TY - THES A1 - Ferraro, Antonio T1 - Entwicklung potenzieller (ir-)reversibler Inhibitoren der Enoyl-ACP-Reduktase FabI in S. aureus/ E. coli und der Thiolase FadA5 in M. tuberculosis T1 - Development of potential irreversible/reversible inhibitors of the enoyl-ACP reductase FabI in S. aureus/ E. coli and of the thiolase FadA5 in M. tuberculosis N2 - Antimikrobielle Resistenzen stellen eine weltweite Herausforderung dar und sind mit einer hohen Morbidität und Mortalität verbunden. Die Letalitätsrate durch multiresistente Keime steigt stetig an, weshalb die WHO im Jahr 2017 eine Prioritätenliste resistenter Keime erstellte, die die Entwicklung neuer Antibiotika vorantreiben soll. Diese umfasst vornehmlich gramnegative Bakterien, da diese aufgrund ihres Zellaufbaus sowie diverser Resistenzmechanismen besonders widerstandsfähig gegenüber dem Angriff vieler Antibiotika sind. Einige grampositive Keime (z.B. S. aureus) stehen ebenfalls auf dieser Liste und stellen eine große Herausforderung für die Medizin dar. Infolgedessen ist die Entwicklung neuer Antiinfektiva mit neuen Angriffspunkten gegen resistente Pathogene zwingend nötig, um mit bisherigen Resistenzen umgehen zu können. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung und Synthese von kovalent (reversibel) bindenden Inhibitoren der Enoyl-ACP-Reduktase FabI (Staphylococcus aureus, Escherichia coli) und der Thiolase FadA5 (Mycobacterium tuberculosis). Beide Enzyme sind essenziell für das Überleben des jeweiligen Bakteriums. FabI ist ein wichtiges und geschwindigkeitsbestimmendes Schlüsselenzym der Fettsäuresynthese Typ II diverser Bakterien. Hierbei werden wichtige Phospholipide hergestellt, die für den Aufbau der Zellmembran nötig sind. Schiebel et al. ist es gelungen, einen potenten Inhibitor für den Erreger S. aureus sowie E. coli zu entwickeln und zu charakterisieren. Ausgehend von dieser Verbindung wurde eine Substanzbibliothek mit verschiedenen „warheads“ hergestellt. Hierbei wurde die Verknüpfung zwischen dem Pyridon-Grundgerüst und der elektrophilen Gruppe sowie die über den Ether verknüpften aromatischen Ringsysteme variiert. Diese Verbindungen wurden hinsichtlich ihrer inhibitorischen Aktivität am jeweiligen Enzym getestet. Anschließend wurde von Verbindung 32 und 33, die jeweils eine gute Inhibition des Enzyms aufweisen, der IC50-Wert gemessen. Beide Verbindungen weisen eine 50-prozentige Reduktion der Enzymaktivität im mittleren nanomolaren Bereich auf. Zusätzlich wurde Verbindung 32 in einem sogenannten „jump-dilution“-Assay auf kovalente Inhibition getestet. Durch dieses Experiment konnte eine kovalente Inhibition des Enzyms ausgeschlossen werden. Die Reaktivität der eingesetzten „warheads“ wurde gegenüber einem Tripeptid mittels eines LC/MS-Iontrap-Systems bestimmt. Die untersuchten Verbindungen zeigten keine signifikante Reaktion mit der im Tripeptid eingebauten nukleophilen Aminosäure Tyrosin, deren Nukleophilie bei dem pH-Wert des Tests (pH = 8.2 und 10.8) nicht hoch genug ist. Um einen Einblick in den Bindemodus der Verbindungen zu erhalten, wurden ferner Kristallisationsversuche durchgeführt. Die erhaltenen Kristallstrukturen zeigen, dass die Verbindungen mit dem gewünschten Bindemodus am Zielenzym binden, aber eine kovalente Modifizierung des Tyrosins146 durch die eingesetzten „warheads“ aufgrund der großen Entfernung (6 Å zwischen elektrophiler Gruppe und Tyrosin146), unwahrscheinlich ist. Zusätzlich wurden die physikochemischen Eigenschaften (Stabilität, Wasserlöslichkeit und logP) der Verbindung 32 sowie Verbindung 33 charakterisiert. M. tuberculosis ist der Erreger der global verbreiteten Infektionskrankheit Tuberkulose (TB), die zu den zehn häufigsten Todesursachen weltweit gehört. Das Bakterium kann das im menschlichen Körper vorkommende Cholesterol metabolisieren und nutzt dessen Abbauprodukte als wichtige Kohlenstoffquelle. Die Thiolase FadA5 ist bei diesem Abbau ein wichtiges Enzym und konnte als potenzielles innovatives Target für neue Antibiotika definiert werden. Durch Dockingstudien konnten zwei potenzielle Leitstrukturen als Inhibitoren der Thiolase FadA5 identifiziert werden. Im Rahmen dieser Arbeit wurden die vorgeschlagenen Strukturen mit dem gewünschten „warhead“ synthetisiert und hinsichtlich ihrer inhibitorischen Aktivität gegenüber dem Enzym untersucht. Die Zielverbindungen zeigen keine signifikante Hemmung sowie kovalente Bindung über die eingesetzten „warheads“ an die Thiolase FadA5. N2 - Antimicrobial resistance poses a global challenge and is associated with high morbidity and mortality. The case fatality rate of infections caused by multidrug-resistant pathogens continues to be on the rise, causing the WHO to compile a priority pathogens list that is supposed to advance the development of new antimicrobial compounds. The list is mainly comprised of gramnegative bacteria, since these are especially resilient to many antibiotics. This is due to their cellular structure and various mechanisms of resistance. Some grampositive bacteria are also a danger to public health and are therefore part of this list. Consequently, there is an urgent need for the development of new antiinfectives with novel modes of action, so that the current resistance situation can be adequately addressed. This work is concerned with the development and synthesis of covalent reversible inhibitors of the enoyl-ACP reductase FabI (Staphylococcus aureus, Escherichia Coli) and the thiolase FadA5 (Mycobacterium tuberculosis). Both enzymes are critically important for the survival of the respective bacteria. FabI is an essential and rate determining enzyme of the type II fatty acid synthesis of various bacteria. A number of important phospholipids required for the cell membrane are biosynthesized via this metabolic pathway. Schiebel et al. were able to develop and characterize a potent inhibitor for S. aureus and E. Coli. Using this compound as a starting point, a library of compounds carrying various “warheads” was synthesized. Further structural variations were introduced by using different linkers between the pyridone scaffold and the electrophilic group as well as diverse aromatic rings connected via the ether bridge. These compounds were assayed concerning their inhibitory activity at the respective enzyme. Of these, substances 32 and 33 showed good inhibition of the enzyme, prompting the determination of the IC50 values. The two substances were able to reduce enzymatic activity by 50% at nanomolar concentration levels. In addition, substance 32 was characterized concerning its ability to covalently inhibit its molecular target by means of the so-called jump dilution assay. This experiment showed no covalent inhibition of the target enzyme. The individual reactivity of the warhead moieties present in the library was determined against a synthetic tripeptide by using a LC/MS iontrap system. All the examined compounds showed no reaction with the nucleophilic amino acid tyrosine contained in the tripeptide at significant levels, which indicates that its nucleophilicity is insufficient at the pH of the assay (pH = 8,2 and 10,8, respectively). Crystallization experiments were conducted to ascertain the binding mode of the compounds. The crystal structures showed the substances binding to the enzyme in the desired pose, yet a covalent modification of tyrosine146 remains unlikely due to the large distance (6 Å) between the electrophilic moiety and the amino acid. Additionally, some physicochemical properties (Stability, aqueous solubility and logP) of compounds 32 and 33 were characterized. M. tuberculosis is the causative pathogen of the globally occurring infectious disease tuberculosis, which belongs to the 10 most frequently occurring causes of death worldwide. The germ is able to metabolize the cholesterol present in the human body and uses its degradation products as an important carbon source. The thiolase FadA5 is involved in this metabolic pathway and was identified as a potentially innovative target for novel antibiotics. Docking studies enabled the identification of two potential lead structures for inhibitors of FadA5. In this work, the proposed structures carrying the desired warheads were synthesized and characterized concerning their inhibitory activity at the target enzyme. The target compounds showed no significant inhibition or covalent binding to FadA5. KW - Enoyl-acyl-carrier-protein-Reductase KW - Enoyl-ACP-Reduktase KW - Thiolase KW - FadA5 KW - M. tuberculosis KW - FabI KW - Acyltransferasen KW - Inhibitor Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238392 ER - TY - THES A1 - Waltenberger, Constanze Ricarda Maria T1 - Virtuelles Screening nach einer neuen Inhibitorklasse der Enoyl-ACP-Reduktase InhA aus Mycobacterium tuberculosis T1 - Virtual screening for a new inhibitor class of the enoyl-ACP-reductase InhA of Mycobacterium tuberculosis N2 - Die Zahl der Tuberkuloseerkrankungen ist in den letzten Jahrzehnten weltweit gestiegen. Da es an innovativen Antituberkulotika mangelt, werden nach wie vor Medikamente der ersten Generation eingesetzt. Das wachsende Problem sind multi-resistente und extrem-resistente Bakterienstämme, die kaum oder gar nicht auf die medikamentöse Therapie ansprechen. Charakteristisch für M. tuberculosis ist eine dicke Zellwand. Der Aufbau der Zellwand ermöglicht es dem Bakterium in den Makrophagen zu persistieren und sich dort zu vermehren. Die Zellwand ist reich an Mykolsäuren und so wenig durchlässig für Fremdstoffe. Das mykobakterielle Zellwandskelett kann man in zwei Teile unterteilen, den Zellwandkern und die äußere Lipidhülle. Die freien Lipide der äußeren Lipidhülle dienen als Signalmoleküle im Krankheitsverlauf und interkalieren mit den Mykolsäuren des Zellwandkerns. M. tuberculosis besitzt für die Fettsäurebiosynthese zwei Enzymkomplexe: Die Typ-I-Fettsäuresynthase, die auch in Säugetieren zu finden ist, produziert Fettsäuren von C16- bis C26-Kettenlänge, die dann in der Typ-II-Fettsäuresynthase (FAS-II) zu Meromykolsäuren verlängert werden. Im Synthesezyklus des FAS-II sind mehrere monofunktionale Enzyme hintereinander geschaltet. Wird eines dieser Enzyme in seiner Funktion gestört, kumulieren Zwischenprodukte und benötigte Zellwandlipide können nicht synthetisiert werden. In der Folge wird die Zellwand instabil und das Bakterium stirbt. Die mykobakterielle Lipidbiosynthese ist somit ein ideales Target für die Entwicklung neuer Antituberkulotika. Ziel dieser Arbeit war es, eine neue Inhibitorklasse des FAS-II Enzyms InhA des M. tuberculosis mittels virtuellem Screening zu finden. Für das virtuelle Screening wurden drei aufeinander aufbauende Pharmakophorhypothesen entwickelt und mit diesen zwei unabhängige Datenbanken durchsucht. Als Grundlage für die Berechnungen des virtuellen Screenings diente die PDB Röntgenkristallstruktur 2h7m mit dem Liganden 1-Cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidin-3-carboxamid. Für die Erstellung der Pharmakophorhypothesen wurden zuerst die Strukturen des Enzyms mit und ohne Ligand bezüglich ihrer Konformationsunterschiede vor allem im Bereich der Bindetasche analysiert. Als nächstes wurden die Wechselwirkungen des Liganden mit den Aminosäuren der Bindetasche und dem Cofaktor näher analysiert und die verschiedenen Wechselwirkungsarten hinsichtlich ihrer Relevanz für eine inhibitorische Aktivität beurteilt. Schließlich wurde eine Bindetaschenanalyse durchgeführt und Hotspots für unterschiedliche chemische Funktionalitäten berechnet. Für das Datenbankenscreening wurden das ZINC 'drug-like' Subset (2005) und CCGs MOE 2006 Vendor Compound 3D Collection verwendet, beides Datenbanken exklusiv kommerziell erhältlicher Verbindungen. Das ZINC 'drug-like' Subset wurde über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert. Von den verbleibenden Verbindungen wurde eine Konformerendatenbank berechnet. Die MOE 2006 Vendor Compound 3D Collection lag bereits als Konformerendatenbank vor und wurde für das Screening 'as-is' verwendet. Mit den Pharmakophorhypothesen I und II wurde das reduzierte ZINC 'drug-like' Subset gescreent. Für die Treffer wurden Fingerprints berechnet, sie danach mithilfe des Tanimotokoeffizienten nach ihrer Ähnlichkeit in Cluster eingeteilt und visuell analysiert; 149 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die MOE Konformerendatenbank wurde ebenso über einen für InhA individuell angepassten hierarchischen Filter numerisch reduziert und mit der Pharmakophorhypothese III gescreent, 28 Verbindungen wurden für die Dockingsimulationen ausgewählt. Die Dockingsimulationen wurden mit den Programmen MOE Dock und Autodock durchgeführt. Die Ergebnisse wurden numerisch ausgewertet und innerhalb der Bindetasche relativ zur jeweiligen zugrunde liegenden Pharmakophorhypothese visuell analysiert; 27 Substanzen wurden schließlich für die Testungen ausgewählt. Die Testungen erfolgten mit einem enzymatischen Assay und einem Assay an attenuierten M. tuberculosis Für die Etablierung des enzymatischen Assays wurde das Enzym InhA mittels Vektortransformation in E. coli überexprimiert und säulenchromatographisch aufgereinigt. Das Substrat 2-trans-Octenoyl-Coenzym A wurde synthetisiert. Von den 27 ausgewählten Substanzen waren 9 im Handel erhältlich und wurden schließlich auf ihre inhibitorische Aktivität getestet. Es wurden ein Thiazolidin-2,4-dion, ein 2-Thioxoimidazolidin-4-on und ein Sulfonamid als aktive Substanzen gefunden. N2 - Worldwide the number of tuberculosis cases has increased in the decades. Since there is a lack of innovative anti-tuberculosis drugs, the first-generation drugs are still used as gold standard. Therefore, strains of mycobacteria, that respond only little or not at all to drug therapy, picture a growing problem. Characteristic of M. tuberculosis is its thick cell wall. The structure of the cell wall allows the bacterium to persist in the macrophages and to multiply there. The cell wall is rich in mycolic acids and, in this, little permeable to xenobiotics. The mycobacterial cell wall skeleton can be divided into two parts, the cell wall core and the outer lipid envelope. The free lipids of the outer lipid envelope serve as signalling molecules in course of the disease, and intercalate with the mycolic acids of the cell wall core. For fatty acid biosynthesis M. tuberculosis has two enzyme complexes: the type I fatty acid synthase, which is also found in mammals, produces fatty acids of C16 to C26 chain length; subsequently, these are extended to meromycolic acids in the type II fatty acid synthase (FAS II). The synthesis cycle of FAS-II consists of mono-functional enzymes that build up on each other. If one of these enzymes is disturbed in its functionality, intermediates accumulate and required cell wall lipids can not be synthesized. As a result, the cell wall turns unstable and the bacterium dies. Therefore, the mycobacterial lipid biosynthesis is an ideal target for developing new antituberculous drugs. The aim of this study was to develop a new inhibitor class of the mycobacterial FAS-II enzyme InhA by means of virtual screening. For the virtual screening three consecutive pharmacophore hypotheses were developed, and with these two independent databases were screened. As a basis for the calculations of the virtual screening the PDB X-ray crystal structure 2h7m with the ligand 1-cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide was used. In order to construct the pharmacophore hypotheses, first, the structures of the enzyme with and without a ligand were analyzed for their conformational differences, in particular with respect to the geometry of the binding pocket. Next, the interactions of the ligand with the amino acids of the binding pocket and with the cofactor were analyzed in detail; thereby, the different types of interactions were assessed in terms of their relevance for the inhibitory activity. Finally, a hot spot analysis of the active site was carried out for different chemical functionalities. The ZINC 'drug-like' subset (2005) and CCG's 2006 Vendor MOE 3D compound collection were used for the database screening, both being databases of commercially available compounds. The ZINC 'drug-like' subset was numerically reduced by a hierarchical filter customized for InhA; of the remaining compounds a database of conformers was calculated. The MOE 2006 Vendor 3D Compound Collection was already available as a conformer database. The reduced ZINC 'drug-like' subset was screened with the pharmacophore hypotheses I and II. After calculating fingerprints the hits were clustered according to their similarity using the Tanimoto coefficient and visually analyzed; 149 compunds were selected for the docking simulations. The MOE conformers database also was numerically reduced by a hierarchical filter customized for InhA, and then screened with the pharmacophore hypothesis III, 28 compounds were chosen for the docking simulations. The docking simulations were performed with the programs MOE Dock and Autodock. The results were evaluated numerically, and analyzed visually within the binding pocket relative to the respective underlying pharmacophore hypothesis. Finally, 27 substances were selected for testing. The tests were carried out using an enzymatic assay and an assay on attenuated M. tuberculosis. For establishing the enzymatic assay, the enzyme InhA was overexpressed using vector transformation into E. coli and purified by column chromatography. The substrate 2-trans-octenoyl-coenzyme A was synthesized. Of the 27 selected compounds 9 substances were commercially available and were tested for their inhibitory activity. A thiazolidine-2,4-dione, a 2-thioxoimidazolidine-4-one and a sulfonamide were found to be active. KW - Screening KW - Tuberkelbakterium KW - Enoyl-acyl-carrier-protein-Reductase KW - Inhibitor KW - Virtuelles Screening KW - Enoyl-ACP-Reduktase KW - InhA KW - neue Inhibitorklasse KW - Tuberkulose KW - Virtual Screening KW - enoyl-ACP-reductase KW - InhA KW - new inhibitor class Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73736 ER -