light-matter coupling to enhance the device’s efficiency. Based on theoretical considerations, the grown layer sequence was optimized to an extent that eventually an electrically driven single photon source with an emission rate of 47 MHz and an unprecedented device efficiency of 34 % in the weak coupling regime could be demonstrated. Since the effects of light-matter coupling between QD and resonator rely on the QD’s position in the device, a combination of site-controlled QD-growth and device alignment is almost inevitable for a scalable, deterministic fabrication of perfectly aligned emittercavity systems. Therefore, existing concepts for ordered QD-growth were adapted and improved [KH07]: Ordered QD-growth on periods comparable to dimensions of optical resonators between 500 nm und 4 μm was realized. By carefully adjusting the growth and process conditions, formation of QD-molecules on nucleation sites could be controlled and supressed almost entirely. Carrying out a systematic optimization of the QD’s optical properties, emitters with single QD-linewidth around 100 μeV were realized. This is pre-requsite for the study of pronounced light-matter interaction in microcavities. Finally, the integration of such QDs in optically and electrically driven microresonators resulted in devices demonstrating some of the fundamental properties requested from a single photon source. Pronounced signatures of the weak light-matter coupling between a site-controlled QD in a photonic crystal cavity, a microdisk cavity and micropillar cavities were observed. Furthermore, single photon emission of a spectrally resonant system of sitecontrolled QD and micropillar cavity under pulsed optical excitation was unambigiously demonstrated. Beyond this, micropillar cavities with site-controlled QDs were electrically driven for the first time, which is pre-requisite for the scalable fabrication of efficient single photon sources. KW - Einzelphotonenemission KW - Quantenpunkt KW - Positionierung KW - Drei-Fünf-Halbleiter KW - Optischer Resonator KW - Mikrokavität KW - Single photon emission KW - quantum dot KW - site-controlled KW - semiconductor KW - microcavity Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73506 ER - TY - THES A1 - Gutberlet, Marcel T1 - K-Raum-Symmetrie und dichtegewichtete Bildgebung: Optimierung der Magnet-Resonanz-Bildgebung hinsichtlich Signal-zu-Rauschverhältnis, Abbildungsqualität und Messzeit T1 - K-space symmetry and density weighted imaging:Optimization of magnetic resonance imaging with regard to signal-to-noise ratio, image quality and acquisition time N2 - Die Magnet-Resonanz (MR)-Bildgebung ist mit vielfältigen Anwendungen ein nicht mehr wegzudenkendes Instrument der klinischen Diagnostik geworden. Dennoch führt die stark limitierte Messzeit häufig zu einer Einschränkung der erzielbaren räumlichen Auflösung und Abdeckung, einer Beschränkung des Signal-zu-Rauschverhältnis (Signal-to-Noise Ratio) (SNR) sowie einer Signalkontamination durch benachbartes Gewebe. Bereits bestehende Methoden zur Reduktion der Akquisitionszeit sind die partielle Fourier (PF)-Bildgebung und die parallele Bildgebung (PPA). Diese unterscheiden sich zum einen im Schema zur Unterabtastung des k-Raums und zum anderen in der verwendeten Information zur Rekonstruktion der fehlenden k-Raum-Daten aufgrund der beschleunigten Akquisition. Während in der PPA die unterschiedlichen Sensitivitäten einer Mehrkanal-Empfangsspule zur Bildrekonstruktion verwendet werden, basiert die PF-Bildgebung auf der Annahme einer langsamen Variation der Bildphase. Im ersten Abschnitt dieser Arbeit wurde das Konzept der Virtuellen Spulendekonvolutions (Virtual Coil Deconvolution) (VIDE)-Technik vorgestellt, das das gleiche Schema der Unterabtastung des k-Raums wie die konventionelle PPA verwendet, aber anstelle der Spulensensitivität die Bildphase als zusätzliche Information zur Herstellung der fehlenden Daten der beschleunigten Bildgebung verwendet. Zur Minimierung der Rekonstruktionsfehler und der Rauschverstärkung in der VIDE-Technik wurde ein optimiertes Akquisitionsschema entwickelt. Die Kombination der PPA und PF-Bildgebung zur Beschleunigung der MR-Bildgebung wird durch das unterschiedliche Unterabtastschema erschwert. Wie Blaimer et al. in ihrer Arbeit gezeigt haben, kann das Prinzip der VIDE-Technik auf Mehrkanal-Spulen übertragen werden, sodass mit dieser Methode die PPA und die PF-Bildgebung optimal vereint werden können. Dadurch kann die Rauschverstärkung aufgrund der Spulengeometrie ohne zusätzliche Messungen deutlich reduziert werden. Obwohl die Abtastung des k-Raums in der MR-Bildgebung sehr variabel gestaltet werden kann, wird bis heute nahezu ausschließlich die regelmäßige k-Raum-Abtastung in der klinischen Bildgebung verwendet. Der Grund hierfür liegt, neben der schnellen Rekonstruktion und der einfachen Gestaltung der Variation des Bild-Kontrasts, in der Robustheit gegen Artefakte. Allerdings führt die regelmäßige k-Raum-Abtastung zu einer hohen Signalkontamination. Die Optimierung der SRF durch nachträgliches Filtern führt jedoch zu einem SNR-Verlust. Die dichtegewichtete (DW-) Bildgebung ermöglicht die Reduktion der Signal-Kontamination bei optimalem SNR, führt aber zur einer Reduktion des effektiven Gesichtsfelds (FOV) oder einer Erhöhung der Messzeit. Letzteres kann durch eine Kombination der PPA und DW-Bildgebung umgangen werden. Der zweite Teil dieser Arbeit befasste sich mit neuen Aufnahme- und Rekonstruktionsstrategien für die DW-Bildgebung, die eine Erhöhung des FOVs auch ohne Einsatz der PPA erlauben. Durch eine Limitierung der minimalen k-Raum-Abtastdichte konnte durch eine geringfügige Reduktion des SNR-Vorteils der DW-Bildgebung gegenüber der kartesischen, gefilterten Bildgebung eine deutliche Verringerung der Artefakte aufgrund der Unterabtastung in der DW-Bildgebung erreicht werden. Eine asymmetrische Abtastung kann unter der Voraussetzung einer homogenen Bildphase das Aliasing zusätzlich reduzieren. Durch die Rekonstruktion der DW-Daten mit der Virtuelle Spulendekonvolution für die effektive DW-Bildgebung (VIDED)-Bildgebung konnten die Artefakte aufgrund der Unterabtastung eliminiert werden. In der 3d-Bildgebung konnte durch Anwendung der modifizierten DW-Bildgebung eine Steigerung des FOVs in Schichtrichtung ohne Messzeitverlängerung erreicht werden. Die nicht-kartesische k-Raum-Abtastung führt im Fall einer Unterabtastung zu deutlich geringeren, inkohärenten Aliasingartefakten im Vergleich zur kartesischen Abtastung. Durch ein alternierendes DW-Abtastschema wurde eine an die in der MR-Mammografie verwendete Spulengeometrie angepasste k-Raum-Abtastung entwickelt, das bei gleicher Messzeit die räumliche Auflösung, das SNR und das FOV erhöht. Im dritten Teil dieser Arbeit wurde die Verallgemeinerung der DW-Bildgebung auf signalgewichtete Sequenzen, d.h. Sequenzen mit Magnetisierungspräparation (Inversion Recovery (IR), Saturation Recovery (SR)) sowie Sequenzen mit einer Relaxation während der Datenaufnahme (Multi-Gradienten-Echo, Multi-Spin-Echo) vorgestellt, was eine Steigerung der Bildqualität bei optimalem SNR erlaubt. Die Methode wurde auf die SR-Sequenz angewendet und deren praktischer Nutzen wurde in der Herz-Perfusions-Bildgebung gezeigt. Durch die Verwendung der in dieser Arbeit vorgestellten Technik konnte eine Reduktion der Kontamination bei einem SNR-Gewinn von 16% im Vergleich zur konventionellen, kartesischen Abtastung bei gleicher Messzeit erreicht werden. N2 - Magnetic resonance (MR) imaging has become a powerful tool in clinical diagnostics. However, long acquisition times used in MR imaging limit the available signal-to-noise Ratio (SNR), spatial resolution and coverage and cause signal contamination from neighboring tissue. Two established methods used to reduce the scan time of MR imaging are partial parallel acquisition (PPA) and partial fourier (PF) imaging. These methods use different schemes to undersample k-space and use a different kind of information to reconstruct the missing data resulting from the accelerated acquisition. While in PPA the varying sensitivities of a multi-channel receiver coil are used in the image reconstruction, PF imaging is based on the assumption of a smoothly varying image phase. In the first section of this work, the concept of virtual coil deconvolution (VIDE) imaging is proposed. This method uses the identical acquisition scheme for the accelerated measurement of k-space as PPA. However, in contrast to PPA, VIDE imaging uses the image phase instead of the varying coil sensitivities to recover the missing data of the accelerated acquisition. Reconstruction errors and noise amplification of VIDE imaging were minimized by an optimized acquisition scheme. VIDE imaging allows an acceleration of MR imaging by a factor of two. The different sampling schemes used in PF imaging and PPA are disadvantageous for the combination of PF imaging and PPA to increase the acceleration of MRI. Blaimer, Gutberlet et al. showed that the concept of VIDE imaging can be extended to multi-channel receiver coils. This allows an optimal combination of PF imaging and PPA. The noise amplification caused by the coil geometry could be significantly decreased without lengthening the scan time. Although k-space can be measured in a variety of sampling schemes, almost exclusively a Cartesian trajectory is used in clinical imaging. Reasons are the fast and simple reconstruction, the robustness against artifacts and the well-defined contrast of Cartesian imaging. However, the Cartesian acquisition results in increased signal contamination. Post-processing filtering allows reduction of contamination but at the expense of SNR. Density weighted (DW) imaging allows optimization of the spatial response function (SRF) at maximum SNR but results in a reduced effective field of view (FOV) or a lengthening of the scan time. This disadvantage of DW imaging can be eliminated by the application of PPA. In the second section new acquisition and reconstruction methods were presented allowing an increase of the effective FOV in DW imaging even without the use of PPA. The limitation of the minimum sampling density in DW imaging resulted in a significant reduction of aliasing. Moderate filtering to correct the k-space weighting resulted in low reduction of the SNR gain in comparison to Cartesian imaging with the identical scan time. On condition of a homogeneous image phase, the aliasing can be additionally reduced by using an asymmetric DW sampling. Using virtual coil deconvolution for effective density weighted (VIDED) imaging for reconstruction, aliasing could be eliminated. By applying the developed DW method, the spatial coverage of 3D imaging was increased even without a lengthening of the scan time. In case of undersampling k-space, DW acquisition results in significantly reduced incoherent aliasing in comparison to Cartesian imaging. Alternating DW sampling revealed an optimized sampling scheme for the coil geometry used in MR-mammography. In experiments the effective FOV or the spatial resolution in slice direction could be increased significantly. In the third section the extension of DW imaging to signal-weighted sequences, i.e. sequences with magnetization preparation (inversion recovery or saturation recovery) or with relaxation between the acquired echoes (multigradient echo, multi-spin echo), was presented. The method provided increased image quality at optimum SNR in comparison to Cartesian imaging. By applying the new technique to SR-sequences, its practical use could be shown in myocardial perfusion imaging. The method presented in this work allowed an optimization of the SRF with an SNR gain of 16% compared to conventional Cartesian sampling at identical scan time. KW - Kernspintomografie KW - Paralleler Prozess KW - Messprozess KW - Dichtegewichtete Bildgebung KW - Parallele Bildgebung KW - VIDE KW - VIDED KW - density weighted imaging KW - density weighting KW - parallel imaging KW - VIDE KW - VIDED KW - Optimierung KW - NMR-Bildgebung KW - NMR-Mammographie KW - Koronarperfusion Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71834 ER - TY - THES A1 - Vorndran, Elke T1 - Rapid-Prototyping hydraulisch härtender Calcium- und Magnesiumphosphatzemente mit lokaler Wirkstoffmodifikation T1 - Rapid-prototyping of hydraulic calcium- and magnesium phosphate cements with local drug modification N2 - Ziel dieser Arbeit war die Herstellung individuell formbarer Strukturen mittels des 3D-Pulverdrucks auf Basis von bei Raumtemperatur hydraulisch abbindenden Knochenzementpulvern. Neben der Entwicklung neuartiger Zementformulierungen auf Basis von Magnesiumphosphaten war vor allem die gleichzeitige Ausstattung der Werkstoffe mit temperaturlabilen und bioaktiven Verbindungen ein wichtiger Entwicklungsschritt. Die Lokalisation der Wirkstoffe korreliert dabei mit entsprechenden Farbinformationen im Design der Konstrukte, die durch einen Mehrfarbendrucker physikalisch abgebildet werden. Das auf Calciumphosphat basierende System hat den Nachteil, dass die Abbindereaktion bei stark sauren pH-Werten abläuft, was negative Auswirkungen auf die gleichzeitige Ausstattung mit sensitiven Wirkstoffen hat. Zur Lösung dieser Problematik wurde ein neues Knochenzementpulver auf Magnesiumphosphatbasis entwickelt, welches unter neutralen pH-Bedingungen mit ammoniumhaltigem Binder zu dem Mineral Struvit abbindet. Das Zementpulver aus Trimagnesiumphosphat wurde bezüglich der pulvertechnologischen Eigenschaften, wie Partikelgröße, Partikelgrößenverteilung, Glättungseigenschaften und Schüttdichte sowie hinsichtlich des Abbindeverhaltens charakterisiert und für den Druckprozess optimiert. Die hohe Strukturgenauigkeit ermöglichte die Darstellung von makroporösen Strukturen mit einem minimalen Porendurchmesser von ca. 200 µm. Gute mechanische Kennwerte der gedruckten Strukturen, sowie eine hohe Umsetzungsrate zur gewünschten Phase Struvit wurden durch eine Nachhärtung in Ammoniumphosphatlösung erhalten. Die Druckfestigkeit betrug > 20 MPa und der Phasenanteil von Struvit konnte auf insgesamt 54 % gesteigert werden. Die Darstellung von wirkstoffmodifizierten Calciumphosphat- und Magnesiumphosphatstrukturen durch Verwendung eines Mehrfarbendruckers wurde beginnend vom Design der Strukturen bis hin zur experimentellen Bestimmung der Korrelation von Farbinformation und Binderapplikation etabliert. Zur Sicherstellung einer hohen Druckqualität und der Ortsständigkeit gedruckter Wirkstoffe erwies sich eine zusätzliche Modifikation des Tricalciumphosphatpulvers mit quellfähigen Polymeren (Hydroxypropylmethyl-cellulose (HPMC) bzw. Chitosan) als erfolgreich. Eine maximale Auflösung von ca. 400 µm konnte für eine HPMC/Chitosan/Calciumphosphat-Variante erreicht werden, während das hochreaktive Magnesiumphosphat/Magnesiumoxid-System eine Auflösung von 480 µm aufwies. Die Ortsständigkeit eingebrachter Lösungen war Voraussetzung für die Steuerung der Freisetzungskinetik. Das Freisetzungsverhalten in vitro wurde in Abhängigkeit von der Wirkstofflokalisation (homogen, Depot, Gradient) innerhalb der Matrix und unter Einbringung zusätzlicher polymerer Diffusionsbarrieren für den Wirkstoff Vancomycin untersucht. Dabei zeigte sich, dass die Modifikation der Matrices mit Polymeren zu einer verzögerten Freisetzung führte. Die lokale Wirkstoffmodifikation der Matrices in Form eines Depots oder Gradienten hatte Einfluss auf die Freisetzungskinetik, wobei eine lineare Freisetzung mit der Zeit (Kinetik 0. Ordnung) erreicht werden konnte. Die applizierten Wirkstoffe umfassten sowohl niedermolekulare Verbindungen, wie etwa das Antibiotikum Vancomycin oder das Polysaccharid Heparin, als auch proteinbasierte Faktoren wie den Knochenwachstumsfaktor rhBMP-2. Beurteilt wurde die pharmakologische Wirksamkeit der Verbindungen nach dem Druck, sowie nach der Freisetzung aus einer Calciumphosphatmatrix für den Wirkstoff Vancomycin. Es konnte belegt werden, dass die biologische Aktivität nach dem Druckprozess zu über 80 % erhalten blieb. Limitierend war der stark saure pH-Wert bei bruschitbasierten Systemen, der zu einer Inaktivierung des Proteins führte. Diesem Problem könnte durch die Nutzung des neutral abbindenden Magnesiumphosphatsystems entgegengewirkt werden. Abschließend erfolgten eine mikrostrukturelle Charakterisierung der Calciumphosphat- und Magnesiumphosphatmatrices mittels µ-CT-Analyse und Heliumpyknometrie, sowie eine quantitative Phasenanalyse nach Rietveld. Experimentell konnte nachgewiesen werden, dass mit Hilfe des 3D-Pulverdruck die Darstellung von Makroporen > 200 µm möglich ist. Die Analyse der Phasenzusammensetzung ergab, dass die Umsetzungsrate von Tricalciumphosphat und Trimagnesiumphosphat zu den gewünschten Phasen Bruschit und Struvit infolge des Nachhärtungsprozesses signifikant gesteigert werden konnte. Im Zuge dessen nahm die Porosität der gedruckten Matrices der Phase Struvit von 58 % auf 26 % und der Phase Bruschit von 47 % auf 38 % ab. N2 - Aim of this study was the room temperature fabrication of individually formed structures via 3D-powder printing based on hydraulic bone cements. In addition to the development of a novel cement formulation composed of magnesium phosphate, the simultaneous modification of matrices during the printing process with temperature sensitive and bioactive drugs was an important part of the work. The drug localization within the matrices is hereby correlated with an analogous colour design of the structures, which is physically reproduced by the multi-colour-printer. The calcium phosphate based system has the disadvantage of a strongly acidic setting reaction, which has negative effects on the simultaneous modification with sensitive bioactive agents. To solve this problem a novel bone cement formulation based on magnesium phosphate was established. This cement reacts with ammonium based binder solution within seconds to form the mineral struvite at neutral pH. The technological properties of the of trimagnesium phosphate cement powder, including particle size, particle size distribution, spreadability, powder density, and the setting behaviour, were characterized and optimized for the printing process. The high structural accuracy enabled the production of macroporous structures with a minimal pore diameter of approximately 200 µm. Proper mechanical characteristics of the printed structures as well as a high degree of conversion to the struvite phase were achieved by post-hardening in ammonium phosphate solution. The compressive strength could be increased to more than 20 MPa and the phase fraction of struvite could be increased to a maximum value of a total of 54 %. The fabrication of drug loaded calcium phosphate and magnesium phosphate scaffolds using a multi-colour-printer was established, beginning with the structure design and following the experimental verification of the correlation between the colour information and the applied binder. To guarantee a high accuracy of printing and the localization of the printed drugs, a supplemental modification of the tricalcium phosphate powder with swellable polymers (hydroxypropylmethylcellulose (HPMC) or chitosan) was successful. A maximum resolution of about 400 µm was achieved by an HPMC/chitosan/calcium phosphate composition, whereas the highly reactive magnesium phosphate/magnesium oxide system showed a resolution of about 480 µm. The localization of the applied solutions was a prerequisite to control the release kinetics of the drugs. The release kinetic of vancomycin was investigated in vitro depending on the drug localization (homogeneous, depot, gradient-like) within the matrix and by adding additional polymeric diffusion barriers. It could be shown that the polymeric modification of the matrices resulted in a delayed drug release. By discrete and depot-like or graded drug distributions within the matrices the release kinetic could be controlled, achieving a linear release with time (zero order release). The administered agents involved both low molecular compounds like the antibiotic vancomycin or the polysaccharide heparin and protein based factors like bone morphogenic factor rhBMP-2. Evaluation of pharmacological activity of the agents after printing as well as after release of vancomycin from a calcium phosphate matrix was determined, indicating that the bulk biological activity of more than 80 % was retained during the printing process. The limiting factor of the brushite based system was the strong acidic pH, which resulted in an inactivation of protein-based bioactives. This problem may be solved by using neutrally setting magnesium phosphate systems. Finally a microstructural characterization of calcium phosphate and magnesium phosphate matrices by µ-CT analysis and helium pycnometry as well as a quantitative phase analysis by Rietveld was performed. It was demonstrated, that 3D-printing allows the manufacturing of macro pores > 200 µm. The analysis of phase composition showed a significant increase of the degree of conversion from tricalcium phosphate or trimagnesium phosphate to the phases brushite or struvite due to the post hardening process. Hence the porosity of the printed matrices decreased from 58 % to 26 % for struvite and from 47 % to 38 % for brushite. KW - 3D-Druck KW - Calciumphosphate KW - 3D Pulverdruck KW - Calciumphosphat KW - Magnesiumphosphat KW - 3D powder printing KW - calcium phosphate KW - magnesium phosphate KW - Magnesiumphosphate KW - Rapid Prototyping KW - Kontrollierte Wirkstofffreisetzung Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70245 ER -